1
|
Ortiz-Salguero C, Romero-Bernal M, González-Díaz Á, Doush ES, del Río C, Echevarría M, Montaner J. Hyperhomocysteinemia: Underlying Links to Stroke and Hydrocephalus, with a Focus on Polyphenol-Based Therapeutic Approaches. Nutrients 2024; 17:40. [PMID: 39796474 PMCID: PMC11722995 DOI: 10.3390/nu17010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (HCys) levels, is associated with increased risks of neurovascular diseases such as stroke or hydrocephalus. HHcy promotes oxidative stress, neuroinflammation, and endothelial dysfunction, disrupting the blood-brain barrier and accelerating neurodegeneration. These processes highlight HCys as both a biomarker and a potential therapeutic target in vascular-related neurological disorders. Current research suggests that polyphenols, known for their antioxidant and anti-inflammatory properties, may reduce HCys levels and offer neuroprotection. Polyphenols have demonstrated effectiveness in modulating oxidative stress and inflammatory pathways triggered by HHcy. These compounds may also upregulate enzymatic functions involved in HCys metabolism, thus reducing neurotoxicity. Furthermore, polyphenol-rich diets, like the Mediterranean diet, have been linked to lower HCys levels and a reduced incidence of neurovascular disorders. This review provides an overview of HHcy's role in neurovascular pathologies and examines the therapeutic potential of polyphenols in managing HCys levels and preventing HCys-induced neurovascular damage.
Collapse
Affiliation(s)
- Carmen Ortiz-Salguero
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Marina Romero-Bernal
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Ángela González-Díaz
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Elaheh Sobh Doush
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Carmen del Río
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Joan Montaner
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41004 Sevilla, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, 41004 Sevilla, Spain
| |
Collapse
|
2
|
Nájar AM, López Azcárate C, Domínguez Ruiz C, Núñez-Jurado D, de Torres R, López R, Camino-Moya M, Magni E, Montero-Ramirez E, Bocero A, Laviana Á, Busquier Cerdán T, León A, del Rio C, Montaner J, Pérez-Sánchez S. Evaluating the Clinical Impact of a Polyphenol-Rich Extract from Salicornia ramosissima on Patients with Transient Ischemic Attack and Minor Stroke. Nutrients 2024; 16:4307. [PMID: 39770931 PMCID: PMC11679598 DOI: 10.3390/nu16244307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Transient ischemic attack (TIA) is a well-established risk factor for future strokes, making interventions that target recovery and vascular risk crucial. This study aimed to assess the safety and clinical effects of a polyphenol-rich Salicornia ramosissima extract in post-TIA patients. A randomized, triple-blind, placebo-controlled trial was conducted with participants who had a history of TIA or minor stroke and who received 1 g of Salicornia extract or placebo over 11 months. Biochemical analyses, neuropsychological assessments (MOCA test), and gait and aerobic performance tests were conducted at the beginning and the end of the study. A total of 118 individuals were screened, with 80 finally included. Importantly, no significant adverse events were reported throughout the study. A neurological analysis showed an improvement in MOCA scores in patients treated with the Salicornia extract for 11 months. The treatment did not affect spatiotemporal gait parameters, but it significantly reduced blood pressure at baseline and after the aerobic performance test. Biochemically, both groups exhibited mild hyperhomocysteinemia at baseline; however, Salicornia treatment significantly lowered homocysteine levels, bringing them within the normal range. These findings highlight the safety of the Salicornia extract in patients at a high cerebrovascular risk and suggest it as a potential therapeutic option for managing vascular risk factors, such as hyperhomocysteinemia and hypertension. However, further studies are required to confirm the underlying mechanisms and explore broader clinical applications.
Collapse
Affiliation(s)
- Ana M. Nájar
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
| | - Cristina López Azcárate
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
| | - Carmen Domínguez Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
| | - David Núñez-Jurado
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
- Department of Biochemistry, Hospital Universitario Virgen Macarena, 41009 Seville, Spain;
| | - Reyes de Torres
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
| | - Reyes López
- Department of Psychology and Human Neuroscience, Universidad Loyola Andalucía, 41704 Seville, Spain;
| | - Miriam Camino-Moya
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
| | - Eleonora Magni
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
- Research Group CTS969: “Care Innovation and Health Determinants”, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41004 Sevilla, Spain
| | - Emilio Montero-Ramirez
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain (A.B.); (Á.L.)
| | - Antonio Bocero
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain (A.B.); (Á.L.)
| | - Álvaro Laviana
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain (A.B.); (Á.L.)
| | | | - Antonio León
- Department of Biochemistry, Hospital Universitario Virgen Macarena, 41009 Seville, Spain;
| | - Carmen del Rio
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Joan Montaner
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain (A.B.); (Á.L.)
