1
|
Kowalewska PM, Milkovich SL, Goldman D, Sandow SL, Ellis CG, Welsh DG. Capillary oxygen regulates demand-supply coupling by triggering connexin40-mediated conduction: Rethinking the metabolic hypothesis. Proc Natl Acad Sci U S A 2024; 121:e2303119121. [PMID: 38349880 PMCID: PMC10895355 DOI: 10.1073/pnas.2303119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024] Open
Abstract
Coupling red blood cell (RBC) supply to O2 demand is an intricate process requiring O2 sensing, generation of a stimulus, and signal transduction that alters upstream arteriolar tone. Although actively debated, this process has been theorized to be induced by hypoxia and to involve activation of endothelial inwardly rectifying K+ channels (KIR) 2.1 by elevated extracellular K+ to trigger conducted hyperpolarization via connexin40 (Cx40) gap junctions to upstream resistors. This concept was tested in resting healthy skeletal muscle of Cx40-/- and endothelial KIR2.1-/- mice using state-of-the-art live animal imaging where the local tissue O2 environment was manipulated using a custom gas chamber. Second-by-second capillary RBC flow responses were recorded as O2 was altered. A stepwise drop in PO2 at the muscle surface increased RBC supply in capillaries of control animals while elevated O2 elicited the opposite response; capillaries were confirmed to express Cx40. The RBC flow responses were rapid and tightly coupled to O2; computer simulations did not support hypoxia as a driving factor. In contrast, RBC flow responses were significantly diminished in Cx40-/- mice. Endothelial KIR2.1-/- mice, on the other hand, reacted normally to O2 changes, even when the O2 challenge was targeted to a smaller area of tissue with fewer capillaries. Conclusively, microvascular O2 responses depend on coordinated electrical signaling via Cx40 gap junctions, and endothelial KIR2.1 channels do not initiate the event. These findings reconceptualize the paradigm of blood flow regulation in skeletal muscle and how O2 triggers this process in capillaries independent of extracellular K+.
Collapse
Affiliation(s)
- Paulina M. Kowalewska
- Robarts Research Institute, University of Western Ontario, London, ONN6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ONN6A 5B7, Canada
| | | | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, ONN6A 5B7, Canada
| | - Shaun L. Sandow
- School of Health, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- School of Clinical Medicine, University of Queensland, St. Lucia, QLD4072, Australia
| | - Christopher G. Ellis
- Robarts Research Institute, University of Western Ontario, London, ONN6A 5B7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ONN6A 5B7, Canada
| | - Donald G. Welsh
- Robarts Research Institute, University of Western Ontario, London, ONN6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ONN6A 5B7, Canada
| |
Collapse
|
2
|
Amiri FA, Zhang J. Oxygen transport across tank-treading red blood cell: Individual and joint roles of flow convection and oxygen-hemoglobin reaction. Microvasc Res 2023; 145:104447. [PMID: 36270419 DOI: 10.1016/j.mvr.2022.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Gas, especially oxygen, transport in the microcirculation is a complex phenomenon, however, of critical importance for maintaining normal biological functions, and the cytoplasm fluid in red blood cells (RBCs) is the major vehicle for transporting oxygen from lungs to tissues via the circulatory system. Existing theoretical and numerical studies have neglected the cytoplasm convection effect by treating RBCs as rigid particles undergoing a constant translation velocity. As a consequence, the influence and mechanism of the cytoplasm flow on oxygen transport are still not clear in microcirculation research. In this study, we consider a tank-treading capsule in shear flow, which is generated with two parallel plates moving in opposite directions: the top plate of a higher oxygen pressure (PO2) representing the RBC core in the central region of a microvessel and the bottom plate of a lower PO2 representing the microvessel wall. Numerical simulations are conducted to investigate the individual and combined effects of cytoplasm convection and oxygen-hemoglobin (O2-Hb) reaction on the oxygen transport efficiency across the tank-treading capsule, and different PO2 situations and shear rates are also tested. Due to the lower oxygen diffusivity in cytoplasm, the presence of the capsule reduces the oxygen transfer flux across the gap by 7.34 % in the pure diffusion system where the flow convection and O2-Hb reaction are both neglected. Including the flow convection or the O2-Hb reaction has little influence on the oxygen flux; however, when they act together as in real microcirculation situations, the enhancement in oxygen transport could be significant, especially in the low PO2 and high shear rate situations. In particular, with the respective PO2 at 60 and 30 mmHg on the top and bottom plates and a 400 s-1 shear rate, the oxygen flux reduction is only 0.02 %, suggesting that the cytoplasm convection can improve the oxygen transport across RBCs considerably. The simulation results are scrutinized to explore the underlying mechanism for the enhancement, and a new nondimensional parameter is introduced to characterize the importance of cytoplasm convection in oxygen transport. These simulation results, discussion and analysis could be helpful for a better understanding of the complex oxygen transport process and therefor valuable for relevant studies.
