1
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
2
|
Melicherová J, Hofmannová L, Valigurová A. Response of cell lines to actual and simulated inoculation with Cryptosporidium proliferans. Eur J Protistol 2017; 62:101-121. [PMID: 29316479 DOI: 10.1016/j.ejop.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The need for an effective treatment against cryptosporidiosis has triggered studies in the search for a working in vitro model. The peculiar niche of cryptosporidia at the brush border of host epithelial cells has been the subject of extensive debates. Despite extensive research on the invasion process, it remains enigmatic whether cryptosporidian host-parasite interactions result from an active invasion process or through encapsulation. We used HCT-8 and HT-29 cell lines for in vitro cultivation of the gastric parasite Cryptosporidium proliferans strain TS03. Using electron and confocal laser scanning microscopy, observations were carried out 24, 48 and 72 h after inoculation with a mixture of C. proliferans oocysts and sporozoites. Free sporozoites and putative merozoites were observed apparently searching for an appropriate infection site. Advanced stages, corresponding to trophozoites and meronts/gamonts enveloped by parasitophorous sac, and emptied sacs were detected. As our observations showed that even unexcysted oocysts became enveloped by cultured cell projections, using polystyrene microspheres, we evaluated the response of cell lines to simulated inoculation with cryptosporidian oocysts to verify innate and parasite-induced behaviour. We found that cultured cell encapsulation of oocysts is induced by parasite antigens, independent of any active invasion/motility.
Collapse
Affiliation(s)
- Janka Melicherová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lada Hofmannová
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
3
|
Improvement of in vitro evaluation of chemical disinfectants for efficacy on Cryptosporidium parvum oocysts. Vet Parasitol 2017; 245:5-13. [PMID: 28969838 DOI: 10.1016/j.vetpar.2017.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 07/19/2017] [Indexed: 11/22/2022]
Abstract
Cryptosporidium parvum has been suggested as a suitable target for in vitro efficacy testing of disinfectants. To improve validity of a method based on exposure of HCT-8 monolayers to C. parvum oocysts we here critically evaluate and we propose certain procedural steps needed for the validation of disinfectants. Within a range of 0.02% to 0.4%, sodium taurocholate at 0.2% stimulated infection most efficiently while preserving host cell integrity. The course of invasion was monitored for periods of 30-240min post infection (p.i.). FACS analysis revealed that the proportion of sporozoites liberated from oocysts in the presence of 0.2% sodium taurocholate increased within 120min of incubation but remained constant thereafter. Maximum invasion of cells measured by qPCR was reached 180min p.i. and therefore set as invasion endpoint. As monolayers harvested 24h or 48h p.i. did not differ in the quantity of parasite hsp70 gene copies, DNA extraction can be performed as early as 24h p.i. Incubation of oocysts with 20% H2O2 for 2h resulted in inactivation of more than 99.5% both at room temperature and 10°C and appeared thus suitable as positive chemical treatment control. Four washing procedures considered to remove potentially toxic residual disinfectant from oocyst suspensions were tested. An application of a combination of DMSO (Dimethylsulfoxid), Tween20 and WSH (water of standardized hardness) appeared most efficient without deleterious effect of disinfectant residuals on the cell monolayer viability when oocysts accordingly washed were applied. In conclusion, for standardized in vitro evaluation of chemical disinfectants in C. parvum infected HTC-8 monolayers. (i) excystation medium should contain 0.2 % sodium taurocholate. (ii) excystation medium should be replaced by growth medium after 180 min. (iii) monolayers should be harvested 24 h p.i. for DNA preparation. (iv) ocysts exposed to 20 % H2O2 should be included as positive controls. (v) disinfected oocysts should be washed with DMSO/Tween20/WSH before they are transferred to monolayers.
