1
|
Antioxidant Polyphenols of Antirhea borbonica Medicinal Plant and Caffeic Acid Reduce Cerebrovascular, Inflammatory and Metabolic Disorders Aggravated by High-Fat Diet-Induced Obesity in a Mouse Model of Stroke. Antioxidants (Basel) 2022; 11:antiox11050858. [PMID: 35624723 PMCID: PMC9138119 DOI: 10.3390/antiox11050858] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic disorders related to obesity and type 2 diabetes are associated with aggravated cerebrovascular damages during stroke. In particular, hyperglycemia alters redox and inflammatory status, leading to cerebral endothelial cell dysfunction, blood–brain barrier (BBB) disruption and brain homeostasis loss. Polyphenols constitute the most abundant dietary antioxidants and exert anti-inflammatory effects that may improve cerebrovascular complications in stroke. This study evaluated the effects of the characterized polyphenol-rich extract of Antirhea borbonica medicinal plant and its major constituent caffeic acid on a high-fat diet (HFD)-induced obesity mouse model during ischemic stroke, and murine bEnd3 cerebral endothelial cells in high glucose condition. In vivo, polyphenols administered by oral gavage for 12 weeks attenuated insulin resistance, hyperglycemia, hyperinsulinemia and dyslipidemia caused by HFD-induced obesity. Polyphenols limited brain infarct, hemorrhagic transformation and BBB disruption aggravated by obesity during stroke. Polyphenols exhibited anti-inflammatory and antioxidant properties by reducing IL-1β, IL-6, MCP-1, TNF-α and Nrf2 overproduction as well as total SOD activity elevation at the cerebral or peripheral levels in obese mice. In vitro, polyphenols decreased MMP-2 activity that correlated with MCP-1 secretion and ROS intracellular levels in hyperglycemic condition. Protective effects of polyphenols were linked to their bioavailability with evidence for circulating metabolites including caffeic acid, quercetin and hippuric acid. Altogether, these findings show that antioxidant polyphenols reduced cerebrovascular, inflammatory and metabolic disorders aggravated by obesity in a mouse model of stroke. It will be relevant to assess polyphenol-based strategies to improve the clinical consequences of stroke in the context of obesity and diabetes.
Collapse
|
2
|
Kunihiro AG, Brickey JA, Frye JB, Cheng JN, Luis PB, Schneider C, Funk JL. Curcumin Inhibition of TGFβ signaling in bone metastatic breast cancer cells and the possible role of oxidative metabolites. J Nutr Biochem 2022; 99:108842. [PMID: 34407450 PMCID: PMC8628222 DOI: 10.1016/j.jnutbio.2021.108842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
TGFβ signaling promotes progression of bone-metastatic (BMET) breast cancer (BCa) cells by driving tumor-associated osteolysis, a hallmark of BCa BMETs, thus allowing for tumor expansion within bone. Turmeric-derived bioactive curcumin, enriched in bone via local enzymatic deconjugation of inactive circulating curcumin-glucuronides, inhibits osteolysis and BMET progression in human xenograft BCa BMET models by blocking tumoral TGFβ signaling pathways mediating osteolysis. This is a unique antiosteolytic mechanism in contrast to current osteoclast-targeting therapeutics. Therefore, experiments were undertaken to elucidate the mechanism for curcumin inhibition of BCa TGFβ signaling and the application of this finding across multiple BCa cell lines forming TGFβ-dependent BMETs, including a possible role for bioactive curcumin metabolites in mediating these effects. Immunoblot analysis of TGFβ signaling proteins in bone tropic human (MDA-SA, MDA-1833, MDA-2287) and murine (4T1) BCa cells revealed uniform curcumin blockade of TGFβ-induced Smad activation due to down-regulation of plasma membrane associated TGFβR2 and cellular receptor Smad proteins that propagate Smad-mediated gene expression, resulting in downregulation of PTHrP expression, the osteolytic factor driving in vivo BMET progression. With the exception of early decreases in TGFβR2, inhibitory effects appeared to be mediated by oxidative metabolites of curcumin and involved inhibition of gene expression. Interestingly, while not contributing to changes in Smad-mediated TGFβ signaling, curcumin caused early activation of MAPK signaling in all cell lines, including JNK, an effect possibly involving interactions with TGFβR2 within lipid rafts. Treatment with curcumin or oxidizable analogs of curcumin may have clinical relevancy in the management of TGFβ-dependent BCa BMETs.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Julia A Brickey
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jennifer B Frye
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Julia N Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA; Department of Medicine, University of Arizona, Tucson, Arizona, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
3
|
Lin HB, Li FX, Zhang JY, You ZJ, Xu SY, Liang WB, Zhang HF. Cerebral-Cardiac Syndrome and Diabetes: Cardiac Damage After Ischemic Stroke in Diabetic State. Front Immunol 2021; 12:737170. [PMID: 34512671 PMCID: PMC8430028 DOI: 10.3389/fimmu.2021.737170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral-cardiac syndrome (CCS) refers to cardiac dysfunction following varying brain injuries. Ischemic stroke is strongly evidenced to induce CCS characterizing as arrhythmia, myocardial damage, and heart failure. CCS is attributed to be the second leading cause of death in the post-stroke stage; however, the responsible mechanisms are obscure. Studies indicated the possible mechanisms including insular cortex injury, autonomic imbalance, catecholamine surge, immune response, and systemic inflammation. Of note, the characteristics of the stroke population reveal a common comorbidity with diabetes. The close and causative correlation of diabetes and stroke directs the involvement of diabetes in CCS. Nevertheless, the role of diabetes and its corresponding molecular mechanisms in CCS have not been clarified. Here we conclude the features of CCS and the potential role of diabetes in CCS. Diabetes drives establish a “primed” inflammatory microenvironment and further induces severe systemic inflammation after stroke. The boosted inflammation is suspected to provoke cardiac pathological changes and hence exacerbate CCS. Importantly, as the key element of inflammation, NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is indicated to play an important role in diabetes, stroke, and the sequential CCS. Overall, we characterize the corresponding role of diabetes in CCS and speculate a link of NLRP3 inflammasome between them.
