1
|
Yang X, Zhang X, Shu X, Gong J, Yang J, Li B, Lin J, Chai Y, Liu J. The effects of polyethylene microplastics on the growth, reproduction, metabolic enzymes, and metabolomics of earthworms Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115390. [PMID: 37619398 DOI: 10.1016/j.ecoenv.2023.115390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The existing data regarding the effects of polyethylene (PE) microplastics (MPs) smaller than 5 mm in size on earthworms are insufficient to fully comprehend their toxicity. In this study, earthworms Eisenia fetida were exposed to artificially added PE at a concentration ranging from 0.05 to 20 g/kg soil (0.005%-2%) for 60 days to determine the concentration range causing negative effects on earthworms and to uncover the potential toxic mechanisms. The individual growth, reproduction, and metabolic enzyme activities, including phase I enzymes (cytochrome P450 [CYP] 1A2, 2B6, 2C9, and 3A4), and phase II metabolic enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione sulfotransferase (GST)), and metabolomics were measured. The observed variations in responses of multiple cross-scale endpoints indicated that individual indices are less responsive to PE MPs than metabolic enzymes or metabolomics. Despite the absence of significant alterations in growth inhibition based on body weight, PE MPs at concentrations equal to or exceeding 2.5 g/kg were found to exert a toxic effect on earthworms, which was evidenced by significant changes in metabolic enzyme activities (CYP1A2, 2B6, 2C9, and 3A4, SOD, CAT, and GST) and important small molecule metabolites screened based on metabolomics, likely due to the bioaccumulation of PE. The toxicity of PE MPs to earthworms is inferred to be associated with neurotoxicity, oxidative damage, decreased detoxification capacity, energy metabolism imbalance, and impaired amino acid and purine metabolism due to bioaccumulation. The findings of this study will enhance our understanding of the molecular toxicity mechanisms of PE MPs and contribute to a more accurate assessment of the ecological risks posed by PE MPs in soil.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China.
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Biquan Li
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junjie Lin
- Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| |
Collapse
|
2
|
Lopez M, Malacarne PF, Ramanujam DP, Warwick T, Müller N, Hu J, Dewenter M, Weigert A, Günther S, Gilsbach R, Engelhardt S, Brandes RP, Rezende F. Endothelial deletion of the cytochrome P450 reductase leads to cardiac remodelling. Front Physiol 2022; 13:1056369. [DOI: 10.3389/fphys.2022.1056369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The cytochrome P450 reductase (POR) transfers electrons to all microsomal cytochrome P450 enzymes (CYP450) thereby driving their activity. In the vascular system, the POR/CYP450 system has been linked to the production of epoxyeicosatrienoic acids (EETs) but also to the generation of reactive oxygen species. In cardiac myocytes (CMs), EETs have been shown to modulate the cardiac function and have cardioprotective effects. The functional importance of the endothelial POR/CYP450 system in the heart is unclear and was studied here using endothelial cell-specific, inducible knockout mice of POR (ecPOR−/−). RNA sequencing of murine cardiac cells revealed a cell type-specific expression of different CYP450 homologues. Cardiac endothelial cells mainly expressed members of the CYP2 family which produces EETs, and of the CYP4 family that generates omega fatty acids. Tamoxifen-induced endothelial deletion of POR in mice led to cardiac remodelling under basal conditions, as shown by an increase in heart weight to body weight ratio and an increased CM area as compared to control animals. Endothelial deletion of POR was associated with a significant increase in endothelial genes linked to protein synthesis with no changes in genes of the oxidative stress response. CM of ecPOR−/− mice exhibited attenuated expression of genes linked to mitochondrial function and an increase in genes related to cardiac myocyte contractility. In a model of pressure overload (transverse aortic constriction, TAC with O-rings), ecPOR−/− mice exhibited an accelerated reduction in cardiac output (CO) and stroke volume (SV) as compared to control mice. These results suggest that loss of endothelial POR along with a reduction in EETs leads to an increase in vascular stiffness and loss in cardioprotection, resulting in cardiac remodelling.