Collapse
Affiliation(s)
- Farhad A Amiri
- Bharti School of Engineering and Computer Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Junfeng Zhang
- Bharti School of Engineering and Computer Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada.
| |
Collapse
|
3
|
Spectroscopy detects skeletal muscle microvascular dysfunction during onset of sepsis in a rat fecal peritonitis model. Sci Rep 2022; 12:6339. [PMID: 35428849 PMCID: PMC9012880 DOI: 10.1038/s41598-022-10208-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/15/2022] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a dysregulated host inflammatory response to infection potentially leading to life-threatening organ dysfunction. The objectives of this study were to determine whether early microvascular dysfunction (MVD) in skeletal muscle can be detected as dynamic changes in microvascular hemoglobin (MVHb) levels using spectroscopy and whether MVD precedes organ histopathology in septic peritonitis. Skeletal muscle of male Sprague-Dawley rats was prepared for intravital microscopy. After intraperitoneal injection of fecal slurry or saline, microscopy and spectroscopy recordings were taken for 6 h. Capillary red blood cell (RBC) dynamics and SO2 were quantified from digitized microscopy frames and MVHb levels were derived from spectroscopy data. Capillary RBC dynamics were significantly decreased by 4 h after peritoneal infection and preceded macrohemodynamic changes. At the same time, low-frequency oscillations in MVHb levels exhibited a significant increase in Power in parts of the muscle and resembled oscillations in RBC dynamics and SO2. After completion of microscopy, tissues were collected. Histopathological alterations were not observed in livers, kidneys, brains, or muscles 6 h after induction of peritonitis. The findings of this study show that, in our rat model of sepsis, MVD occurs before detectable organ histopathology and includes ~ 30-s oscillations in MVHb. Our work highlights MVHb oscillations as one of the indicators of MVD onset and provides a foundation for the use of non-invasive spectroscopy to continuously monitor MVD in septic patients.
Collapse
|
4
|
Sampson DM, Dubis AM, Chen FK, Zawadzki RJ, Sampson DD. Towards standardizing retinal optical coherence tomography angiography: a review. LIGHT, SCIENCE & APPLICATIONS 2022; 11:63. [PMID: 35304441 PMCID: PMC8933532 DOI: 10.1038/s41377-022-00740-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 05/11/2023]
Abstract
The visualization and assessment of retinal microvasculature are important in the study, diagnosis, monitoring, and guidance of treatment of ocular and systemic diseases. With the introduction of optical coherence tomography angiography (OCTA), it has become possible to visualize the retinal microvasculature volumetrically and without a contrast agent. Many lab-based and commercial clinical instruments, imaging protocols and data analysis methods and metrics, have been applied, often inconsistently, resulting in a confusing picture that represents a major barrier to progress in applying OCTA to reduce the burden of disease. Open data and software sharing, and cross-comparison and pooling of data from different studies are rare. These inabilities have impeded building the large databases of annotated OCTA images of healthy and diseased retinas that are necessary to study and define characteristics of specific conditions. This paper addresses the steps needed to standardize OCTA imaging of the human retina to address these limitations. Through review of the OCTA literature, we identify issues and inconsistencies and propose minimum standards for imaging protocols, data analysis methods, metrics, reporting of findings, and clinical practice and, where this is not possible, we identify areas that require further investigation. We hope that this paper will encourage the unification of imaging protocols in OCTA, promote transparency in the process of data collection, analysis, and reporting, and facilitate increasing the impact of OCTA on retinal healthcare delivery and life science investigations.