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Soledad Pérez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.M.N.); (C.L.A.); (C.D.R.); (D.N.-J.); (R.d.T.); (M.C.-M.); (E.M.); (J.M.); (S.P.-S.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain (A.B.); (Á.L.)
| |
Collapse
|
3
|
Zhou W, Sun CJ, Fan RY, Xu Z, Su SL, Shang EX, Zhang W, Duan JA. Comparative pharmacokinetic study on phenolic acids and flavonoids in normal and microcirculation dysfunction rats plasma by UPLC-TQ/MS/MS after oral administration of Salvia miltiorrhiza stem-leaf extracts. Heliyon 2024; 10:e30910. [PMID: 38778933 PMCID: PMC11108815 DOI: 10.1016/j.heliyon.2024.e30910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
According to the Standard of Chinese Medicinal Materials of Shaanxi Province (2015 edition), Salvia miltiorrhiza caulis et folium is the dried stems and leaves of Salvia miltiorrhiza, which could activate blood and dispell blood stasis, clear the mind and remove annoyance. In this study, the dynamic absorption changes of phenolic acids (FS) and phenolic acids-flavonoids (FT) in rats after oral administration were studied by UPLC-TQ/MS/MS, to elucidate the pharmacokinetics of seven major bioactive components of the stem-leaf of Salvia miltiorrhiza in vivo. The results showed that the pharmacokinetic parameters of FS and FT were significantly different in normal rats and model rats. Compared with the control group, after injecting 10 % polymer dextran 500 into the tail vein to establish a model of microcirculation disturbance, the Cmax of caffeic acid decreased. The Cmax of rosmarinic acid and lithospermic acid increased. Danshensu showed a decrease in CLz/F, accompanied by an increase in both AUC0-t and AUC0-∞. The AUC0-t of lithospermic acid was also increased. These results indicated that microcirculation disturbance could decrease the absorption of caffeic acid while increasing the absorption of danshensu, rosmarinic acid and lithospermic acid. After oral administration of FT, the Cmax of danshensu and the AUC0-t of caffeic acid were increased significantly, suggesting that the presence of flavonoids may promote the absorption and exposure of phenolic acids in vivo. This study provides a reference for the elucidation of the in vivo substances and the mechanisms of action of FS and FT from the stem-leaf of Salvia miltiorrhiza.
Collapse
Affiliation(s)
- Wei Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Cheng-jing Sun
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Ruo-ying Fan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Zhuo Xu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Shu-lan Su
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Wen Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| |
Collapse
|
4
|
The binding of autotaxin to integrins mediates hyperhomocysteinemia-potentiated platelet activation and thrombosis in mice and humans. Blood Adv 2022; 6:46-61. [PMID: 34559203 PMCID: PMC8753216 DOI: 10.1182/bloodadvances.2021004572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Hcy increases integrin αIIbβ3 activation by promoting phospholipid hydrolysis and ATX interaction in platelets. Targeting ATX-mediated integrin αIIbβ3 activation alleviates HHcy-potentiated thrombosis.
Hyperhomocysteinemia (HHcy) is associated with an exaggerated platelet thrombotic response at sites of vascular injury. In this study, human medical examination showed that elevated human plasma Hcy levels correlated positively with enhanced blood coagulation and platelet activity, suggesting that humans with HHcy are more prone to thrombus formation at the sites of vascular injury. Accordingly, we observed accelerated platelet activation, primary hemostasis, and thrombus formation in apolipoprotein E-deficient (ApoE−/−) mice with acute or chronic HHcy. Upon homocysteine (Hcy) administration in C57BL/6J mice, platelet aggregation, spreading and clot retraction were markedly induced. More important, Hcy increased the affinity of platelet integrin αIIbβ3 with ligands and enhanced integrin outside-in signaling by promoting membrane phosphatidylserine exposure in vitro. Mechanistically, lipidomics analysis showed that lysophosphatidylcholines were the primary metabolites leading to clustering of HHcy-stimulated platelets. Cytosolic phospholipase A2 (cPLA2) activity and autotaxin (ATX, a secreted lysophospholipase D) secretion were upregulated by Hcy, leading to membrane phospholipid hydrolysis and PS exposure. Moreover, secreted ATX directly interacted with integrin β3. Inhibitors of cPLA2 and ATX activity blocked integrin αIIbβ3 outside-in signaling and thrombosis in HHcy ApoE−/− mice. In this study, we identified a novel mechanism by which HHcy promotes platelet membrane phospholipid catabolism and extracellular ATX secretion to activate integrin outside-in signaling, consequently exacerbating thrombosis and the results revealed an innovative approach to treating HHcy-related thrombotic diseases.