Collapse
|
4
|
Khalil S, Mirdha BR, Paul J, Panda A, Makharia G, Chaudhry R, Bhatnagar S. Development and evaluation of molecular methods for detection of Cryptosporidium spp. in human clinical samples. Exp Parasitol 2016; 170:207-213. [PMID: 27717773 DOI: 10.1016/j.exppara.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 11/30/2022]
Abstract
Cryptosporidiosis is predominantly a gastrointestinal disease of humans and other animals, caused by various species of protozoan parasites representing the genus Cryptosporidium. Detection of Cryptosporidium spp. in human clinical samples is central to the prevention, surveillance and control of cryptosporidiosis, particularly given that there is presently no broadly applicable treatment regimen for this disease. A non-radioactive, genus specific DNA dot blot hybridization assay was developed using Digoxigenin (DIG) labelled probes to detect Cryptosporidium DNA in human clinical samples. Four hundred fifty (n = 450) clinical samples were subjected to microscopic examination, Polymerase Chain Reaction assay (PCR), Dot blot hybridization assay and Real Time PCR assay. A total of forty-one (n = 41) samples were positive by microscopy, forty-two (n = 42) by both PCR assay and dot blot hybridization assay and forty-three (n = 43) by Real Time PCR assay. Dot blot hybridization assay with a sensitivity of 95.5% and specificity of 99.75% could be an ideal choice for routine investigation of a large number of samples in a clinical setting as well as field.
Collapse
Affiliation(s)
- Shehla Khalil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashutosh Panda
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Govind Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Shinjini Bhatnagar
- Shinjini Bhatnagar, Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, India
| |
Collapse
|
5
|
Swaffer BA, Vial HM, King BJ, Daly R, Frizenschaf J, Monis PT. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment. WATER RESEARCH 2014; 67:310-320. [PMID: 25306487 DOI: 10.1016/j.watres.2014.08.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/21/2014] [Accepted: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships.
Collapse
Affiliation(s)
- Brooke A Swaffer
- South Australia Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia.
| | - Hayley M Vial
- South Australia Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | - Brendon J King
- Australian Water Quality Centre, GPO Box 1751, Adelaide, SA 5001, Australia
| | - Robert Daly
- South Australia Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | | | - Paul T Monis
- Australian Water Quality Centre, GPO Box 1751, Adelaide, SA 5001, Australia
| |
Collapse
|
6
|
Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity. Parasitology 2012; 139:1533-46. [DOI: 10.1017/s0031182012000984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
In vitro determination of anticryptosporidial activity of phytogenic extracts and compounds. Parasitol Res 2012; 111:231-40. [PMID: 22278729 DOI: 10.1007/s00436-012-2824-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/10/2012] [Indexed: 12/25/2022]
Abstract
Cryptosporidiosis caused by Cryptosporidium spp. is an important diarrhoeal disease observed in farm animals and humans, especially in young or immunocompromised individuals. A novel cell culture assay for testing extracts and pure compounds against Cryptosporidium parvum in 96-well microplate format was established and evaluated. It is based on previously described indirect fluorescent antibody techniques and was optimised for higher sample throughput. Rapid assessment of minimal inhibitory concentrations (MICs) was done by checking each well microscopically for the presence or absence of parasite stages. As a novelty, parasite development was quantified by enumeration of clusters of secondary infection (CSI), which typically appeared upon infection with a distinct parasite inoculum after a defined incubation time. Host cell (HCT-8) viability was measured by an integrated non-destructive water-soluble tetrazolium salt assay (WST-1), which facilitated discrimination of antiparasitic activity from possible cytotoxic effects of a test compound against the host cells. Host cell viability was regarded unimpaired when cultures had 75% or more viability when compared to control cultures without test substance. In this study, a maximum density of distinguishable CSI was obtained when cultures were infected with 2.5 × 10(3) oocysts and incubated for 48 h. The applicable inoculum has to be optimised for each batch of oocysts and before each experimental series. Parasite development was inhibited completely by monensin at 134 nM and silymarin at 50 mg/mL. These concentrations were non-toxic to the host cells and comparable to literature data. The percentages of parasite inhibition were determined for monensin and a 50% inhibitory concentration (IC(50)) of 36.6 nM (27.4-45.5) and a 90% inhibitory concentration of 65.9 nM (54.8-90.2) were calculated. The introduced assay is economic because relatively low parasite numbers may be used. If MICs are determined, evaluation is fast, as each well is viewed only briefly under the fluorescence microscope for presence or absence of CSI. Furthermore it is highly critical because only full parasite inhibition is assessed. Counting of CSI is more laborious and time-consuming, but it allows calculation of parasite inhibition rates and parameters like the half maximal inhibitory concentration (IC(50)). This assay shall be used to assess anticryptosporidial activities of various plant waste materials and by-products from the food and the pharmaceutical industries in the course of the EU project SAFEWASTES. Comparison with in vivo models should be performed to further corroborate the results. Automated evaluation by flow cytometry might facilitate higher sample throughput and reduce operator bias.
