1
|
Abu-Elmakarem H, MacLean OA, Venter F, Plenderleith LJ, Culleton RL, Hahn BH, Sharp PM. Remarkable Evolutionary Rate Variations Among Lineages and Among Genome Compartments in Malaria Parasites of Mammals. Mol Biol Evol 2024; 41:msae243. [PMID: 39570730 PMCID: PMC11631195 DOI: 10.1093/molbev/msae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
Genes encoded within organelle genomes often evolve at rates different from those in the nuclear genome. Here, we analyzed the relative rates of nucleotide substitution in the mitochondrial, apicoplast, and nuclear genomes in four different lineages of Plasmodium species (malaria parasites) infecting mammals. The rates of substitution in the three genomes exhibit substantial variation among lineages, with the relative rates of nuclear and mitochondrial DNA being particularly divergent between the Laverania (including Plasmodium falciparum) and Vivax lineages (including Plasmodium vivax). Consideration of synonymous and nonsynonymous substitution rates suggests that their variation is largely due to changes in mutation rates, with constraints on amino acid replacements remaining more similar among lineages. Mitochondrial DNA mutation rate variations among lineages may reflect differences in the long-term average lengths of the sexual and asexual stages of the life cycle. These rate variations have far-reaching implications for the use of molecular clocks to date Plasmodium evolution.
Collapse
Affiliation(s)
- Hend Abu-Elmakarem
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Oscar A MacLean
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Richard L Culleton
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Toon, Ehime, Japan
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Sharp
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Fang J, Xu X, Chen Q, Lin A, Lin S, Lei W, Zhong C, Huang Y, He Y. The complete mitochondrial genome of Isochrysis galbana harbors a unique repeat structure and a specific trans-spliced cox1 gene. Front Microbiol 2022; 13:966219. [PMID: 36238593 PMCID: PMC9551565 DOI: 10.3389/fmicb.2022.966219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The haptophyte Isochrysis galbana is considered as a promising source for food supplements due to its rich fucoxanthin and polyunsaturated fatty acids content. Here, the I. galbana mitochondrial genome (mitogenome) was sequenced using a combination of Illumina and PacBio sequencing platforms. This 39,258 bp circular mitogenome has a total of 46 genes, including 20 protein-coding genes, 24 tRNA genes and two rRNA genes. A large block of repeats (~12.7 kb) was segregated in one region of the mitogenome, accounting for almost one third of the total size. A trans-spliced gene cox1 was first identified in I. galbana mitogenome and was verified by RNA-seq and DNA-seq data. The massive expansion of tandem repeat size and cis- to trans-splicing shift could be explained by the high mitogenome rearrangement rates in haptophytes. Strict SNP calling based on deep transcriptome sequencing data suggested the lack of RNA editing in both organelles in this species, consistent with previous studies in other algal lineages. To gain insight into haptophyte mitogenome evolution, a comparative analysis of mitogenomes within haptophytes and among eight main algal lineages was performed. A core gene set of 15 energy and metabolism genes is present in haptophyte mitogenomes, consisting of 1 cob, 3 cox, 7 nad, 2 atp and 2 ribosomal genes. Gene content and order was poorly conserved in this lineage. Haptophyte mitogenomes have lost many functional genes found in many other eukaryotes including rps/rpl, sdh, tat, secY genes, which make it contain the smallest gene set among all algal taxa. All these implied the rapid-evolving and more recently evolved mitogenomes of haptophytes compared to other algal lineages. The phylogenetic tree constructed by cox1 genes of 204 algal mitogenomes yielded well-resolved internal relationships, providing new evidence for red-lineages that contained plastids of red algal secondary endosymbiotic origin. This newly assembled mitogenome will add to our knowledge of general trends in algal mitogenome evolution within haptophytes and among different algal taxa.