Collapse
Affiliation(s)
- Hong-Bin Lin
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jin-Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jian You
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Bin Liang
- University of Ottawa Heart Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Inflammatory Biomarkers and Intracranial Hemorrhage after Endovascular Thrombectomy. Can J Neurol Sci 2021; 49:644-650. [PMID: 34548113 DOI: 10.1017/cjn.2021.197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Intracranial hemorrhage after endovascular thrombectomy is associated with poorer prognosis compared with those who do not develop the complication. Our study aims to determine predictors of post-EVT hemorrhage - more specifically, inflammatory biomarkers present in baseline serology. METHODS We performed a retrospective review of consecutive patients treated with EVT for acute large vessel ischemic stroke. The primary outcome of the study is the presence of ICH on the post-EVT scan. We used four definitions: the SITS-MOST criteria, the NINDS criteria, asymptomatic hemorrhage, and overall hemorrhage. We identified nonredundant predictors of outcome using backward elimination based on Akaike Information Criteria. We then assessed prediction accuracy using area under the receiver operating curve. Then we implemented variable importance ranking from logistic regression models using the drop in Naegelkerke R2 with the exclusion of each predictor. RESULTS Our study demonstrates a 6.3% SITS (16/252) and 10.0% NINDS (25/252) sICH rate, as well as a 19.4% asymptomatic (49/252) and 29.4% (74/252) overall hemorrhage rate. Serologic markers that demonstrated association with post-EVT hemorrhage were: low lymphocyte count (SITS), high neutrophil count (NINDS, overall hemorrhage), low platelet to lymphocyte ratio (NINDS), and low total WBC (NINDS, asymptomatic hemorrhage). CONCLUSION Higher neutrophil counts, low WBC counts, low lymphocyte counts, and low platelet to lymphoycyte ratio were baseline serology biomarkers that were associated with post-EVT hemorrhage. Our findings, particularly the association of diabetes mellitus and high neutrophil, support experimental data on the role of thromboinflammation in hemorrhagic transformation of large vessel occlusions.
Collapse
|
5
|
Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Jickling GC. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front Neurol 2021; 12:661955. [PMID: 34054705 PMCID: PMC8160112 DOI: 10.3389/fneur.2021.661955] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Hemorrhagic transformation (HT) is a common complication in patients with acute ischemic stroke. It occurs when peripheral blood extravasates across a disrupted blood brain barrier (BBB) into the brain following ischemic stroke. Preventing HT is important as it worsens stroke outcome and increases mortality. Factors associated with increased risk of HT include stroke severity, reperfusion therapy (thrombolysis and thrombectomy), hypertension, hyperglycemia, and age. Inflammation and the immune system are important contributors to BBB disruption and HT and are associated with many of the risk factors for HT. In this review, we present the relationship of inflammation and immune activation to HT in the context of reperfusion therapy, hypertension, hyperglycemia, and age. Differences in inflammatory pathways relating to HT are discussed. The role of inflammation to stratify the risk of HT and therapies targeting the immune system to reduce the risk of HT are presented.
Collapse
Affiliation(s)
- Elena Spronk
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gina Sykes
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sarina Falcione
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Danielle Munsterman
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Twinkle Joy
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
9
|
Liu J, Sun X, Jin H, Yan XL, Huang S, Guo ZN, Yang Y. Remote ischemic conditioning: A potential therapeutic strategy of type 2 diabetes. Med Hypotheses 2020; 146:110409. [PMID: 33277103 DOI: 10.1016/j.mehy.2020.110409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is one of the major public diseases which is characterized by peripheral insulin resistance (IR) and progressive pancreatic β-cell failure. While in the past few years, some new factors, such as inflammation, oxidative stress, immune responses and other potential pathways, have been identified to play critical roles in T2D, and thereby provide novel promising targets for the treatment of T2D. Remote ischemic conditioning (RIC) is a non-invasive and convenient operation performed by transient, repeated ischemia in distant place. Nowadays, RIC has been established as a potentially powerful therapeutic tool for many diseases, especially in I/R injuries. Through activating a series of neural, humoral and immune pathways, it can release multiple protective signals, which then regulating inflammation, oxidative stress, immune response and so on. Interestingly, several recent studies have discovered that the beneficial effects of RIC on I/R injuries might be abolished by T2D, wherein the higher basal levels of inflammation and oxidative stress, dysregulation of immune system and some potential pathways secondary to hyperglycemia may play critical roles. In contrast, a higher intensity of conditioning could restore the protective effects. Based on the overlapped mechanisms RIC and T2D performs, we provide a hypothesis that RIC may also play a protective role in T2D via targeting these signaling pathways.
Collapse
Affiliation(s)
- Jie Liu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| | - Xin Sun
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Hang Jin
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Xiu-Li Yan
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
| | - Shuo Huang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China.
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China; China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
10
|
Opportunities and Limitations of Vascular Risk Factor Models in Studying Plasticity-Promoting and Restorative Ischemic Stroke Therapies. Neural Plast 2019; 2019:9785476. [PMID: 31827502 PMCID: PMC6885287 DOI: 10.1155/2019/9785476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Major efforts are currently made promoting neuronal plasticity and brain remodeling in the postacute stroke phase. Experimental studies evaluating new stroke therapies are mostly performed in rodents, which compared to humans exhibit a short lifespan. These studies widely employ young, otherwise healthy, rodents that lack the vascular risk factors and comorbidities of stroke patients. These risk factors compromise postischemic neurological recovery and brain plasticity and in several contexts reduce the brain responsiveness to recovery-inducing plasticity-promoting treatments. By examining risk factor models, which have hitherto been used for studying experimentally induced ischemic stroke, this review outlines the possibilities and limitations of risk factor models in the evaluation of plasticity-promoting and restorative stroke treatments.