Collapse
|
5
|
miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 2020; 11:260. [PMID: 32600449 PMCID: PMC7322840 DOI: 10.1186/s13287-020-01761-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Backgrounds/aims Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown. Methods Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXsmiR-132-3p). The effects of EXs on hypoxia/reoxygenation (H/R)-injured ECs in ROS generation, apoptosis, and barrier function were analyzed. The levels of RASA1, Ras, phosphorylations of PI3K, Akt and endothelial nitric oxide synthesis (eNOS), and tight junction proteins (Claudin-5 and ZO-1) were measured. Ras and PI3K inhibitors were used for pathway analysis. In transient middle cerebral artery occlusion (tMCAO) mouse model, the effects of MSC-EXs on the cerebral vascular ROS production and apoptosis, cerebral vascular density (cMVD), Evans blue extravasation, brain water content, neurological deficit score (NDS), and infarct volume were determined. Results MSC-EXs could deliver their carried miR-132-3p into target ECs, which functionally downregulated the target protein RASA1, while upregulated the expression of Ras and the downstream PI3K phosphorylation. Compared to MSC-EXs, MSC-EXsmiR-132-3p were more effective in decreasing ROS production, apoptosis, and tight junction disruption in H/R-injured ECs. These effects were associated with increased levels of phosphorylated Akt and eNOS, which could be abolished by PI3K inhibitor (LY294002) or Ras inhibitor (NSC 23766). In the tMCAO mouse model, the infusion of MSC-EXsmiR-132-3p was more effective than MSC-EXs in reducing cerebral vascular ROS production, BBB dysfunction, and brain injury. Conclusion Our results suggest that miR-132-3p promotes the beneficial effects of MSC-EXs on brain ischemic injury through protecting cerebral EC functions.
Collapse
|
6
|
Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z, Liu J, Feng L. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacol Res 2019; 150:104538. [PMID: 31707034 DOI: 10.1016/j.phrs.2019.104538] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
The human A53T mutant of α-synuclein tends to aggregate and leads to neurotoxicity in familial Parkinson's disease (PD). The aggregation of α-synuclein is also found in sporadic PD. Thus, targeting α-synuclein clearance could be used as a drug-discovery strategy for PD treatment. Caffeic acid (CA) has shown neuroprotection in Alzheimer's disease or cerebral ischaemia; however, it is unclear whether CA confers neuroprotection in α-synuclein-induced PD models. Here we focus on whether and how A53T α-synuclein is affected by CA. We assessed the effect of CA on cell viability in SH-SY5Y cells overexpressing A53T α-synuclein. Pathway-related inhibitors were used to identify the autophagy mechanisms. Seven-month-old A53T α-synuclein transgenic mice (A53T Tg mice) received CA daily for eight consecutive weeks. Behaviour tests including the buried food pellet test, the pole test, the Rotarod test, open field analysis, and gait analysis were used to evaluate the neuroprotective effect of CA. Tyrosine hydroxylase and α-synuclein were assessed by immunohistochemistry or western blot in the substantia nigra (SN). We found that CA alleviated the cell damage induced by overexpressing A53T α-synuclein and that CA reduced A53T α-synuclein by activating the JNK/Bcl-2-mediated autophagy pathway. The efficacy of CA on A53T α-synuclein degradation was reversed by the autophagy inhibitor bafilomycin A1 and the JNK inhibitor SP600125. In A53T Tg mice, CA improved behavioural impairments, attenuated loss of dopaminergic neurons, enhanced autophagy and reduced α-synuclein in the SN. Thus, the results provide scientific evidence for the neuroprotective effect of CA in PD. Our work lays the foundation for CA clinical trials to treat PD in the future.