Collapse
Affiliation(s)
- Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiuming Xu
- College of Life Science, Fujian Normal University, Fuzhou, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qinchang Chen
- College of Life Science, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Aiting Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoqing Lin
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wen Lei
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Cairong Zhong
- College of Life Science, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Yongji Huang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
3
|
Kao T, Wang T, Ku C. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae. THE NEW PHYTOLOGIST 2022; 235:1394-1408. [PMID: 35556250 PMCID: PMC9539906 DOI: 10.1111/nph.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Incongruent phylogenies have been widely observed between nuclear and plastid or mitochondrial genomes in terrestrial plants and animals. However, few studies have examined these patterns in microalgae or the discordance between the two organelles. Here we investigated the nuclear-mitochondrial-plastid phylogenomic incongruence in Emiliania-Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous populations and recent speciations. We assembled mitochondrial and plastid genomes of 27 strains from across global oceans and temperature regimes, and analyzed the phylogenomic histories of the three compartments using concatenation and coalescence methods. Six major clades with varying morphology and distribution are well recognized in the nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phylogenies, which also differ substantially from each other. The rampant phylogenomic discordance is due to a combination of organellar capture (introgression), organellar genome recombination, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridization can lead to replacements of whole organellar genomes without introgression of nuclear genes and the two organelles are not inherited as a single cytoplasmic unit. This study illustrates the convoluted evolution and inheritance of organellar genomes in isogamous haplodiplontic microalgae and provides a window into the phylogenomic complexity of marine unicellular eukaryotes.
Collapse
Affiliation(s)
- Tzu‐Tong Kao
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Tzu‐Haw Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
4
|
Song H, Chen Y, Liu F, Chen N. Large Differences in the Haptophyte Phaeocystis globosa Mitochondrial Genomes Driven by Repeat Amplifications. Front Microbiol 2021; 12:676447. [PMID: 34276607 PMCID: PMC8283788 DOI: 10.3389/fmicb.2021.676447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
The haptophyte Phaeocystis globosa is a well-known species for its pivotal role in global carbon and sulfur cycles and for its capability of forming harmful algal blooms (HABs) with serious ecological consequences. Its mitochondrial genome (mtDNA) sequence has been reported in 2014 but it remains incomplete due to its long repeat sequences. In this study, we constructed the first full-length mtDNA of P. globosa, which was a circular genome with a size of 43,585 bp by applying the PacBio single molecular sequencing method. The mtDNA of this P. globosa strain (CNS00066), which was isolated from the Beibu Gulf, China, encoded 19 protein-coding genes (PCGs), 25 tRNA genes, and two rRNA genes. It contained two large repeat regions of 6.7 kb and ∼14.0 kb in length, respectively. The combined length of these two repeat regions, which were missing from the previous mtDNA assembly, accounted for almost half of the entire mtDNA and represented the longest repeat region among all sequenced haptophyte mtDNAs. In this study, we tested the hypothesis that repeat unit amplification is a driving force for different mtDNA sizes. Comparative analysis of mtDNAs of five additional P. globosa strains (four strains obtained in this study, and one strain previously published) revealed that all six mtDNAs shared identical numbers of genes but with dramatically different repeat regions. A homologous repeat unit was identified but with hugely different numbers of copies in all P. globosa strains. Thus, repeat amplification may represent an important driving force of mtDNA evolution in P. globosa.