Collapse
|
11
|
Direct Peritoneal Resuscitation Alters Leukocyte Infiltration in the Lung After Acute Brain Death. Shock 2019; 50:565-571. [PMID: 29194344 DOI: 10.1097/shk.0000000000001069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Brain death is associated with significant lung injury and inflammation. This has been associated with worse long-term outcomes for transplanted lungs. Direct peritoneal resuscitation (DPR) reduces systemic inflammation in brain death and improves lung procurement rate. The effect of DPR on macrophage and neutrophil infiltration in the lungs is not known. METHODS Male Sprague-Dawley rats had a 4F Fogarty catheter inserted into the skull and the balloon inflated until brain death was achieved. Rats were resuscitated with normal saline to maintain a mean arterial pressure of 80 mmHg (targeted intravenous fluid, TIVF) and DPR animals received an intraperitoneal injection of commercial peritoneal dialysis solution. Rats were sacrificed at 0, 2, 4, and 6 h after brain death. Protein levels were assessed using quantitative ELISA. Leukocytes were quantified using flow cytometry and immunohistochemistry. RESULTS At all time points, DPR downregulated multiple inflammatory cytokines including IFN-γ, TNF-α, IL-1α, and IL-6. Adhesion molecules ICAM, E-selectin, and P-selectin were increased above sham at 4 and 6 h after brain death and reduced with DPR, whereas VCAM was reduced at 2 and 6 h. Infiltration of macrophages and neutrophils were trended downward at 6 h with DPR, though this difference was not statistically significant. CONCLUSIONS Animals that received TIVF alone had significant increases in inflammatory cytokines within the lung tissue, leading to adhesion molecule expression and ultimately leukocyte infiltration. Each stage of inflammation was affected by DPR. Using DPR in brain dead organ donors shows promise as a way to reduce lung injury and inflammation.
Collapse
|
12
|
Hermann DM, Kleinschnitz C. Modeling Vascular Risk Factors for the Development of Ischemic Stroke Therapies. Stroke 2019; 50:1310-1317. [DOI: 10.1161/strokeaha.118.024673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dirk M. Hermann
- From the Department of Neurology, University Hospital Essen, Germany
| | | |
Collapse
|
13
|
Vammen L, Rahbek S, Secher N, Povlsen JA, Jessen N, Løfgren B, Granfeldt A. Type 2 diabetes mellitus worsens neurological injury following cardiac arrest: an animal experimental study. Intensive Care Med Exp 2018; 6:23. [PMID: 30088108 PMCID: PMC6081485 DOI: 10.1186/s40635-018-0193-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/30/2018] [Indexed: 01/22/2023] Open
Abstract
Background Cardiac arrest carries a poor prognosis. The typical cardiac arrest patient is comorbid, and studies have shown that diabetes mellitus is an independent risk factor for increased mortality after cardiac arrest. Despite this, animal studies lack to investigate cardiac arrest in the setting of diabetes mellitus. We hypothesize that type 2 diabetes mellitus in a rat model of cardiac arrest is associated with increased organ dysfunction when compared with non-diabetic rats. Methods Zucker diabetic fatty (ZDF) rats (n = 13), non-diabetic Zucker lean control (ZLC) rats (n = 15), and non-diabetic Sprague Dawley (SprD) rats (n = 8), underwent asphyxia-induced cardiac arrest. Animals were resuscitated and monitored for 180 min after return of spontaneous circulation (ROSC). Blood levels of neuron-specific enolase were measured to assess neurological injury. Cardiac function was evaluated by echocardiography. Results No differences in cardiac output or neuron-specific enolase existed between the groups at baseline. Median levels of neuron-specific enolase 180 min after ROSC was 10.8 μg/L (Q25;Q75—7.6;11.3) in the ZDF group, which was significantly higher compared to the ZLC group at 2.0 μg/L (Q25;Q75—1.7;2.3, p < 0.05) and the SprD group at 2.8 μg/L (Q25;Q75—2.3;3.4, p < 0.05). At 180 min after ROSC, cardiac output was 129 mL/min/kg (SD 45) in the ZDF group, which was not different from 106 mL/min/kg (SD 31) in the ZLC group or 123 mL/min/kg (SD 26, p = 0.72) in the SprD group. Conclusions In a cardiac arrest model, neuronal injury is increased in type 2 diabetes mellitus animals compared with non-diabetic controls. Although this study lacks to uncover the specific mechanisms causing increased neuronal injury, the establishment of a cardiac arrest model of type 2 diabetes mellitus lays the important foundation for further experimental investigations within this field.
Collapse
Affiliation(s)
- Lauge Vammen
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark.,Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Rahbek
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Secher
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Internal Medicine, Regional Hospital of Randers, Randers, Denmark
| | - Asger Granfeldt
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
14
|
Wang Z, Zhang A, Meng W, Wang T, Li D, Liu Z, Liu H. Ozone protects the rat lung from ischemia-reperfusion injury by attenuating NLRP3-mediated inflammation, enhancing Nrf2 antioxidant activity and inhibiting apoptosis. Eur J Pharmacol 2018; 835:82-93. [PMID: 30075224 DOI: 10.1016/j.ejphar.2018.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of lung dysfunction during cardiovascular surgery, heart transplantation and cardiopulmonary bypass procedures, and the inflammatory response, oxidative stress, and apoptosis play key and allegedly maladaptive roles in its pathogenesis. The aim of this study was to initially elucidate whether ozone induces oxidative preconditioning by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and secondly to determine whether ozone oxidative preconditioning (OzoneOP) protects the lung from IRI by attenuating nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3)-mediated inflammation, enhancing the antioxidant activity of Nrf2 and inhibiting apoptosis. Rats treated with or without OzoneOP (2 ml containing 100 µg/kg/day) were subjected to 1 h of lung ischemia followed by 2 h of reperfusion for 10 days. Lung damage, antioxidant capacity, inflammation and apoptosis were evaluated and compared among different groups after reperfusion. OzoneOP significantly ameliorated changes in lung morphology and protected the lung from IRI by attenuating oxidative stress, inflammation-induced injury and lung apoptosis. Moreover, OzoneOP increased the expression of Nrf2 and decreased the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), un-cleavable cysteine-requiring aspartate protease-1 (procaspase-1), cysteine-requiring aspartate protease-1 (caspase-1) and interleukin-1β (IL-1β) in the rat lungs. In summary, these results provide new insights into the molecular events modulated by ozone and suggest that ozone therapy may be an integrative support for patients with lung IRI.