Collapse
Affiliation(s)
- Yu Zhang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Qimei Wu
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Qing Wang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Zexian Yang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China.
| |
Collapse
|
7
|
Wang HM, Huang P, Li Q, Yan LL, Sun K, Yan L, Pan CS, Wei XH, Liu YY, Hu BH, Wang CS, Fan JY, Han JY. Post-treatment With Qing-Ying-Tang, a Compound Chinese Medicine Relives Lipopolysaccharide-Induced Cerebral Microcirculation Disturbance in Mice. Front Physiol 2019; 10:1320. [PMID: 31708795 PMCID: PMC6823551 DOI: 10.3389/fphys.2019.01320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: Lipopolysaccharide (LPS) causes microvascular dysfunction, which is a key episode in the pathogenesis of endotoxemia. This work aimed to investigate the effect of Qing-Ying-Tang (QYT), a compound Chinese medicine in cerebral microcirculation disturbance and brain damage induced by LPS. Methods: Male C57/BL6 mice were continuously transfused with LPS (7.5 mg/kg/h) through the left femoral vein for 2 h. QYT (14.3 g/kg) was given orally 2 h after LPS administration. The dynamics of cerebral microcirculation were evaluated by intravital microscopy. Brain tissue edema was assessed by brain water content and Evans Blue leakage. Cytokines in plasma and brain were evaluated by flow cytometry. Confocal microscopy and Western blot were applied to detect the expression of junction and adhesion proteins, and signaling proteins concerned in mouse brain tissue. Results: Post-treatment with QYT significantly ameliorated LPS-induced leukocyte adhesion to microvascular wall and albumin leakage from cerebral venules and brain tissue edema, attenuated the increase of MCP-1, MIP-1α, IL-1α, IL-6, and VCAM-1 in brain tissue and the activation of NF-κB and expression of MMP-9 in brain. QYT ameliorated the downregulation of claudin-5, occludin, JAM-1, ZO-1, collagen IV as well as the expression and phosphorylation of VE-cadherin in mouse brain. Conclusions: This study demonstrated that QYT protected cerebral microvascular barrier from disruption after LPS by acting on the transcellular pathway mediated by caveolae and paracellular pathway mediated by junction proteins. This result suggests QYT as a potential strategy to deal with endotoxemia.
Collapse
Affiliation(s)
- Hao-Min Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Lu-Lu Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
8
|
Mu HN, Li Q, Fan JY, Pan CS, Liu YY, Yan L, Sun K, Hu BH, Huang DD, Zhao XR, Chang X, Wang CS, He SY, He K, Yang BX, Han JY. Caffeic acid attenuates rat liver injury after transplantation involving PDIA3-dependent regulation of NADPH oxidase. Free Radic Biol Med 2018; 129:202-214. [PMID: 30218773 DOI: 10.1016/j.freeradbiomed.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
The transplanted liver inevitably suffers from ischemia reperfusion (I/R) injury, which represents a key issue in clinical transplantation determining early outcome and long-term graft survival. A solution is needed to deal with this insult. This study was undertaken to explore the effect of Caffeic acid (CA), a naturally occurring antioxidant, on I/R injury of grafted liver and the mechanisms involved. Male Sprague-Dawley rats underwent orthotopic liver transplantation (LT) in the absence or presence of CA administration. In vitro, HL7702 cells were subjected to hypoxia/reoxygenation. LT led to apparent hepatic I/R injury, manifested by deteriorated liver function, microcirculatory disturbance and increased apoptosis, along with increased PDIA3 expression and nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase activity, and membrane translocation of NADPH oxidase subunits. Treatment with CA attenuated the above alterations. siRNA/shRNA-mediated knockdown of PDIA3 in HL7702 cells and rats played the same role as CA not only in inhibiting ROS production and NADPH oxidase activity, but also in alleviating hepatocytes injury. CA protects transplanted livers from injury, which is likely attributed to its protection of oxidative damage by interfering in PDIA3-dependent activation of NADPH oxidase.