Collapse
|
8
|
Comparison of assays for sensitive and reproducible detection of cell culture-infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. Appl Environ Microbiol 2011; 78:156-62. [PMID: 22038611 DOI: 10.1128/aem.06444-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study compared the three most commonly used assays for detecting Cryptosporidium sp. infections in cell culture: immunofluorescent antibody and microscopy assay (IFA), PCR targeting Cryptosporidium sp.-specific DNA, and reverse transcriptase PCR (RT-PCR) targeting Cryptosporidium sp.-specific mRNA. Monolayers of HCT-8 cells, grown in 8-well chamber slides or 96-well plates, were inoculated with a variety of viable and inactivated oocysts to assess assay performance. All assays detected infection with low doses of flow cytometry-enumerated Cryptosporidium parvum oocysts, including infection with one oocyst and three oocysts. All methods also detected infection with Cryptosporidium hominis. The RT-PCR assay, IFA, and PCR assay detected infection in 23%, 25%, and 51% of monolayers inoculated with three C. parvum oocysts and 10%, 9%, and 16% of monolayers inoculated with one oocyst, respectively. The PCR assay was the most sensitive, but it had the highest frequency of false positives with mock-infected cells and inactivated oocysts. IFA was the only infection detection assay that did not produce false positives with mock-infected monolayers. IFA was also the only assay that detected infections in all experiments with spiked oocysts recovered from Envirochek capsules following filtration of 1,000 liters of treated water. Consequently, cell culture with IFA detection is the most appropriate method for routine and sensitive detection of infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water.
Collapse
|
9
|
Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011; 41:1231-42. [PMID: 21889507 DOI: 10.1016/j.ijpara.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023]
Abstract
This overview discusses findings from culturing Cryptosporidium spp. in cell and axenic cultures as well as factors limiting the development of this parasite in cultivation systems during recent years. A systematic review is undertaken of findings regarding the life cycle of the parasite, taking into account physiological, biochemical and genetic aspects, in the hope that this attempt will facilitate future approaches to research and developments in the understanding of Cryptosporidium biology.
Collapse
Affiliation(s)
- P Karanis
- University of Cologne, Center for Anatomy, Institute II, Molecular and Medical Parasitology, Joseph-Stelzmann-Street 9, Geb.35, 50937 Köln, Germany.