Collapse
Affiliation(s)
- Danuta M Sampson
- Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, The University of Surrey, Guildford, GU2 7XH, UK.
| | - Adam M Dubis
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, 6000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, 3002, Australia
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA
| | - David D Sampson
- Surrey Biophotonics, Advanced Technology Institute, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
5
|
Mendelson AA, Ho E, Scott S, Vijay R, Hunter T, Milkovich S, Ellis CG, Goldman D. Capillary module hemodynamics and mechanisms of blood flow regulation in skeletal muscle capillary networks: Experimental and computational analysis. J Physiol 2022; 600:1867-1888. [DOI: 10.1113/jp282342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Asher A Mendelson
- Department of Medicine Section of Critical Care Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Edward Ho
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Shayla Scott
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Raashi Vijay
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Timothy Hunter
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- Robarts Research Institute London Ontario Canada
| | - Christopher G Ellis
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- Robarts Research Institute London Ontario Canada
| | - Daniel Goldman
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- School of Biomedical Engineering Western University London Ontario Canada
| |
Collapse
|
6
|
Mendelson AA, Milkovich S, Hunter T, Vijay R, Choi YH, Milkovich S, Ho E, Goldman D, Ellis CG. The capillary fascicle in skeletal muscle: Structural and functional physiology of RBC distribution in capillary networks. J Physiol 2021; 599:2149-2168. [PMID: 33595111 DOI: 10.1113/jp281172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The capillary module, consisting of parallel capillaries from arteriole to venule, is classically considered as the building block of complex capillary networks. In skeletal muscle, this structure fails to address how blood flow is regulated along the entire length of the synchronously contracting muscle fibres. Using intravital video microscopy of resting extensor digitorum longus muscle in rats, we demonstrated the capillary fascicle as a series of interconnected modules forming continuous columns that align naturally with the dimensions of the muscle fascicle. We observed structural heterogeneity for module topology, and functional heterogeneity in space and time for capillary-red blood cell (RBC) haemodynamics within a module and between modules. We found that module RBC haemodynamics were independent of module resistance, providing direct evidence for microvascular flow regulation at the level of the capillary module. The capillary fascicle is an updated paradigm for characterizing blood flow and RBC distribution in skeletal muscle capillary networks. ABSTRACT Capillary networks are the fundamental site of oxygen exchange in the microcirculation. The capillary module (CM), consisting of parallel capillaries from terminal arteriole (TA) to post-capillary venule (PCV), is classically considered as the building block of complex capillary networks. In skeletal muscle, this structure fails to address how blood flow is regulated along the entire length of the synchronously contracting muscle fibres, requiring co-ordination from numerous modules. It has previously been recognized that TAs and PCVs interact with multiple CMs, creating interconnected networks. Using label-free intravital video microscopy of resting extensor digitorum longus muscle in rats, we found that these networks form continuous columns of linked CMs spanning thousands of microns, herein denoted as the capillary fascicle (CF); this structure aligns naturally with the dimensions of the muscle fascicle. We measured capillary-red blood cell (RBC) haemodynamics and module topology (n = 9 networks, 327 modules, 1491 capillary segments). The average module had length 481 μm, width 157 μm and 9.51 parallel capillaries. We observed structural heterogeneity for CM topology, and functional heterogeneity in space and time for capillary-RBC haemodynamics within a module and between modules. There was no correlation between capillary RBC velocity and lineal density. A passive inverse relationship between module length and haemodynamics was remarkably absent, providing direct evidence for microvascular flow regulation at the level of the CM. In summary, the CF is an updated paradigm for characterizing RBC distribution in skeletal muscle, and strengthens the theory of capillary networks as major contributors to the signal that regulates capillary perfusion.