Collapse
Affiliation(s)
- Zhiwen Wang
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Ai Zhang
- General Hospital of Heilongjiang Province Land Reclamation Bureau, 235 Hashuang Road, Harbin, Heilongjiang 150088, China
| | - Weixin Meng
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Tingting Wang
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Dandan Li
- Institute of Keshan Disease, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Zonghong Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China
| | - Hongyu Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
15
|
LncRNA MALAT1 promotes high glucose-induced inflammatory response of microglial cells via provoking MyD88/IRAK1/TRAF6 signaling. Sci Rep 2018; 8:8346. [PMID: 29844328 PMCID: PMC5974243 DOI: 10.1038/s41598-018-26421-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/08/2018] [Indexed: 11/09/2022] Open
Abstract
Although a large number of studies have confirmed from multiple levels that diabetes mellitus (DM) promotes cerebral ischemic reperfusion (I/R) injury, but the precise mechanism is still unclear. A cerebral I/R injury model in diabetic rats was established. The neurological deficit scores and brain edema were monitored at 24 and 72 hours after injury. The peri-infarct cortical tissues of rats were isolated for molecular biology detection. The rat primary microglia and microglia line HAPI were cultured to establish the cell model of DM-I/R by high glucose (HG) and hypoxia-reoxygenation (H/R). The endogenous expression of MALAT1 and MyD88 was regulated by the transfection with pcDNA-MALAT1, si-MALAT1 and si-MyD88, respectively. The cerebral I/R injury model in diabetic rats had more severe neuronal injury as shown by the significantly higher neurological deficit scores and an obvious increasing brain edema at 24 and 72 hours after injury. Moreover, the microglia were activated and induced a large number of inflammatory cytokines TNF-α, IL-1β and IL-6 in the peri-infarct cortical tissues during cerebral I/R injury associated with DM. The expression of MALAT1, MyD88, IRAK1 and TRAF6 protein were significantly up-regulated by DM-I/R in vitro and in vivo. Furthermore, the HG-H/R-induced MALAT1 promoted the inflammatory response in microglia via MyD88/IRAK1/TRAF6 signaling. Our results suggested that MALAT1 mediated the exacerbation of cerebral I/R injury induced by DM through triggering the inflammatory response in microglia via MyD88 signaling.
Collapse
|
16
|
Affiliation(s)
- Sunghee Cho
- From the Burke Medical Research Institute, White Plains, NY (S.C., J.Y.); and Feil Family Brain and Mind Research Institute, Departments of Neurology and Neuroscience, Weill Cornell Medicine, New York, NY (S.C.).
| | - Jiwon Yang
- From the Burke Medical Research Institute, White Plains, NY (S.C., J.Y.); and Feil Family Brain and Mind Research Institute, Departments of Neurology and Neuroscience, Weill Cornell Medicine, New York, NY (S.C.)
| |
Collapse
|
17
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
18
|
Venkat P, Chopp M, Chen J. Blood-Brain Barrier Disruption, Vascular Impairment, and Ischemia/Reperfusion Damage in Diabetic Stroke. J Am Heart Assoc 2017; 6:e005819. [PMID: 28572280 PMCID: PMC5669184 DOI: 10.1161/jaha.117.005819] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Poornima Venkat
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Jieli Chen
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
- Neurological & Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Desilles JP, Syvannarath V, Ollivier V, Journé C, Delbosc S, Ducroux C, Boisseau W, Louedec L, Di Meglio L, Loyau S, Jandrot-Perrus M, Potier L, Michel JB, Mazighi M, Ho-Tin-Noé B. Exacerbation of Thromboinflammation by Hyperglycemia Precipitates Cerebral Infarct Growth and Hemorrhagic Transformation. Stroke 2017; 48:1932-1940. [PMID: 28526762 DOI: 10.1161/strokeaha.117.017080] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/03/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Admission hyperglycemia is associated with a poor outcome in acute ischemic stroke. How hyperglycemia impacts the pathophysiology of acute ischemic stroke remains largely unknown. We investigated how preexisting hyperglycemia increases ischemia/reperfusion cerebral injury. METHODS Normoglycemic and streptozotocin-treated hyperglycemic rats were subjected to transient middle cerebral artery occlusion. Infarct growth and brain perfusion were assessed by magnetic resonance imaging. Markers of platelet, coagulation, and neutrophil activation were measured in brain homogenates and plasma. Downstream microvascular thromboinflammation (DMT) was investigated by intravital microscopy. RESULTS Hyperglycemic rats had an increased infarct volume with an increased blood-brain barrier disruption and hemorrhagic transformation rate compared with normoglycemic rats. Magnetic resonance imaging scans revealed that hyperglycemia enhanced and accelerated lesion growth and was associated with hemorrhagic transformation originating from territories that were still not completely reperfused at 1 hour after middle cerebral artery recanalization. Intravital microscopy and analysis of brain homogenates showed that DMT began immediately after middle cerebral artery occlusion and was exacerbated by hyperglycemia. Measurement of plasma serotonin and matrix metalloproteinase-9 indicated that platelets and neutrophils were preactivated in hyperglycemic rats. Neutrophils from hyperglycemic diabetic patients showed increased adhesion to endothelial cells as compared with neutrophils from normoglycemic donors in flow chamber experiments. CONCLUSIONS We show that hyperglycemia primes the thromboinflammatory cascade, thus, amplifying middle cerebral artery occlusion-induced DMT. DMT exacerbation in hyperglycemic rats impaired reperfusion and precipitated neurovascular damage, blood-brain barrier disruption, and hemorrhagic transformation. Our results designate DMT as a possible target for reduction of the deleterious impact of hyperglycemia in acute ischemic stroke.