| | | |
Collapse
|
10
|
Abstract
SUMMARYMembers of the genusCryptosporidium, which cause the gastrointestinal disease cryptosporidiosis, still represent a significant cause of water-borne disease worldwide. While intensive efforts have been invested in the development of techniques for parasite culture,in vitrogrowth has been hampered by a number of factors including low levels of infectivity as well as delayed life-cycle development and poor synchronicity. In this study we examined factors affecting the timing of contact between excysted sporozoites and target host cells and the subsequent impact of this upon the establishment of infection. We demonstrate that excystation rate impacts upon establishment of infection and that in our standard assay format the majority of sporozoites are not close enough to the cell monolayer when they are released from the oocyst to successfully establish infection. However, this can be easily overcome by centrifugation of oocysts onto the cell monolayer, resulting in approximately 4-fold increases in sporozoite attachment and subsequent infection. We further demonstrate that excystation procedures can be tailored to control excystation rate to match the assay end purpose and that excystation rate can influence data interpretation. Finally, the addition of both a centrifugation and washing step post-sporozoite attachment may be appropriate when considering the design ofin vitroculture experiments for developmental analysis and stage-specific gene expression as this appears to increase the synchronicity of early developmental stages.
Collapse
|
11
|
Collinet-Adler S, Ward HD. Cryptosporidiosis: environmental, therapeutic, and preventive challenges. Eur J Clin Microbiol Infect Dis 2010; 29:927-35. [PMID: 20521158 PMCID: PMC4049176 DOI: 10.1007/s10096-010-0960-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Cryptosporidium spp. are responsible for endemic and epidemic disease worldwide. Clinical manifestations may include acute, persistent, or chronic diarrhea, biliary, and pulmonary disease. Disease severity ranges from asymptomatic or mild to severe, intractable diarrhea with wasting depending on immune status, nutrition, and age. Transmission is fecal-oral with both human and animal reservoirs. Disease is often self limited in healthy individuals, but therapy remains a challenge in the immune-compromised. Prevention currently depends on appropriate hygiene and proper water management and treatment.
Collapse
Affiliation(s)
- S Collinet-Adler
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
12
|
Yang YL, Serrano MG, Sheoran AS, Manque PA, Buck GA, Widmer G. Over-expression and localization of a host protein on the membrane of Cryptosporidium parvum infected epithelial cells. Mol Biochem Parasitol 2009; 168:95-101. [PMID: 19631240 PMCID: PMC2752322 DOI: 10.1016/j.molbiopara.2009.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/26/2009] [Accepted: 07/13/2009] [Indexed: 12/30/2022]
Abstract
The genus Cryptosporidium includes several species of intestinal protozoan parasites which multiply in intestinal epithelial cells. The impact of this infection on the transcriptome of cultured host cells was investigated using DNA microarray hybridizations. The expression of 14 genes found to be consistently up- or down-regulated in infected cell monolayers was validated with RT PCR. Using immunofluorescence we examined the expression of Protease Activated Receptor-2, which is encoded by one of the up-regulated genes. In infected cells this receptor localized to the host cell membrane which covers the intracellular trophozoites and meronts. This observation indicates that the composition of the host cell membrane is affected by the developing trophozoite, a phenomenon which has not been described previously.
Collapse
Affiliation(s)
- Yi-Lin Yang
- Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cama VA, Arrowood MJ, Ortega YR, Xiao L. Molecular Characterization of the Cryptosporidium parvum IOWA Isolate Kept in Different Laboratories. J Eukaryot Microbiol 2006; 53 Suppl 1:S40-2. [PMID: 17169063 DOI: 10.1111/j.1550-7408.2006.00168.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Vitaliano A Cama
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | | | | | | |
Collapse
|
14
|
Huffman DE, Gennaccaro AL, Berg TL, Batzer G, Widmer G. Detection of infectious parasites in reclaimed water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2006; 78:2297-302. [PMID: 17243228 DOI: 10.2175/106143006x95429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The presence of infectious protozoan pathogens in reclaimed water may present an unacceptable health risk. This study was designed similar to a study reported by Garcia et al. (2002), which detected no infectious Giardia cysts in the final effluent of a tertiary treatment facility as determined by animal infectivity (dose 1000 cysts/gerbil). This study also included evaluation of Cryptosporidium oocyst infectivity. Infectious Giardia cysts were detected in the final effluent with 1 gerbil out of 3 inoculated with 250 cysts from reclaimed water showing signs of infection 15 days postinoculation. None of the Cryptosporidium oocysts concentrated from the reclaimed water samples appeared to be infectious.