Collapse
Affiliation(s)
- Asher A Mendelson
- Department of Medicine, Section of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy Hunter
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Raashi Vijay
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yun-Hee Choi
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Shaun Milkovich
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Edward Ho
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Applied Mathematics, Faculty of Science, Western University, London, Ontario, Canada
| | - Christopher G Ellis
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
7
|
Poole DC, Pittman RN, Musch TI, Østergaard L. August Krogh's theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data. J Physiol 2020; 598:4473-4507. [PMID: 32918749 DOI: 10.1113/jp279223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
August Krogh twice won the prestigious international Steegen Prize, for nitrogen metabolism (1906) and overturning the concept of active transport of gases across the pulmonary epithelium (1910). Despite this, at the beginning of 1920, the consummate experimentalist was relatively unknown worldwide and even among his own University of Copenhagen faculty. But, in early 1919, he had submitted three papers to Dr Langley, then editor of The Journal of Physiology in England. These papers coalesced anatomical observations of skeletal muscle capillary numbers with O2 diffusion theory to propose a novel active role for capillaries that explained the prodigious increase in blood-muscle O2 flux from rest to exercise. Despite his own appraisal of the first two papers as "rather dull" to his friend, the eminent Cambridge respiratory physiologist, Joseph Barcroft, Krogh believed that the third one, dealing with O2 supply and capillary regulation, was"interesting". These papers, which won Krogh an unopposed Nobel Prize for Physiology or Medicine in 1920, form the foundation for this review. They single-handedly transformed the role of capillaries from passive conduit and exchange vessels, functioning at the mercy of their upstream arterioles, into independent contractile units that were predominantly closed at rest and opened actively during muscle contractions in a process he termed 'capillary recruitment'. Herein we examine Krogh's findings and some of the experimental difficulties he faced. In particular, the boundary conditions selected for his model (e.g. heavily anaesthetized animals, negligible intramyocyte O2 partial pressure, binary open-closed capillary function) have not withstood the test of time. Subsequently, we update the reader with intervening discoveries that underpin our current understanding of muscle microcirculatory control and place a retrospectroscope on Krogh's discoveries. The perspective is presented that the imprimatur of the Nobel Prize, in this instance, may have led scientists to discount compelling evidence. Much as he and Marie Krogh demonstrated that active transport of gases across the blood-gas barrier was unnecessary in the lung, capillaries in skeletal muscle do not open and close spontaneously or actively, nor is this necessary to account for the increase in blood-muscle O2 flux during exercise. Thus, a contemporary model of capillary function features most muscle capillaries supporting blood flow at rest, and, rather than capillaries actively vasodilating from rest to exercise, increased blood-myocyte O2 flux occurs predominantly via elevating red blood cell and plasma flux in already flowing capillaries. Krogh is lauded for his brilliance as an experimentalist and for raising scientific questions that led to fertile avenues of investigation, including the study of microvascular function.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Roland N Pittman
- Department of Physiology and Biophysics, Virginia Commonwealth University Richmond, Richmond, VA, 23298-0551, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
8
|
Akerstrom T, Goldman D, Nilsson F, Milkovich SL, Fraser GM, Brand CL, Hellsten Y, Ellis CG. Hyperinsulinemia does not cause de novo capillary recruitment in rat skeletal muscle. Microcirculation 2019; 27:e12593. [PMID: 31605649 PMCID: PMC7064932 DOI: 10.1111/micc.12593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Objective The effect of insulin on blood flow distribution within muscle microvasculature has been suggested to be important for glucose metabolism. However, the “capillary recruitment” hypothesis is still controversial and relies on studies using indirect contrast‐enhanced ultrasound (CEU) methods. Methods We studied how hyperinsulinemia effects capillary blood flow in rat extensor digitorum longus (EDL) muscle during euglycemic hyperinsulinemic clamp using intravital video microscopy (IVVM). Additionally, we modeled blood flow and microbubble distribution within the vascular tree under conditions observed during euglycemic hyperinsulinemic clamp experiments. Results Euglycemic hyperinsulinemia caused an increase in erythrocyte (80 ± 25%, P < .01) and plasma (53 ± 12%, P < .01) flow in rat EDL microvasculature. We found no evidence of de novo capillary recruitment within, or among, capillary networks supplied by different terminal arterioles; however, erythrocyte flow became slightly more homogenous. Our computational model predicts that a decrease in asymmetry at arteriolar bifurcations causes redistribution of microbubble flow among capillaries already perfused with erythrocytes and plasma, resulting in 25% more microbubbles flowing through capillaries. Conclusions Our model suggests increase in CEU signal during hyperinsulinemia reflects a redistribution of arteriolar flow and not de novo capillary recruitment. IVVM experiments support this prediction showing increases in erythrocyte and plasma flow and not capillary recruitment.