Collapse
Affiliation(s)
- Jean-Philippe Desilles
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.).
| | - Varouna Syvannarath
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Véronique Ollivier
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Clément Journé
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Sandrine Delbosc
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Célina Ducroux
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - William Boisseau
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Liliane Louedec
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Lucas Di Meglio
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Stéphane Loyau
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Martine Jandrot-Perrus
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Louis Potier
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Jean-Baptiste Michel
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Mikael Mazighi
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Benoit Ho-Tin-Noé
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| |
Collapse
|
20
|
Haley MJ, Lawrence CB. Obesity and stroke: Can we translate from rodents to patients? J Cereb Blood Flow Metab 2016; 36:2007-2021. [PMID: 27655337 PMCID: PMC5134197 DOI: 10.1177/0271678x16670411] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for stroke and is consequently one of the most common co-morbidities found in patients. There is therefore an identified need to model co-morbidities preclinically to allow better translation from bench to bedside. In preclinical studies, both diet-induced and genetically obese rodents have worse stroke outcome, characterised by increased ischaemic damage and an altered inflammatory response. However, clinical studies have reported an 'obesity paradox' in stroke, characterised by reduced mortality and morbidity in obese patients. We discuss the potential reasons why the preclinical and clinical studies may not agree, and review the mechanisms identified in preclinical studies through which obesity may affects stroke outcome. We suggest inflammation plays a central role in this relationship, as obesity features increases in inflammatory mediators such as C-reactive protein and interleukin-6, and chronic inflammation has been linked to worse stroke risk and outcome.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Osier ND, Pham L, Savarese A, Sayles K, Alexander SA. Animal models in genomic research: Techniques, applications, and roles for nurses. Appl Nurs Res 2016; 32:247-256. [PMID: 27969037 PMCID: PMC5161027 DOI: 10.1016/j.apnr.2016.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 01/04/2023]
Abstract
Animal research has been conducted by scientists for over two millennia resulting in a better understanding of human anatomy, physiology, and pathology, as well as testing of novel therapies. In the molecular genomic era, pre-clinical models represent a key tool for understanding the genomic underpinnings of health and disease and are relevant to precision medicine initiatives. Nurses contribute to improved health by collecting and translating evidence from clinically relevant pre-clinical models. Using animal models, nurses can ask questions that would not be feasible or ethical to address in humans, and establish the safety and efficacy of interventions before translating them to clinical trials. Two advantages of using pre-clinical models are reduced variability between test subjects and the opportunity for precisely controlled experimental exposures. Standardized care controls the effects of diet and environment, while the availability of inbred strains significantly reduces the confounding effects of genetic differences. Outside the laboratory, nurses can contribute to the approval and oversight of animal studies, as well as translation to clinical trials and, ultimately, patient care. This review is intended as a primer on the use of animal models to advance nursing science; specifically, the paper discusses the utility of preclinical models for studying the pathophysiologic and genomic contributors to health and disease, testing interventions, and evaluating effects of environmental exposures. Considerations specifically geared to nurse researchers are also introduced, including discussion of how to choose an appropriate model and controls, potential confounders, as well as legal and ethical concerns. Finally, roles for nurse clinicians in pre-clinical research are also highlighted.
Collapse
Affiliation(s)
- Nicole D Osier
- University of Pittsburgh School of Nursing, Pittsburgh, PA 15213; Safar Center for Resuscitation Research, Pittsburgh, PA 15213
| | - Lan Pham
- University of Pittsburgh School of Nursing, Pittsburgh, PA 15213
| | - Amanda Savarese
- University of Pittsburgh School of Nursing, Pittsburgh, PA 15213
| | - Kendra Sayles
- University of Pittsburgh School of Nursing, Pittsburgh, PA 15213; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15260
| | - Sheila A Alexander
- University of Pittsburgh School of Nursing, Pittsburgh, PA 15213; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.
| |
Collapse
|
22
|
Ergul A, Hafez S, Fouda A, Fagan SC. Impact of Comorbidities on Acute Injury and Recovery in Preclinical Stroke Research: Focus on Hypertension and Diabetes. Transl Stroke Res 2016; 7:248-60. [PMID: 27026092 DOI: 10.1007/s12975-016-0464-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
Human ischemic stroke is very complex, and no single preclinical model can comprise all the variables known to contribute to stroke injury and recovery. Hypertension, diabetes, and hyperlipidemia are leading comorbidities in stroke patients. The use of predominantly young adult and healthy animals in experimental stroke research has created a barrier for translation of findings to patients. As such, more and more disease models are being incorporated into the research design. This review highlights the major strengths and weaknesses of the most commonly used animal models of these conditions in preclinical stroke research. The goal is to provide guidance in choosing, reporting, and executing appropriate disease models that will be subjected to different models of stroke injury.
Collapse
Affiliation(s)
- Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA. .,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA. .,Department of Physiology, Augusta University, CA2094, Augusta, GA, 30912, USA.
| | - Sherif Hafez
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA.,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,Department of Physiology, Augusta University, CA2094, Augusta, GA, 30912, USA
| | - Abdelrahman Fouda
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA.,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Susan C Fagan
- Charlie Norwood Veterans Administration Medical Center, University of Georgia, Athens, GA, USA.,Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,Department of Neurology, Augusta University, Augusta, GA, USA
| |
Collapse
|
23
|
Ergul A, Valenzuela JP, Fouda AY, Fagan SC. Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period. Brain Res 2015; 1623:81-96. [PMID: 25749094 PMCID: PMC4743654 DOI: 10.1016/j.brainres.2015.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - John Paul Valenzuela
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA
| | - Abdelrahman Y Fouda
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
24
|
Astrocytes Are Primed by Chronic Neurodegeneration to Produce Exaggerated Chemokine and Cell Infiltration Responses to Acute Stimulation with the Cytokines IL-1β and TNF-α. J Neurosci 2015; 35:8411-22. [PMID: 26041910 DOI: 10.1523/jneurosci.2745-14.2015] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microgliosis and astrogliosis are standard pathological features of neurodegenerative disease. Microglia are primed by chronic neurodegeneration such that toll-like receptor agonists, such as LPS, drive exaggerated cytokine responses on this background. However, sterile inflammatory insults are more common than direct CNS infection in the degenerating brain and these insults drive robust IL-1β and TNF-α responses. It is unclear whether these pro-inflammatory cytokines can directly induce exaggerated responses in the degenerating brain. We hypothesized that glial cells in the hippocampus of animals with chronic neurodegenerative disease (ME7 prion disease) would display exaggerated responses to central cytokine challenges. TNF-α or IL-1β were administered intrahippocampally to ME7-inoculated mice and normal brain homogenate-injected (NBH) controls. Both IL-1β and TNF-α produced much more robust IL-1β synthesis in ME7 than in NBH animals and this occurred exclusively in microglia. However, there was strong nuclear localization of the NFκB subunit p65 in the astrocyte population, associated with marked astrocytic synthesis of the chemokines CXCL1 and CCL2 in response to both cytokine challenges in ME7 animals. Conversely, very limited expression of these chemokines was apparent in NBH animals similarly challenged. Thus, astrocytes are primed in the degenerating brain to produce exaggerated chemokine responses to acute stimulation with pro-inflammatory cytokines. Furthermore, this results in markedly increased neutrophil, T-cell, and monocyte infiltration in the diseased brain. These data have significant implications for acute sterile inflammatory insults such as stroke and traumatic brain injury occurring on a background of aging or neurodegeneration.