Collapse
Affiliation(s)
- Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,School of Earth and Planetary, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Krasovec M, Sanchez-Brosseau S, Piganeau G. First Estimation of the Spontaneous Mutation Rate in Diatoms. Genome Biol Evol 2020; 11:1829-1837. [PMID: 31218358 PMCID: PMC6604790 DOI: 10.1093/gbe/evz130] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Mutations are the origin of genetic diversity, and the mutation rate is a fundamental parameter to understand all aspects of molecular evolution. The combination of mutation-accumulation experiments and high-throughput sequencing enabled the estimation of mutation rates in most model organisms, but several major eukaryotic lineages remain unexplored. Here, we report the first estimation of the spontaneous mutation rate in a model unicellular eukaryote from the Stramenopile kingdom, the diatom Phaeodactylum tricornutum (strain RCC2967). We sequenced 36 mutation accumulation lines for an average of 181 generations per line and identified 156 de novo mutations. The base substitution mutation rate per site per generation is μbs = 4.77 × 10-10 and the insertion-deletion mutation rate is μid = 1.58 × 10-11. The mutation rate varies as a function of the nucleotide context and is biased toward an excess of mutations from GC to AT, consistent with previous observations in other species. Interestingly, the mutation rates between the genomes of organelles and the nucleus differ, with a significantly higher mutation rate in the mitochondria. This confirms previous claims based on indirect estimations of the mutation rate in mitochondria of photosynthetic eukaryotes that acquired their plastid through a secondary endosymbiosis. This novel estimate enables us to infer the effective population size of P. tricornutum to be Ne∼8.72 × 106.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Gwenael Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France.,Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat Commun 2019; 10:4234. [PMID: 31530807 PMCID: PMC6748936 DOI: 10.1038/s41467-019-12169-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/22/2019] [Indexed: 11/10/2022] Open
Abstract
Phytoplankton account for nearly half of global primary productivity and strongly affect the global carbon cycle, yet little is known about the forces that drive the evolution of these keystone microscopic organisms. Here we combine morphometric data from the fossil record of the ubiquitous coccolithophore genus Gephyrocapsa with genomic analyses of extant species to assess the genetic processes underlying Pleistocene palaeontological patterns. We demonstrate that all modern diversity in Gephyrocapsa (including Emiliania huxleyi) originated in a rapid species radiation during the last 0.6 Ma, coincident with the latest of the three pulses of Gephyrocapsa diversification and extinction documented in the fossil record. Our evolutionary genetic analyses indicate that new species in this genus have formed in sympatry or parapatry, with occasional hybridisation between species. This sheds light on the mode of speciation during evolutionary radiation of marine phytoplankton and provides a model of how new plankton species form. The phytoplankton Gephyrocapsa have gone through repeated macroevolutionary shifts in size. Here, Bendif et al. combine fossil and genomic data to show the latest shift was coincident with a species radiation and suggest that previous shifts have also resulted from cycles of radiation and extinction.
Collapse
|
7
|
Grisdale CJ, Smith DR, Archibald JM. Relative Mutation Rates in Nucleomorph-Bearing Algae. Genome Biol Evol 2019; 11:1045-1053. [PMID: 30859201 PMCID: PMC6456004 DOI: 10.1093/gbe/evz056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/23/2022] Open
Abstract
Chlorarachniophyte and cryptophyte algae are unique among plastid-containing species in that they have a nucleomorph genome: a compact, highly reduced nuclear genome from a photosynthetic eukaryotic endosymbiont. Despite their independent origins, the nucleomorph genomes of these two lineages have similar genomic architectures, but little is known about the evolutionary pressures impacting nucleomorph DNA, particularly how their rates of evolution compare to those of the neighboring genetic compartments (the mitochondrion, plastid, and nucleus). Here, we use synonymous substitution rates to estimate relative mutation rates in the four genomes of nucleomorph-bearing algae. We show that the relative mutation rates of the host versus endosymbiont nuclear genomes are similar in both chlorarachniophytes and cryptophytes, despite the fact that nucleomorph gene sequences are notoriously highly divergent. There is some evidence, however, for slightly elevated mutation rates in the nucleomorph DNA of chlorarachniophytes-a feature not observed in that of cryptophytes. For both lineages, relative mutation rates in the plastid appear to be lower than those in the nucleus and nucleomorph (and, in one case, the mitochondrion), which is consistent with studies of other plastid-bearing protists. Given the divergent nature of nucleomorph genes, our finding of relatively low evolutionary rates in these genomes suggests that for both lineages a burst of evolutionary change and/or decreased selection pressures likely occurred early in the integration of the secondary endosymbiont.