Collapse
Affiliation(s)
- Thorbjorn Akerstrom
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Franciska Nilsson
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie L Milkovich
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | | | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Christopher G Ellis
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
10
|
Poole DC. Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: gateway to function and dysfunction. J Appl Physiol (1985) 2019; 127:1012-1033. [PMID: 31095460 DOI: 10.1152/japplphysiol.00013.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review strikes at the very heart of how the microcirculation functions to facilitate blood-tissue oxygen, substrate, and metabolite fluxes in skeletal muscle. Contemporary evidence, marshalled from animals and humans using the latest techniques, challenges iconic perspectives that have changed little over the past century. Those perspectives include the following: the presence of contractile or collapsible capillaries in muscle, unitary control by precapillary sphincters, capillary recruitment at the onset of contractions, and the notion of capillary-to-mitochondrial diffusion distances as limiting O2 delivery. Today a wealth of physiological, morphological, and intravital microscopy evidence presents a completely different picture of microcirculatory control. Specifically, capillary red blood cell (RBC) and plasma flux is controlled primarily at the arteriolar level with most capillaries, in healthy muscle, supporting at least some flow at rest. In healthy skeletal muscle, this permits substrate access (whether carried in RBCs or plasma) to a prodigious total capillary surface area. Pathologies such as heart failure or diabetes decrease access to that exchange surface by reducing the proportion of flowing capillaries at rest and during exercise. Capillary morphology and function vary disparately among tissues. The contemporary model of capillary function explains how, following the onset of exercise, muscle O2 uptake kinetics can be extremely fast in health but slowed in heart failure and diabetes impairing contractile function and exercise tolerance. It is argued that adoption of this model is fundamental for understanding microvascular function and dysfunction and, as such, to the design and evaluation of effective therapeutic strategies to improve exercise tolerance and decrease morbidity and mortality in disease.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
11
|
Possenti L, di Gregorio S, Gerosa FM, Raimondi G, Casagrande G, Costantino ML, Zunino P. A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3165. [PMID: 30358172 DOI: 10.1002/cnm.3165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
We present a two-phase model for microcirculation that describes the interaction of plasma with red blood cells. The model takes into account of typical effects characterizing the microcirculation, such as the Fahraeus-Lindqvist effect and plasma skimming. Besides these features, the model describes the interaction of capillaries with the surrounding tissue. More precisely, the model accounts for the interaction of capillary transmural flow with the surrounding interstitial pressure. Furthermore, the capillaries are represented as one-dimensional channels with arbitrary, possibly curved configuration. The latter two features rely on the unique ability of the model to account for variations of flow rate and pressure along the axis of the capillary, according to a local differential formulation of mass and momentum conservation. Indeed, the model stands on a solid mathematical foundation, which is also addressed in this work. In particular, we present the model derivation, the variational formulation, and its approximation using the finite element method. Finally, we conclude the work with a comparative computational study of the importance of the Fahraeus-Lindqvist, plasma skimming, and capillary leakage effects on the distribution of flow in a microvascular network.
Collapse
Affiliation(s)
- Luca Possenti
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Simone di Gregorio
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | | | - Giorgio Raimondi
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Giustina Casagrande
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Maria Laura Costantino
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
12
|
Eržen I, Janáček J, Kreft M, Kubínová L, Cvetko E. Capillary Network Morphometry of Pig Soleus Muscle Significantly Changes in 24 Hours After Death. J Histochem Cytochem 2018; 66:23-31. [PMID: 29095670 PMCID: PMC5761944 DOI: 10.1369/0022155417737061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/20/2017] [Indexed: 11/22/2022] Open
Abstract
Capillary network characteristics are invaluable for diagnostics of muscle diseases. Biopsy material is limited in size and mostly not accessible for intensive research. Therefore, especially in human tissue, studies are performed on autopsy material. To approach the problem whether it is reliable to deduce hypotheses from autopsy material to explain physiological and pathological processes, we studied capillarity in pig soleus muscle 1 and 24 hr after death. Capillaries and muscle fibers were immunofluorescently marked, and images were acquired with a confocal microscope. Characteristics of the capillary network were estimated by image analysis methods using several plugins of the Ellipse program. Twenty-four hours after death, the measured characteristics of the capillary network differ by up to 50% when compared with samples excised 1 hr after death. Muscle fiber diameter, the measured capillary length, and tortuosity were reduced, and capillary network became more anisotropic. The main postmortem change that affects capillaries is evidently geometric deformation of muscle tissue. In conclusion, when comparing results from biopsy samples with those from autopsy samples, the effect of postmortem changes on the measured parameters must be carefully considered.