Collapse
|
25
|
Maysami S, Haley MJ, Gorenkova N, Krishnan S, McColl BW, Lawrence CB. Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. J Neuroinflammation 2015; 12:140. [PMID: 26239227 PMCID: PMC4524371 DOI: 10.1186/s12974-015-0359-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/03/2015] [Indexed: 12/05/2022] Open
Abstract
Background Obesity increases the risk for ischaemic stroke and is associated with worse outcome clinically and experimentally. Most experimental studies have used genetic models of obesity. Here, a more clinically relevant model, diet-induced obesity, was used to study the impact of obesity over time on the outcome and inflammatory response after stroke. Methods Male C57BL/6 mice were maintained on a high-fat (60 % fat) or control (12 % fat) diet for 2, 3, 4 and 6 months when experimental stroke was induced by transient occlusion of the middle cerebral artery (MCAo) for either 20 (6-month diet) or 30 min (2-, 3-, 4- and 6-month diet). Ischaemic damage, blood–brain barrier (BBB) integrity, neutrophil number and chemokine expression in the brain were assessed at 24 h. Plasma chemokine levels (at 4 and 24 h) and neutrophil number in the liver (at 24 h) were measured. Physiological parameters (body weight and blood glucose) were measured in naïve control- and high-fat-fed mice at all time points and blood pressure at 3 and 6 months. Blood cell counts were also assessed in naïve 6-month control- and high-fat-fed mice. Results Mice fed a high-fat diet for 6 months had greater body weight, blood glucose and white and red blood cell count but no change in systolic blood pressure. After 4 and 6 months of high-fat feeding, and in the latter group with a 30-min (but not 20-min) occlusion of the MCA, obese mice had greater ischaemic brain damage. An increase in blood–brain barrier permeability, chemokine expression (CXCL-1 and CCL3), neutrophil number and microglia/macrophage cells was observed in the brains of 6-month high-fat-fed mice after 30-min MCAo. In response to stroke, chemokine (CXCL-1) expression in the plasma and liver was significantly different in obese mice (6-month high-fat fed), and a greater number of neutrophils were detected in the liver of control but not obese mice. Conclusions The detrimental effects of diet-induced obesity on stroke were therefore dependent on the severity of obesity and length of ischaemic challenge. The altered inflammatory response in obese mice may play a key role in its negative impact on stroke.
Collapse
Affiliation(s)
- Samaneh Maysami
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Michael J Haley
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Natalia Gorenkova
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Siddharth Krishnan
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Barry W McColl
- The Roslin Institute and R(D)SVS, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, UK
| | - Catherine B Lawrence
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Yang H, Ma S, Liu Y, Li Y, Wu W, Han E, Jia G, Wang C. Poor outcome of experimental ischemic stroke in type 2 diabetic rats: impaired circulating endothelial progenitor cells mobilization. J Stroke Cerebrovasc Dis 2015; 24:980-7. [PMID: 25813059 DOI: 10.1016/j.jstrokecerebrovasdis.2014.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND It is well accepted that type 2 diabetic mellitus (T2DM) results in the poor outcome of ischemic stroke. However, the mechanisms by which T2DM causes aggravated cerebral ischemic/reperfusion (I/R) injury are not clear. Recently, endothelial progenitor cells (EPCs) are considered to be related with the outcome of ischemic stroke. More importantly, T2DM can affect the function of circulating EPCs. This study tried to investigate whether T2DM worsens the cerebral I/R injury via affecting circulating EPCs. METHODS We used high-fat diet-fed and low-dose streptozotocin-treated male rats receiving middle cerebral artery occlusion surgery as animal model of focal cerebral I/R injury with T2DM (diabetic operated). And the rats were divided into 4 groups: normal sham, diabetic sham, normal operated, and diabetic operated. We measured the circulating EPCs counts and the levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral plasma of 4 groups. RESULTS We found that diabetic rats subjected to I/R exhibited significantly severe deterioration in neurologic deficits compared with nondiabetic counterparts, which manifested higher infarct volume and cell apoptosis as well as lower neurologic defective score. There was no significant difference on the plasma glucose of groups before cerebral I/R injury compared with that of the groups posterior to cerebral I/R injury despite cerebral I/R injury had the tendency to increase the plasma glucose no matter in the presence or the absence of T2DM. In addition, there were the marked downregulation of circulating EPCs counts and the levels of VEGF and eNOS in diabetic rats before the cerebral I/R injury. Despite I/R injury without T2DM, there was a significant increase in the circulating EPCs counts, the circulating EPCs counts in I/R injury with T2DM group were significantly decreased compared with those in the other 3 groups. We also observed that the level of eNOS was significantly improved by I/R injury without considering the presence of T2DM. CONCLUSIONS Thus, our present study suggested that it might be the impaired EPCs mobilization into the blood that contributed to the worse outcome of cerebral I/R injury with T2DM.