Collapse
Affiliation(s)
- Hong-Na Mu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Dan-Dan Huang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Xin-Rong Zhao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Shu-Ya He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Ke He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| | - Bao-Xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin 300499, China.
| |
Collapse
|
9
|
Wu X, Zhang L, Miao Y, Yang J, Wang X, Wang CC, Feng J, Wang L. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol 2018; 20:46-59. [PMID: 30292945 PMCID: PMC6174864 DOI: 10.1016/j.redox.2018.09.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction induced by hyperhomocysteinemia (HHcy) plays a critical role in vascular pathology. However, little is known about the role of endoplasmic reticulum (ER) redox homeostasis in HHcy-induced endothelial dysfunction. Here, we show that Hcy induces ER oxidoreductin-1α (Ero1α) expression with ER stress and inflammation in human umbilical vein endothelial cells and in the arteries of HHcy mice. Hcy upregulates Ero1α expression by promoting binding of hypoxia-inducible factor 1α to the ERO1A promoter. Notably, Hcy rather than other thiol agents markedly increases the GSH/GSSG ratio in the ER, therefore allosterically activating Ero1α to produce H2O2 and trigger ER oxidative stress. By contrast, the antioxidant pathway mediated by ER glutathione peroxidase 7 (GPx7) is downregulated in HHcy mice. Ero1α knockdown and GPx7 overexpression protect the endothelium from HHcy-induced ER oxidative stress and inflammation. Our work suggests that targeting ER redox homeostasis could be used as an intervention for HHcy-related vascular diseases.
Collapse
Affiliation(s)
- Xun Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yütong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Juan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Toma L, Sanda GM, Niculescu LS, Deleanu M, Stancu CS, Sima AV. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. Biofactors 2017; 43:685-697. [PMID: 28753257 DOI: 10.1002/biof.1373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023]
Abstract
Type 2 diabetes mellitus is a worldwide epidemic and its atherosclerotic complications determine the high morbidity and mortality of diabetic patients. Caffeic acid (CAF), a phenolic acid present in normal diets, is known for its antioxidant properties. The aim of this study was to investigate CAF's anti-inflammatory properties and its mechanism of action, using cultured human endothelial cells (HEC) incubated with glycated low-density lipoproteins (gLDL). Levels of the receptor for advanced glycation end-products (RAGE), inflammatory stress markers (C reactive protein, CRP; vascular cell adhesion molecule-1, VCAM-1; monocyte chemoattractant protein-1, MCP-1), and oxidative stress and endoplasmic reticulum stress (ERS) markers were evaluated in gLDL-exposed HEC, in the presence/absence of CAF. RAGE silencing or blocking, specific inhibitors for oxidative stress (apocynin, N-acetyl-cysteine), and ERS (salubrinal) were used. The results showed that: (i) gLDL induced CRP synthesis and secretion through mechanisms involving NADPH oxidase-dependent oxidative stress and ERS in HEC; (ii) gLDL-RAGE interaction, oxidative stress, and ERS stimulated the secretion of VCAM-1 and MCP-1 in HEC; and (iii) CAF reduced the secretion of CRP, VCAM-1, and MCP-1 in gLDL-exposed HEC by inhibiting RAGE expression, oxidative stress, and ERS. In conclusion, CAF might be a promising alternative to ameliorate a wide spectrum of disorders due to its complex mechanisms of action resulting in anti-inflammatory and antioxidative properties. © 2017 BioFactors, 43(5):685-697, 2017.
Collapse
Affiliation(s)
- Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Gabriela M Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Loredan S Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Mariana Deleanu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
- Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | - Camelia S Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
11
|
Miranda AM, Steluti J, Fisberg RM, Marchioni DM. Association between Coffee Consumption and Its Polyphenols with Cardiovascular Risk Factors: A Population-Based Study. Nutrients 2017; 9:nu9030276. [PMID: 28335422 PMCID: PMC5372939 DOI: 10.3390/nu9030276] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/08/2023] Open
Abstract
Epidemiological studies have examined the effect of coffee intake on cardiovascular disease, but the benefits and risks for the cardiovascular system remain controversial. Our objective was to evaluate the association between coffee consumption and its polyphenols on cardiovascular risk factors. Data came from the “Health Survey of São Paulo (ISA-Capital)” among 557 individuals, in São Paulo, Brazil. Diet was assessed by two 24-h dietary recalls. Coffee consumption was categorized into <1, 1–3, and ≥3 cups/day. Polyphenol intake was calculated by matching food consumption data with the Phenol-Explorer database. Multiple logistic regression models were used to assess the associations between cardiovascular risk factors (blood pressure, total cholesterol, low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides, fasting glucose, and homocysteine) and usual coffee intake. The odds were lower among individuals who drank 1–3 cups of coffee/day to elevated systolic blood pressure (SBP) (Odds Ratio (OR) = 0.45; 95% Confidence Interval (95% CI): 0.26, 0.78), elevated diastolic blood pressure (DBP) (OR = 0.44; 95% CI: 0.20, 0.98), and hyperhomocysteinemia (OR = 0.32; 95% CI: 0.11, 0.93). Furthermore, significant inverse associations were also observed between moderate intake of coffee polyphenols and elevated SBP (OR = 0.46; 95% CI: 0.24, 0.87), elevated DBP (OR = 0.51; 95% CI: 0.26, 0.98), and hyperhomocysteinemia (OR = 0.29; 95% CI: 0.11, 0.78). In conclusion, coffee intake of 1–3 cups/day and its polyphenols were associated with lower odds of elevated SBP, DBP, and hyperhomocysteinemia. Thus, the moderate consumption of coffee, a polyphenol-rich beverage, could exert a protective effect against some cardiovascular risk factors.