Collapse
Affiliation(s)
- Ida Eržen
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marko Kreft
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Lucie Kubínová
- Department of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Welsh DG, Tran CHT, Hald BO, Sancho M. The Conducted Vasomotor Response: Function, Biophysical Basis, and Pharmacological Control. Annu Rev Pharmacol Toxicol 2017; 58:391-410. [PMID: 28968190 DOI: 10.1146/annurev-pharmtox-010617-052623] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arterial tone is coordinated among vessel segments to optimize nutrient transport and organ function. Coordinated vasomotor activity is remarkable to observe and depends on stimuli, sparsely generated in tissue, eliciting electrical responses that conduct lengthwise among electrically coupled vascular cells. The conducted response is the focus of this topical review, and in this regard, the authors highlight literature that advances an appreciation of functional significance, cellular mechanisms, and biophysical principles. Of particular note, this review stresses that conduction is enabled by a defined pattern of charge movement along the arterial wall as set by three key parameters (tissue structure, gap junctional resistivity, and ion channel activity). The impact of disease on conduction is carefully discussed, as are potential strategies to restore this key biological response and, along with it, the match of blood flow delivery with tissue energetic demand.
Collapse
Affiliation(s)
- Donald G Welsh
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5B7, Canada;
| | - Cam Ha T Tran
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bjorn O Hald
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Maria Sancho
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5B7, Canada;
| |
Collapse
|
14
|
Sové RJ, Goldman D, Fraser GM. A computational model of the effect of capillary density variability on oxygen transport, glucose uptake, and insulin sensitivity in prediabetes. Microcirculation 2017; 24. [DOI: 10.1111/micc.12342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Richard J. Sové
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - Daniel Goldman
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - Graham M. Fraser
- Cardiovascular Research Group; Division of BioMedical Sciences; Faculty of Medicine; Memorial University of Newfoundland; St. John's NL Canada
| |
Collapse
|
15
|
Fraser GM, Sharpe MD, Goldman D, Ellis CG. Impact of Incremental Perfusion Loss on Oxygen Transport in a Capillary Network Mathematical Model. Microcirculation 2016; 22:348-59. [PMID: 25817391 DOI: 10.1111/micc.12202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/24/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To quantify how incremental capillary PL, such as that seen in experimental models of sepsis, affects tissue oxygenation using a computation model of oxygen transport. METHODS A computational model was applied to capillary networks with dimensions 84 × 168 × 342 (NI) and 70 × 157 × 268 (NII) μm, reconstructed in vivo from rat skeletal muscle. FCD loss was applied incrementally up to ~40% and combined with high tissue oxygen consumption to simulate severe sepsis. RESULTS A loss of ~40% FCD loss decreased median tissue PO2 to 22.9 and 20.1 mmHg in NI and NII compared to 28.1 and 27.5 mmHg under resting conditions. Increasing RBC SR to baseline levels returned tissue PO2 to within 5% of baseline. HC combined with a 40% FCD loss, resulted in tissue anoxia in both network volumes and median tissue PO2 of 11.5 and 8.9 mmHg in NI and NII respectively; median tissue PO2 was recovered to baseline levels by increasing total SR 3-4 fold. CONCLUSIONS These results suggest a substantial increase in total SR is required in order to compensate for impaired oxygen delivery as a result of loss of capillary perfusion and increased oxygen consumption during sepsis.
Collapse
Affiliation(s)
- Graham M Fraser
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Michael D Sharpe
- Department of Anesthesia and Perioperative Medicine, Critical Care Western, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Christopher G Ellis
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Gompper G, Fedosov DA. Modeling microcirculatory blood flow: current state and future perspectives. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:157-68. [PMID: 26695350 DOI: 10.1002/wsbm.1326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
Abstract