Collapse
Affiliation(s)
- Debra E Huffman
- University of South Florida, College of Marine Science, St Petersburg 33701, USA.
| | | | | | | | | |
Collapse
|
15
|
Di Giovanni GD, LeChevallier MW. Quantitative-PCR assessment of Cryptosporidium parvum cell culture infection. Appl Environ Microbiol 2005; 71:1495-500. [PMID: 15746352 PMCID: PMC1065146 DOI: 10.1128/aem.71.3.1495-1500.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A quantitative TaqMan PCR method was developed for assessing the Cryptosporidium parvum infection of in vitro cultivated human ileocecal adenocarcinoma (HCT-8) cell cultures. This method, termed cell culture quantitative sequence detection (CC-QSD), has numerous applications, several of which are presented. CC-QSD was used to investigate parasite infection in cell culture over time, the effects of oocyst treatment on infectivity and infectivity assessment of different C. parvum isolates. CC-QSD revealed that cell culture infection at 24 and 48 h postinoculation was approximately 20 and 60%, respectively, of the endpoint 72-h postinoculation infection. Evaluation of three different lots of C. parvum Iowa isolate oocysts revealed that the mean infection of 0.1 N HCl-treated oocysts was only 36% of the infection obtained with oocysts treated with acidified Hanks' balanced salt solution containing 1% trypsin. CC-QSD comparison of the C. parvum Iowa and TAMU isolates revealed significantly higher levels of infection for the TAMU isolate, which agrees with and supports previous human, animal, and cell culture studies. CC-QSD has the potential to aid in the optimization of Cryptosporidium cell culture methods and facilitate quantitative evaluation of cell culture infectivity experiments.
Collapse
|
16
|
Johnson AM, Linden K, Ciociola KM, De Leon R, Widmer G, Rochelle PA. UV inactivation of Cryptosporidium hominis as measured in cell culture. Appl Environ Microbiol 2005; 71:2800-2. [PMID: 15870378 PMCID: PMC1087588 DOI: 10.1128/aem.71.5.2800-2802.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 12/09/2005] [Indexed: 11/20/2022] Open
Abstract
The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be confident about extrapolating C. parvum UV disinfection data to C. hominis oocysts.
Collapse
Affiliation(s)
- Anne M Johnson
- The Metropolitan Water District of Southern California, Water Quality Laboratory, 700 Moreno Avenue, La Verne, CA 91750, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cryptosporidiosis is an important enteric parasitic infection that is associated with significant morbidity and mortality, especially among individuals who are immunosuppressed and infants and children in the developing world. The seroprevalence of this pathogen is high worldwide, suggesting that exposure occurs commonly. The routes of Cryptosporidium spp. transmission are waterborne, food-borne, and occasionally person-to-person. Infected patients can be asymptomatic or develop watery diarrhea and associated enteric symptoms, which are self-limited in immunocompetent persons. In contrast, immunodeficient individuals develop severe, chronic diarrhea that rarely can lead to extra intestinal cryptosporidiosis. Although the diagnosis of Cryptosporidium infection can be established by examining a modified acid-fast stain of stool for the presence of oocysts, enzyme-linked immunoassays are now the diagnostic modalities of choice. Recent clinical trials in pediatric cryptosporidiosis have shown nitazoxanide to be effective therapy.