Collapse
Affiliation(s)
- Andreia Machado Miranda
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil.
| | - Josiane Steluti
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil.
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil.
| | - Dirce Maria Marchioni
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil.
| |
Collapse
|
12
|
Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7917528. [PMID: 27891521 PMCID: PMC5116524 DOI: 10.1155/2016/7917528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.
Collapse
|
13
|
Lu Y, Li Q, Liu YY, Sun K, Fan JY, Wang CS, Han JY. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci Rep 2015; 5:13824. [PMID: 26345207 PMCID: PMC4561902 DOI: 10.1038/srep13824] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/06/2015] [Indexed: 11/15/2022] Open
Abstract
Caffeic acid (CA), one of the active constituents of Radix Salvia miltiorrhizae, exhibits antioxidant and anti-inflammatory activities. However, few studies have assessed the ability of CA to inhibit platelet mediated thrombus generation in vivo. In this study, we investigated the antithrombotic effect of CA in mouse cerebral arterioles and venules using intravital microscopy. The antiplatelet activity of CA in ADP stimulated mouse platelets in vitro was also examined in attempt to explore the underlying mechanism. Our results demonstrated that CA (1.25–5 mg/kg) significantly inhibited thrombus formation in vivo. In vitro, CA (25–100 μM) inhibited ADP-induced platelet aggregation, P-selectin expression, ATP release, Ca2+ mobilization, and integrin αIIbβ3 activation. Additionally, CA attenuated p38, ERK, and JNK activation, and enhanced cAMP levels. Taken together, these data provide evidence for the inhibition of CA on platelet-mediated thrombosis in vivo, which is, at least partly, mediated by interference in phosphorylation of ERK, p38, and JNK leading to elevation of cAMP and down-regulation of P-selectin expression and αIIbβ3 activation. These results suggest that CA may have potential for the treatment of aberrant platelet activation-related diseases.
Collapse
Affiliation(s)
- Yu Lu
- Department of gynaecology, Beijing Royal Integrative Medicine Hospital, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China
| |
Collapse
|
14
|
Levo-tetrahydropalmatine attenuates mouse blood-brain barrier injury induced by focal cerebral ischemia and reperfusion: Involvement of Src kinase. Sci Rep 2015; 5:11155. [PMID: 26059793 PMCID: PMC4461916 DOI: 10.1038/srep11155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
The restoration of blood flow following thrombolytic therapy causes ischemia and reperfusion (I/R) injury leading to blood-brain barrier (BBB) disruption and subsequent brain edema in patients of ischemic stroke. Levo-tetrahydropalmatine (l-THP) occurs in Corydalis genus and some other plants. However, whether l-THP exerts protective role on BBB disrpution following cerebral I/R remains unclear. Male C57BL/6N mice (23 to 28 g) were subjected to 90 min middle cerebral artery occlusion, followed by reperfusion for 24 h. l-THP (10, 20, 40 mg/kg) was administrated by gavage 60 min before ischemia. We found I/R evoked Evans blue extravasation, albumin leakage, brain water content increase, cerebral blood flow decrease, cerebral infarction and neurological deficits, all of which were attenuated by l-THP treatment. Meanwhile, l-THP inhibited tight junction (TJ) proteins down-expression, Src kinase phosphorylation, matrix metalloproteinases-2/9 (MMP-2/9) and caveolin-1 activation. In addition, surface plasmon resonance revealed binding of l-THP to Src kinase with high affinity. Then we found Src kinase inhibitor PP2 could attenuate Evans blue dye extravasation and inhibit the caveolin-1, MMP-9 activation, occludin down-expression after I/R, respectively. In conclusion, l-THP attenuated BBB injury and brain edema, which were correlated with inhibiting the Src kinase phosphorylation.