Collapse
Affiliation(s)
- HongNa Yang
- Department of Critical-Care Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province
| | - Shuang Ma
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province
| | - Ying Liu
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province
| | - Yi Li
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province
| | - Wei Wu
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province
| | - EnJi Han
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province
| | - GuoYong Jia
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province
| | - CuiLan Wang
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province; Brain Science Research Institute, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
27
|
Blanchet X, Cesarek K, Brandt J, Herwald H, Teupser D, Küchenhoff H, Karshovska E, Mause SF, Siess W, Wasmuth H, Soehnlein O, Koenen RR, Weber C, von Hundelshausen P. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome. Thromb Haemost 2014; 112:1277-87. [PMID: 25183015 DOI: 10.1160/th14-02-0139] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/01/2014] [Indexed: 01/13/2023]
Abstract
Activated platelets and neutrophils exacerbate atherosclerosis. Platelets release the chemokines CXCL4, CXCL4L1 and CCL5, whereas myeloperoxidase (MPO) and azurocidin are neutrophil-derived. We investigated whether plasma levels of these platelet and neutrophil mediators are affected by the acute coronary syndrome (ACS), its medical treatment, concomitant clinical or laboratory parameters, and predictive for the progression of coronary artery disease (CAD). In an observational study, the association of various factors with plasma concentrations of platelet chemokines and neutrophil mediators in 204 patients, either upon admission with ACS and 6 hours later or without ACS or CAD, was determined by multiple linear regression. Mediator release was further analysed after activation of blood with ACS-associated triggers such as plaque material. CXCL4, CXCL4L1, CCL5, MPO and azurocidin levels were elevated in ACS. CXCL4 and CCL5 but not CXCL4L1 or MPO were associated with platelet counts and CRP. CXCL4 (in association with heparin treatment) and MPO declined over 6 hours during ACS. Elevated CCL5 was associated with a progression of CAD. Incubating blood with plaque material, PAR1 and PAR4 activation induced a marked release of CXCL4 and CCL5, whereas CXCL4L1 and MPO were hardly or not altered. Platelet chemokines and neutrophil products are concomitantly elevated in ACS and differentially modulated by heparin treatment. CCL5 levels during ACS predict a progression of preexisting CAD. Platelet-derived products appear to dominate the inflammatory response during ACS, adding to the emerging evidence that ACS per se may promote vascular inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - P von Hundelshausen
- Dr. Philipp von Hundelshausen, Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), Pettenkoferstr. 9, 80336 Munich, Germany, Tel.: +49 89 5160 4359, Fax: +49 89 5160 4352, E-mail:
| |
Collapse
|
28
|
Yuan D, Xu S, He P. Enhanced permeability responses to inflammation in streptozotocin-induced diabetic rat venules: Rho-mediated alterations of actin cytoskeleton and VE-cadherin. Am J Physiol Heart Circ Physiol 2014; 307:H44-53. [PMID: 24778164 DOI: 10.1152/ajpheart.00929.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is a progressive disease that often leads to microvascular complications. This study investigates the impact of diabetes on microvessel permeability under basal and inflammatory conditions. Streptozotocin-induced diabetic rats were used to mimic type 1 diabetes. Parallel experiments were conducted in intact mesenteric venules in normal rats and diabetic rats experiencing hyperglycemia for 2-3 wk. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). The correlated changes in endothelial intracellular Ca(2+) concentration ([Ca(2+)]i), adherens junctions, and cytoskeleton F-actin were examined with fluorescence imaging. Diabetic vessels showed moderately increased basal Lp, but upon platelet-activating factor (PAF) exposure, these vessels showed an ~10-fold higher Lp increase than the normal vessels. Concomitantly, we observed higher increases in endothelial [Ca(2+)]i, enhanced stress fiber formation, vascular endothelial-cadherin separation, and larger gap formation between endothelial cells than those occurring in normal vessels. PAF receptor staining showed no significant difference between normal and diabetic vessels. The application of Rho kinase inhibitor Y27632 did not affect PAF-induced increases in endothelial [Ca(2+)]i but significantly reduced PAF-induced Lp increases by 90% in diabetic vessels. The application of both Y27632 and nitric oxide (NO) synthase inhibitor attenuated PAF-induced Lp increases more than using one inhibitor alone. Our studies indicate that diabetic conditions prime endothelial cells into a phenotype with increased susceptibility to inflammation without altering receptor expression and that the increased Rho activation and NO production play important roles in exaggerated permeability increases when diabetic vessels were exposed to inflammatory mediators, which may account for the exacerbated vascular dysfunction when diabetic patients are exposed to additional inflammation.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Sulei Xu
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Pingnian He
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
29
|
Funk JL, Frye JB, Davis-Gorman G, Spera AL, Bernas MJ, Witte MH, Weinand ME, Timmermann BN, McDonagh PF, Ritter L. Curcuminoids limit neutrophil-mediated reperfusion injury in experimental stroke by targeting the endothelium. Microcirculation 2014; 20:544-54. [PMID: 23464666 DOI: 10.1111/micc.12054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/26/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We sought to test the hypothesis that turmeric-derived curcuminoids limit reperfusion brain injury in an experimental model of stroke via blockade of early microvascular inflammation during reperfusion. METHODS Male Sprague Dawley rats subjected to MCAO/R were treated with turmeric-derived curcuminoids (vs. vehicle) 1 hour prior to reperfusion (300 mg/kg ip). Neutrophil adhesion to the cerebral microcirculation and measures of neutrophil and endothelial activation were assayed during early reperfusion (0-4 hours); cerebral infarct size, edema, and neurological function were assessed at 24 hours. Curcuminoid effects on TNFα-stimulated human brain microvascular endothelial cell (HBMVEC) were assessed. RESULTS Early during reperfusion following MCAO, curcuminoid treatment decreased neutrophil rolling and adhesion to the cerebrovascular endothelium by 76% and 67% and prevented >50% of the fall in shear rate. The increased number and activation state (CD11b and ROS) of neutrophils were unchanged by curcuminoid treatment, while increased cerebral expression of TNFα and ICAM-1, a marker of endothelial activation, were blocked by >30%. Curcuminoids inhibited NF-κB activation and subsequent ICAM-1 gene expression in HBMVEC. CONCLUSION Turmeric-derived curcuminoids limit reperfusion injury in stroke by preventing neutrophil adhesion to the cerebrovascular microcirculation and improving shear rate by targeting the endothelium.