Collapse
Affiliation(s)
- David B Huang
- Division of Infectious Diseases The University of Texas Medical School and School of Public Health 6431 Fannin, 1.728 JFB Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Cryptosporidiosis is a self-limited diarrheal disease that occurs in the community setting but can be chronic and potentially serious in immunocompromised patients. Community outbreaks are often associated with water-borne transmission. Cryptosporidium research has increased dramatically since the human disease was first recognized in 1976. The present review summarizes recent work in three of the several areas of active Cryptosporidium investigation. RECENT FINDINGS Molecular techniques have revealed that current taxonomic designations need re-evaluation and that humans are host to several Cryptosporidium spp. that were once believed to be limited to the veterinary realm. These findings have important public health implications for water quality standards in the USA and other developed countries. Second, techniques for detecting the parasite in infected individuals (or environmental samples) have progressed from acid-fast staining of fecal smears to the currently used antibody-based systems (enzyme immunoassays and immunofluorescent assays). New molecular methodologies, based on polymerase chain reaction amplification of gene loci, are being developed to improve the sensitivity and specificity for diagnostic and epidemiologic purposes. Third, curative therapy is attained only by an effective immune response or the reconstitution of a failing immune system in the compromised host. However, several drugs are in development, and compounds such as nitazoxanide appear to hold some promise. SUMMARY Cryptosporidiosis continues to be a serious problem in immunocompromised patients and on a worldwide scale in undernourished infants and children. The lack of an effective treatment, and the propensity of the parasite to survive in and be transmitted through source waters make this an important public health threat.
Collapse
Affiliation(s)
- Cynthia L Chappell
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, 77030, USA.
| | | |
Collapse
|
19
|
Rochelle PA, Marshall MM, Mead JR, Johnson AM, Korich DG, Rosen JS, De Leon R. Comparison of in vitro cell culture and a mouse assay for measuring infectivity of Cryptosporidium parvum. Appl Environ Microbiol 2002; 68:3809-17. [PMID: 12147476 PMCID: PMC124000 DOI: 10.1128/aem.68.8.3809-3817.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 05/17/2002] [Indexed: 11/20/2022] Open
Abstract
In vitro cell cultures were compared to neonatal mice for measuring the infectivity of five genotype 2 isolates of Cryptosporidium parvum. Oocyst doses were enumerated by flow cytometry and delivered to animals and cell monolayers by using standardized procedures. Each dose of oocysts was inoculated into up to nine replicates of 9 to 12 mice or 6 to 10 cell culture wells. Infections were detected by hematoxylin and eosin staining in CD-1 mice, by reverse transcriptase PCR in HCT-8 and Caco-2 cells, and by immunofluorescence microscopy in Madin-Darby canine kidney (MDCK) cells. Infectivity was expressed as a logistic transformation of the proportion of animals or cell culture wells that developed infection at each dose. In most instances, the slopes of the dose-response curves were not significantly different when we compared the infectivity models for each isolate. The 50% infective doses for the different isolates varied depending on the method of calculation but were in the range from 16 to 347 oocysts for CD-1 mice and in the ranges from 27 to 106, 31 to 629, and 13 to 18 oocysts for HCT-8, Caco-2, and MDCK cells, respectively. The average standard deviations for the percentages of infectivity for all replicates of all isolates were 13.9, 11.5, 13.2, and 10.7% for CD-1 mice, HCT-8 cells, Caco-2 cells, and MDCK cells, respectively, demonstrating that the levels of variability were similar in all assays. There was a good correlation between the average infectivity for HCT-8 cells and the results for CD-1 mice across all isolates for untreated oocysts (r = 0.85, n = 25) and for oocysts exposed to ozone and UV light (r = 0.89, n = 29). This study demonstrated that in vitro cell culture was equivalent to the "gold standard," mouse infectivity, for measuring the infectivity of C. parvum and should therefore be considered a practical and accurate alternative for assessing oocyst infectivity and inactivation. However, the high levels of variability displayed by all assays indicated that infectivity and disinfection experiments should be limited to discerning relatively large differences.
Collapse
Affiliation(s)
- Paul A Rochelle
- Water Quality Laboratory, Metropolitan Water District of Southern California, La Verne, California 91750, USA.
| | | | | | | | | | | | | |
Collapse
|