Microvascular blood flow determines a number of important physiological processes of an organism in health and disease. Therefore, a detailed understanding of microvascular blood flow would significantly advance biophysical and biomedical research and its applications. Current developments in modeling of microcirculatory blood flow already allow to go beyond available experimental measurements and have a large potential to elucidate blood flow behavior in normal and diseased microvascular networks. There exist detailed models of blood flow on a single cell level as well as simplified models of the flow through microcirculatory networks, which are reviewed and discussed here. The combination of these models provides promising prospects for better understanding of blood flow behavior and transport properties locally as well as globally within large microvascular networks.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
17
|
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA Department of Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
18
|
Poole DC. CrossTalk opposing view: De novo capillary recruitment in healthy muscle is not necessary to explain physiological outcomes. J Physiol 2015; 592:5133-5. [PMID: 25448179 DOI: 10.1113/jphysiol.2014.282145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA Department of Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
19
|
Schmid F, Reichold J, Weber B, Jenny P. The impact of capillary dilation on the distribution of red blood cells in artificial networks. Am J Physiol Heart Circ Physiol 2015; 308:H733-42. [PMID: 25617356 DOI: 10.1152/ajpheart.00335.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 01/21/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that pericytes around capillaries are contractile and able to alter the diameter of capillaries. To investigate the effects of capillary dilation on network dynamics, we performed simulations in artificial capillary networks of different sizes and complexities. The unequal partition of hematocrit at diverging bifurcations was modeled by assuming that each red blood cell (RBC) enters the branch with the faster instantaneous flow. Network simulations with and without RBCs were performed to investigate the effect of local dilations. The results showed that the increase in flow rate due to capillary dilation was less when the effects of RBCs are included. For bifurcations with sufficient RBCs in the parent vessel and nearly equal flows in the branches, the flow rate in the dilated branch did not increase. Instead, a self-regulation of flow was observed due to accumulation of RBCs in the dilated capillary. A parametric study was performed to examine the dependence on initial capillary diameter, dilation factor, and tube hematocrit. Furthermore, the conditions needed for an efficient self-regulation mechanism are discussed. The results support the hypothesis that RBCs play a significant role for the fluid dynamics in capillary networks and that it is crucial to consider the blood flow rate and the distribution of RBCs to understand the supply of oxygen in the vasculature. Furthermore, our results suggest that capillary dilation/constriction offers the potential of being an efficient mechanism to alter the distribution of RBCs locally and hence could be important for the local regulation of oxygen delivery.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland; and
| | | | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland; and
| |
Collapse
|
20
|
Fraser GM, Goldman D, Ellis CG. Comparison of generated parallel capillary arrays to three-dimensional reconstructed capillary networks in modeling oxygen transport in discrete microvascular volumes. Microcirculation 2014; 20:748-63. [PMID: 23841679 DOI: 10.1111/micc.12075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We compare RMN to PCA under several simulated physiological conditions to determine how the use of different vascular geometry affects oxygen transport solutions. METHODS Three discrete networks were reconstructed from intravital video microscopy of rat skeletal muscle (84 × 168 × 342 μm, 70 × 157 × 268 μm, and 65 × 240 × 571 μm), and hemodynamic measurements were made in individual capillaries. PCAs were created based on statistical measurements from RMNs. Blood flow and O₂ transport models were applied, and the resulting solutions for RMN and PCA models were compared under four conditions (rest, exercise, ischemia, and hypoxia). RESULTS Predicted tissue PO₂ was consistently lower in all RMN simulations compared to the paired PCA. PO₂ for 3D reconstructions at rest were 28.2 ± 4.8, 28.1 ± 3.5, and 33.0 ± 4.5 mmHg for networks I, II, and III compared to the PCA mean values of 31.2 ± 4.5, 30.6 ± 3.4, and 33.8 ± 4.6 mmHg. Simulated exercise yielded mean tissue PO₂ in the RMN of 10.1 ± 5.4, 12.6 ± 5.7, and 19.7 ± 5.7 mmHg compared to 15.3 ± 7.3, 18.8 ± 5.3, and 21.7 ± 6.0 in PCA. CONCLUSIONS These findings suggest that volume matched PCA yield different results compared to reconstructed microvascular geometries when applied to O₂ transport modeling; the predominant characteristic of this difference being an over estimate of mean tissue PO₂. Despite this limitation, PCA models remain important for theoretical studies as they produce PO₂ distributions with similar shape and parameter dependence as RMN.