Collapse
|
15
|
Fuentes E, Palomo I. Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vascul Pharmacol 2014; 63:155-61. [DOI: 10.1016/j.vph.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
|
16
|
Zhang Y, Sun K, Liu YY, Zhang YP, Hu BH, Chang X, Yan L, Pan CS, Li Q, Fan JY, He K, Mao XW, Tu L, Wang CS, Han JY. Ginsenoside Rb1 ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules by intervening in both trans- and paracellular pathway. Am J Physiol Gastrointest Liver Physiol 2014; 306:G289-300. [PMID: 24356882 DOI: 10.1152/ajpgi.00168.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipopolysaccharide (LPS) is one of the common pathogens that causes mesentery hyperpermeability- and intestinal edema-related diseases. This study evaluated whether ginsenoside Rb1 (Rb1), an ingredient of a Chinese medicine Panax ginseng, has beneficial effects on mesentery microvascular hyperpermeability induced by LPS and the underlying mechanisms. Male Wistar rats were continuously infused with LPS (5 mg · kg(-1) · h(-1)) via the left jugular vein for 90 min. In some rats, Rb1 (5 mg · kg(-1) · h(-1)) was administrated through the left jugular vein 30 min after LPS infusion. The dynamics of fluorescein isothiocynate-labeled albumin leakage from mesentery venules was assessed by intravital microscopy. Intestinal tissue edema was evaluated by hematoxylin and eosin staining. The number of caveolae in endothelial cells of microvessels was examined by electron microscopy. Confocal microscopy and Western blotting were applied to detect caveolin-1 (Cav-1) expression and phosphorylation, junction-related proteins, and concerning signaling proteins in intestinal tissues and human umbilical vein endothelial cells. LPS infusion evoked an increased albumin leakage from mesentery venules that was significantly ameliorated by Rb1 posttreatment. Mortality and intestinal edema around microvessels were also reduced by Rb1. Rb1 decreased caveolae number in endothelial cells of microvessels. Cav-1 expression and phosphorylation, VE-Cadherin phosphorylation, ZO-1 degradation, nuclear factor-κB (NF-κB) activation, and Src kinase phosphorylation were inhibited by Rb1. Rb1 ameliorated microvascular hyperpermeability after the onset of endotoxemia and improved intestinal edema through inhibiting caveolae formation and junction disruption, which was correlated to suppression of NF-κB and Src activation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jin XL, Li XH, Zhang LM, Zhao J. The interaction of leukocytes and adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. Microcirculation 2012; 19:539-46. [PMID: 22510105 DOI: 10.1111/j.1549-8719.2012.00185.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the correlation between hemorheological variations and the expression of cell adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. METHODS We established an internal capsule hemorrhage model. Then leukocyte-endothelium interaction was observed and hemorheological variations in mesenteric microvessels were evaluated in the following aspects: blood flow volume, diameter of microvessels, blood flow rate, and shear rate. We also measured the expression of vascular cell adhesion molecule-l and intercellular adhesion molecule-1 (ICAM-1) in mesenteric microvessel endothelial cells with immunohistochemistry stain. RESULTS Leukocyte-endothelium interaction intensified after internal capsule hemorrhage. Besides, blood flow volume and velocity decreased, diameter narrowed, and shear rate reduced. Immunohistochemical staining of vascular cell adhesion molecule-l and ICAM-1in mesenteric microvessel endothelial cells was stronger. CONCLUSIONS VCAM-1 and ICAM-1 expression in mesenteric microvessels increased as a result of decreased wall shear stress in stress state following internal capsule hemorrhage, and then further shear stress change from interaction of enhanced production of CAMs and leukocytes created a vicious cycle of leukocytes margination, adhesion, and transmigration that could ultimately result in stress gastrointestinal ulcer.
Collapse
Affiliation(s)
- Xue-Long Jin
- Department of Physiology, Tianjin Medical University, Tianjin, China
| | | | | | | |
Collapse
|