Collapse
Affiliation(s)
- Janet L Funk
- Department of Medicine, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 2014; 5:442-453. [PMID: 24619488 DOI: 10.1007/s12975-014-0336-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is a leading cause of disability and is considered now the fourth leading cause of death. Many clinical trials have shown that stroke patients with acute elevation in blood glucose at onset of stroke suffer worse functional outcomes, longer in-hospital stay, and higher mortality rates. The only therapeutic hope for these patients is the rapid restoration of blood flow to the ischemic tissue through intravenous administration of the only currently proven effective therapy, tissue plasminogen activator (tPA). However, even this option is associated with the increased risk of intracerebral hemorrhage. Nonetheless, the underlying mechanisms through which hyperglycemia (HG) and tPA worsen the neurovascular injury after stroke are not fully understood. Accordingly, this review summarizes the latest updates and recommendations about the management of HG and coadministration of tPA in a clinical setting while focusing more on the various experimental models studying (1) the effect of HG on stroke outcomes, (2) the potential mechanisms involved in worsening the neurovascular injury, (3) the different therapeutic strategies employed to ameliorate the injury, and finally, (4) the interaction between HG and tPA. Developing therapeutic strategies to reduce the hemorrhage risk with tPA in hyperglycemic setting is of great clinical importance. This can best be achieved by conducting robust preclinical studies evaluating the interaction between tPA and other therapeutics in order to develop potential therapeutic strategies with high translational impact.
Collapse
|
31
|
Martinez N, Kornfeld H. Diabetes and immunity to tuberculosis. Eur J Immunol 2014; 44:617-26. [PMID: 24448841 DOI: 10.1002/eji.201344301] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
Abstract
The dual burden of tuberculosis (TB) and diabetes has attracted much attention in the past decade as diabetes prevalence has increased dramatically in countries already afflicted with a high burden of TB. The confluence of these two major diseases presents a serious threat to global public health; at the same time it also presents an opportunity to learn more about the key elements of human immunity to TB that may be relevant to the general population. Some effects of diabetes on innate and adaptive immunity that are potentially relevant to TB defense have been identified, but have yet to be verified in humans and are unlikely to fully explain the interaction of these two disease states. This review provides an update on the clinical and epidemiological features of TB in the diabetic population and relates them to recent advances in understanding the mechanistic basis of TB susceptibility and other complications of diabetes. Issues that merit further investigation - such as geographic host and pathogen differences in the diabetes/TB interaction, the role of hyperglycemia-induced epigenetic reprogramming in immune dysfunction, and the impact of diabetes on lung injury and fibrosis caused by TB - are highlighted in this review.
Collapse
Affiliation(s)
- Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
32
|
Fan X, Lo EH, Wang X. Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke 2013; 44:745-52. [PMID: 23422086 DOI: 10.1161/strokeaha.111.000309] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Poststroke hyperglycemia is associated with resistance to tissue plasminogen activator (tPA) reperfusion, higher risk of intracerebral hemorrhage, and worse neurological outcomes. In this study, we asked whether minocycline combined with intravenous tPA may ameliorate inflammation and brain injury after focal embolic stroke in type 1 diabetic rats. METHODS Type 1 diabetic rats were subjected to a focal embolic stroke. Three treatment groups were used: (1) saline at 1.5 hours after stroke; (2) tPA alone at 1.5 hours after stroke; (3) combined minocycline (intravenously) at 1 hour plus tPA at 1.5 hours, and second treatment of minocycline (intraperitoneally) at 12 hours after stroke. Acute brain tissue damages were assessed at 24 hours after stroke. Inflammatory biomarkers interleukin-1β and matrix metalloproteinases 2 and 9 were examined in plasma. Neutrophil infiltration, microglia activation, matrix metalloproteinase activation, and degradation of the tight junction protein claudin-5 were examined in the brain. RESULTS Compared with saline or tPA alone treatments, minocycline plus tPA combination therapy significantly reduced brain infarction, intracerebral hemorrhage, and hemispheric swelling at 24 hours after stroke. The combination also significantly suppressed the elevated plasma levels of matrix metalloproteinase-9 and interleukin-1β up to 24 hours after stroke. At 16 hours after stroke, neutrophil infiltration, microglia activation, matrix metalloproteinase-9, and tight junction protein claudin-5 degradation in the peri-infarct brain tissues were also significantly attenuated by the combination therapy. CONCLUSIONS Combination therapy with minocycline plus tPA may be beneficial in ameliorating inflammation and reducing infarction, brain swelling, and hemorrhage after ischemic stroke with diabetes mellitus/hyperglycemia.
Collapse
Affiliation(s)
- Xiang Fan
- Departmens of Neurology and Radiology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
33
|
Zhao H. Hurdles to clear before clinical translation of ischemic postconditioning against stroke. Transl Stroke Res 2013; 4:63-70. [PMID: 23524538 DOI: 10.1007/s12975-012-0243-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ischemic postconditioning has been established for its protective effects against stroke in animal models. It is performed after post-stroke reperfusion and refers to a series of induced ischemia or a single brief one. This review article addresses major hurdles in clinical translation of ischemic postconditioning to stroke patients, including potential hazards, the lack of well-defined protective paradigms, and the paucity of deeply-understood protective mechanisms. A hormetic model, often used in toxicology to describe a dose-dependent response to a toxic agent, is suggested to study both beneficial and detrimental effects of ischemic postconditioning. Experimental strategies are discussed, including how to define the hazards of ischemic (homologous) postconditioning and the possibility of employing non-ischemic (heterologous) postconditioning to facilitate clinical translation. This review concludes that a more detailed assessment of ischemic postconditioning and studies of a broad range of heterologous postconditioning models are warranted for future clinical translation.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5327, USA
| |
Collapse
|
34
|
Murray KN, Buggey HF, Denes A, Allan SM. Systemic immune activation shapes stroke outcome. Mol Cell Neurosci 2012; 53:14-25. [PMID: 23026562 DOI: 10.1016/j.mcn.2012.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023] Open
Abstract
Stroke is a major cause of morbidity and mortality, and activation of the immune system can impact on stroke outcome. Although the majority of research has focused on the role of the immune system after stroke there is increasing evidence to suggest that inflammation and immune activation prior to brain injury can influence stroke risk and outcome. With the high prevalence of co-morbidities in the Western world such as obesity, hypertension and diabetes, pre-existing chronic 'low-grade' systemic inflammation has become a customary characteristic of stroke pathophysiology that needs to be considered in the search for new therapies. The importance of the immune system in stroke has been demonstrated in a number of ways, both experimentally and in the clinical setting. This review will focus on the effect of immune activation arising from systemic inflammatory conditions and infection, how it affects the incidence and outcomes of stroke, and the possible underlying mechanisms involved. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|