Collapse
Affiliation(s)
- Graham M Fraser
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
21
|
Poole DC, Copp SW, Ferguson SK, Musch TI. Skeletal muscle capillary function: contemporary observations and novel hypotheses. Exp Physiol 2013; 98:1645-58. [PMID: 23995101 PMCID: PMC4251469 DOI: 10.1113/expphysiol.2013.073874] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The capillary bed constitutes a vast surface that facilitates exchange of O2, substrates and metabolites between blood and organs. In contracting skeletal muscle, capillary blood flow and O2 diffusing capacity, as well as O2 flux, may increase two orders of magnitude above resting values. Chronic diseases, such as heart failure and diabetes, and also sepsis impair these processes, leading to compromised energetic, metabolic and, ultimately, contractile function. Among researchers seeking to understand blood-myocyte exchange in health and the basis for dysfunction in disease, there is a fundamental disconnect between microcirculation specialists and many physiologists and physiologist clinicians. While the former observe capillaries and capillary function directly (muscle intravital microscopy), the latter generally use indirect methodologies (e.g. post-mortem tissue analysis, 1-methyl xanthine, contrast-enhanced ultrasound, permeability-surface area product) and interpret their findings based upon August Krogh's observations made nearly a century ago. 'Kroghian' theory holds that only a small fraction of capillaries support red blood cell (RBC) flux in resting muscle, leaving the vast majority to be 'recruited' (i.e. to initiate RBC flux) during contractions, which would constitute the basis for increasing surface area for capillary exchange and reducing capillary-mitochondrial diffusion distances. Experimental techniques each have their strengths and weaknesses, and often the correct or complete answer to a problem emerges from integration across multiple technologies. Today, Krogh's entrenched 'capillary recruitment' hypothesis is challenged by direct observations of capillaries in contracting muscle, which is something that he and his colleagues could not do. Moreover, in the peer-reviewed scientific literature, application of a range of contemporary physiological technologies, including intravital microscopy of contracting muscle, magnetic resonance, near-infrared spectroscopy and phosphorescence quenching, combined with elegant in situ and in vivo models, suggest that the role of the capillary bed, at least in contracting muscle, is subserved without the necessity for de novo capillary recruitment of previously non-flowing capillaries. When viewed within the context of the capillary recruitment hypothesis, this evidence casts serious doubt on the interpretation of those data that are based upon Kroghian theory and indirect methodologies. Thus, today a wealth of evidence calls for a radical revision of blood-muscle exchange theory to one in which most capillaries support RBC flux at rest and, during contractions, capillary surface area is 'recruited' along the length of previously flowing capillaries. This occurs, in part, by elevating capillary haematocrit and extending the length of the capillary available for blood-myocyte exchange (i.e. longitudinal recruitment). Our understanding of blood-myocyte O2 and substrate/metabolite exchange in health and the mechanistic basis for dysfunction in disease demands no less.
Collapse
Affiliation(s)
- David C Poole
- D. C. Poole: Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5802, USA.
| | | | | | | |
Collapse
|
22
|
Ghonaim NW, Fraser GM, Ellis CG, Yang J, Goldman D. Modeling steady state SO2-dependent changes in capillary ATP concentration using novel O2 micro-delivery methods. Front Physiol 2013; 4:260. [PMID: 24069001 PMCID: PMC3781332 DOI: 10.3389/fphys.2013.00260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen (O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key regulator in the pathway that mediates micro-vascular response to varying tissue O2 demand. We propose that ATP signaling mainly originates in the capillaries due to the relatively long erythrocyte transit times in the capillary and the short ATP diffusion distance to the electrically coupled endothelium. We have developed a computational model to investigate the effect of delivering or removing O2 to limited areas at the surface of a tissue with an idealized parallel capillary array on total ATP concentration. Simulations were conducted when exposing full surface to perturbations in tissue O2 tension (PO2) or locally using a circular micro-outlet (~100 μm in diameter), a square micro-slit (200 × 200 μm), or a rectangular micro-slit (1000 μm wide × 200 μm long). Results indicated the rectangular micro-slit has the optimal dimensions for altering hemoglobin saturations (SO2) in sufficient number capillaries to generate effective changes in total [ATP]. This suggests a threshold for the minimum number of capillaries that need to be stimulated in vivo by imposed tissue hypoxia to induce a conducted micro-vascular response. SO2 and corresponding [ATP] changes were also modeled in a terminal arteriole (9 μm in diameter) that replaces 4 surface capillaries in the idealized network geometry. Based on the results, the contribution of terminal arterioles to the net change in [ATP] in the micro-vascular network is minimal although they would participate as O2 sources thus influencing the O2 distribution. The modeling data presented here provide important insights into designing a novel micro-delivery device for studying micro-vascular O2 regulation in the capillaries in vivo.
Collapse
Affiliation(s)
- Nour W Ghonaim
- Department of Biomedical Engineering Graduate Program, Western University London, ON, Canada
| | | | | | | | | |
Collapse
|
23
|
Pittman RN. Oxygen transport in the microcirculation and its regulation. Microcirculation 2013; 20:117-37. [PMID: 23025284 DOI: 10.1111/micc.12017] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/27/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen, which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. METHODS This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium, and cells. RESULTS Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. CONCLUSIONS Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand, and their regulation are decided.
Collapse
Affiliation(s)
- Roland N Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|