Collapse
|
3
|
Kandhi S, Alruwaili N, Wolin MS, Sun D, Huang A. Reciprocal actions of constrictor prostanoids and superoxide in chronic hypoxia-induced pulmonary hypertension: roles of EETs. Pulm Circ 2019; 9:2045894019895947. [PMID: 31908769 DOI: 10.1177/2045894019895947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are synthesized from arachidonic acid by CYP/epoxygenase and metabolized by soluble epoxide hydrolase (sEH). Roles of EETs in hypoxia-induced pulmonary hypertension (HPH) remain elusive. The present study aimed to investigate the underlying mechanisms, by which EETs potentiate HPH. Experiments were conducted on sEH knockout (sEH-KO) and wild type (WT) mice after exposure to hypoxia (10% oxygen) for three weeks. In normal/normoxic conditions, WT and sEH-KO mice exhibited comparable pulmonary artery acceleration time (PAAT), ejection time (ET), PAAT/ET ratio, and velocity time integral (VTI), along with similar right ventricular systolic pressure (RVSP). Chronic hypoxia significantly reduced PAAT, ET, and VTI, coincided with an increase in RVSP; these impairments were more severe in sEH-KO than WT mice. Hypoxia elicited downregulation of sEH and upregulation of CYP2C9 accompanied with elevation of CYP-sourced superoxide, leading to enhanced pulmonary EETs in hypoxic mice with significantly higher levels in sEH-KO mice. Isometric tension of isolated pulmonary arteries was recorded. In addition to downregulation of eNOS-induced impairment of vasorelaxation to ACh, HPH mice displayed upregulation of thromboxane A2 (TXA2) receptor, paralleled with enhanced pulmonary vasocontraction to a TXA2 analog (U46619) in an sEH-KO predominant manner. Inhibition of COX-1 or COX-2 significantly prevented the enhancement by ∼50% in both groups of vessels, and the remaining incremental components were eliminated by scavenging of superoxide with Tiron. In conclusion, hypoxia-driven increases in EETs, intensified COXs/TXA2 signaling, great superoxide sourced from activated CYP2C9, and impaired NO bioavailability work in concert, to potentiate HPH development.
Collapse
Affiliation(s)
- Sharath Kandhi
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - Norah Alruwaili
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - Michael S Wolin
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dong Sun
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - An Huang
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
4
|
A novel mechanism of ascorbate direct modulation of soluble epoxide hydrolase. Prostaglandins Other Lipid Mediat 2017; 131:59-66. [DOI: 10.1016/j.prostaglandins.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/09/2022]
|
5
|
Shayakhmetova GM, Bondarenko LB, Voronina AK, Kovalenko VM. Comparative investigation of methionine and novel formulation Metovitan protective effects in Wistar rats with testicular and epididymal toxicity induced by anti-tuberculosis drugs co-administration. Food Chem Toxicol 2017; 99:222-230. [DOI: 10.1016/j.fct.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
|
6
|
Kandhi S, Froogh G, Qin J, Luo M, Wolin MS, Huang A, Sun D. EETs Elicit Direct Increases in Pulmonary Arterial Pressure in Mice. Am J Hypertens 2016; 29:598-604. [PMID: 26304959 DOI: 10.1093/ajh/hpv148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The biological role of epoxyeicosatrienoic acids (EETs) in the regulation of pulmonary circulation is currently under debate. We hypothesized that EETs initiate increases in right ventricular systolic pressure (RVSP) via perhaps, pulmonary vasoconstriction. METHODS Mice were anesthetized with isoflurane. Three catheters, inserted into the left jugular vein, the left carotid artery, and the right jugular vein, were used for infusing EETs, monitoring blood pressure (BP), and RVSP respectively. BP and RVSP were continuously recorded at basal conditions, in response to administration of 4 regioisomeric EETs (5,6-EET; 8,9-EET; 11,12-EET, and 14,15-EET; 1, 2, 5 and 10 ng/g body weight (BW) for each EET), and during exposure of mice to hypoxia. RESULTS All 4 EETs initiated dose-dependent increases in RVSP, though reduced BP. 11,12-EET elicited the greatest increment in RVSP among all EET isoforms. To clarify the direct elevation of RVSP in a systemic BP-independent manner, equivalent amounts of 14,15-EET were injected over 1 and 2 minutes respectively. One-minute injection of 14,15-EET elicited significantly faster and greater increases in RVSP than the 2-minute injection, whereas their BP changes were comparable. Additionally, direct injection of low doses of 14,15-EET (0.1, 0.2, 0.5, and 1 ng/g BW) into the right ventricle caused significant increases in RVSP without effects on BP, confirming that systemic vasodilation-induced increases in venous return are not the main cause for the increased RVSP. Acute exposure of mice to hypoxia significantly elevated RVSP, as well as 14,15-EET-induced increases in RVSP. CONCLUSIONS EETs directly elevate RVSP, a response that may play an important role in the development of hypoxia-induced pulmonary hypertension (PH).
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/toxicity
- Animals
- Arterial Pressure/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Hypoxia/physiopathology
- Infusions, Intravenous
- Male
- Mice, Inbred C57BL
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Time Factors
- Ventricular Function, Right/drug effects
- Ventricular Pressure/drug effects
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA; Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Meng Luo
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York, New York, USA;
| |
Collapse
|
7
|
Qin J, Kandhi S, Froogh G, Jiang H, Luo M, Sun D, Huang A. Sexually dimorphic phenotype of arteriolar responsiveness to shear stress in soluble epoxide hydrolase-knockout mice. Am J Physiol Heart Circ Physiol 2015; 309:H1860-6. [PMID: 26453332 DOI: 10.1152/ajpheart.00568.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023]
Abstract
We hypothesized that potentiating the bioavailability of endothelial epoxyeicosatrienoic acids (EETs) via deletion of the gene for soluble epoxide hydrolase (sEH), or downregulation of sEH expression, enhances flow/shear stress-induced dilator responses (FID) of arterioles. With the use of male (M) and female (F) wild-type (WT) and sEH-knockout (KO) mice, isolated gracilis muscle arterioles were cannulated and pressurized at 80 mmHg. Basal tone and increases in diameter of arterioles as a function of perfusate flow (5, 10, 15, 20, and 25 μl/min) were recorded. The magnitude of FID was significantly smaller and associated with a greater arteriolar tone in M-WT than F-WT mice, revealing a sex difference in FID. This sex difference was abolished by deletion of the sEH gene, as evidenced by an enhanced FID in M-KO mice to a level comparable with those observed in F-KO and F-WT mice. These three groups of mice coincidentally exhibited an increased endothelial sensitivity to shear stress (smaller WSS50) and were hypotensive. Endothelial EETs participated in the mediation of enhanced FID in M-KO, F-KO, and F-WT mice, without effects on FID of M-WT mice. Protein expression of sEH was downregulated by approximately fourfold in vessels of F-WT compared with M-WT mice, paralleled with greater vascular EET levels that were statistically comparable with those observed in both male and female sEH-KO mice. In conclusion, sex-different regulation of sEH accounts for sex differences in flow-mediated dilation of microvessels in gonadally intact mice.
Collapse
Affiliation(s)
- Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
8
|
Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev 2014; 66:1106-40. [PMID: 25244930 DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Over the last 20 years, it has become clear that cytochrome P450 (P450) enzymes generate a spectrum of bioactive lipid mediators from endogenous substrates. However, studies focused on the determining biologic activity of the P450 system have focused largely on the metabolites generated by one substrate (i.e., arachidonic acid). However, epoxides and diols derived from other endogenous substrates, such as linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, may be generated in higher concentrations and may potentially be of more physiologic relevance. Recent studies that used a combination of phenotyping and lipid array analyses revealed that rather than being inactive products, fatty acid diols play important roles in a number of biologic processes including inflammation, angiogenesis, and metabolic regulation. Moreover, inhibitors of the soluble epoxide hydrolase that increase epoxide but decrease diol levels have potential for the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Sun D, Cuevas AJ, Gotlinger K, Hwang SH, Hammock BD, Schwartzman ML, Huang A. Soluble epoxide hydrolase-dependent regulation of myogenic response and blood pressure. Am J Physiol Heart Circ Physiol 2014; 306:H1146-53. [PMID: 24561863 DOI: 10.1152/ajpheart.00920.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via cytochrome P450 (CYP)/epoxygenases. EETs possess cardioprotective properties and are catalyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs) that lack vasoactive property. To date, the role of sEH in the regulation of myogenic response of resistant arteries, a key player in the control of blood pressure, remains unknown. To this end, experiments were conducted on sEH-knockout (KO) mice, wild-type (WT) mice, and endothelial nitric oxide synthase (eNOS)-KO mice treated with t-TUCB, a sEH inhibitor, for 4 wk. sEH-KO and t-TUCB-treated mice displayed significantly lower blood pressure, associated with significantly increased vascular EETs and ratio of EETs/DHETs. Pressure-diameter relationships were assessed in isolated and cannulated gracilis muscle arterioles. All arterioles constricted in response to increases in transmural pressure from 60 to 140 mmHg. The myogenic constriction was significantly reduced, expressed as an upward shift of pressure-diameter curve, in arterioles of sEH-KO and t-TUCB-treated eNOS-KO mice compared with their controls. Removal of the endothelium, or treatment of the vessels with PPOH, an inhibitor of EET synthase, restored the attenuated pressure-induced constriction to the levels similar to those observed in their controls but had no effects on control vessels. No difference was observed in the myogenic index, or in the vascular expression of eNOS, CYP2C29 (EET synthase), and CYP4A (20-HETE synthase) among these groups of mice. In conclusion, the increased EET bioavailability, as a function of deficiency/inhibition of sEH, potentiates vasodilator responses that counteract pressure-induced vasoconstriction to lower blood pressure.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | | | | | | | | | | |
Collapse
|