Collapse
Affiliation(s)
- Cameron J Grisdale
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Hovde BT, Deodato CR, Andersen RA, Starkenburg SR, Barlow SB, Cattolico RA. Chrysochromulina: Genomic assessment and taxonomic diagnosis of the type species for an oleaginous algal clade. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Smith DR. The mutational hazard hypothesis of organelle genome evolution: 10 years on. Mol Ecol 2016; 25:3769-75. [PMID: 27357487 DOI: 10.1111/mec.13742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/14/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Why is there such a large variation in size and noncoding DNA content among organelle genomes? One explanation is that this genomic variation results from differences in the rates of organelle mutation and random genetic drift, as opposed to being the direct product of natural selection. Along these lines, the mutational hazard hypothesis (MHH) holds that 'excess' DNA is a mutational liability (because it increases the potential for harmful mutations) and, thus, has a greater tendency to accumulate in an organelle system with a low mutation rate as opposed to one with a high rate of mutation. Various studies have explored this hypothesis and, more generally, the relationship between organelle genome architecture and the mode and efficiency of organelle DNA repair. Although some of these investigations are in agreement with the MHH, others have contradicted it; nevertheless, they support a central role of mutation, DNA maintenance pathways and random genetic drift in fashioning organelle chromosomes. Arguably, one of the most important contributions of the MHH is that it has sparked crucial, widespread discussions about the importance of nonadaptive processes in genome evolution.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
10
|
Ness RW, Kraemer SA, Colegrave N, Keightley PD. Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in theChlamydomonas reinhardtiiPlastid Genome. Mol Biol Evol 2015; 33:800-8. [DOI: 10.1093/molbev/msv272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Schmidt M, Horn S, Ehlers K, Wilhelm C, Schnetter R. Guanchochroma wildpretii gen. et spec. nov. (Ochrophyta) Provides New Insights into the Diversification and Evolution of the Algal Class Synchromophyceae. PLoS One 2015; 10:e0131821. [PMID: 26135124 PMCID: PMC4489749 DOI: 10.1371/journal.pone.0131821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/06/2015] [Indexed: 12/04/2022] Open
Abstract
A new relative of the chrysophyte genus Chrysopodocystis was found in Tenerife and termed Guanchochroma wildpretii. This unicellular alga was most noticeably discernible from Chrysopodocystis socialis (the only species of this genus) by the presence of a cyst-like stage with a multilayered lorica, which also functions as a dispersal unit and shows secondary wall growth. Secondary expansion of loricae (cell casings not involved in cell division, usually with a more or less pronounced opening) has never been observed previously and marks a unique feature of the new taxon. Plastids are non-randomly distributed within cells of G. wildpretii. 18S rRNA gene analyses identified the two species as sister lineages and placed them in a monophyletic group with the Synchromophyceae, a heterokont algal (Ochrophyta) class characterized by the presence of chloroplast complexes. Yet, neither Chrysopodocystis nor Guanchochroma showed this feature in ultrastructure analyses. Additionally, their 18S rRNA genes possessed distinct inserts, the highest GC-content known for Ochrophyta and exceptionally long branches on the Ochrophyta 18S rDNA phylogenetic tree, suggesting substantially increased substitution rates along their branch compared to Synchromophyceae. Plastid marker data (rbcL) recovered a monophyletic clade of Chrysopodocystis, Guanchochroma and Synchromophyceae as well, yet with lower supports for internal split order due to limited resolution of the marker. Evidence for the sequence of events leading to the formation of the plastid complex of Synchromophyceae still remains ambiguous because of the apparently short timeframe in which they occurred.
Collapse
Affiliation(s)
- Maria Schmidt
- Universität Leipzig, Department of Plant Physiology, Johannisallee 21–23, 04103 Leipzig, Germany
- * E-mail:
| | - Susanne Horn
- Universitätsklinikum Essen, Klinik für Dermatologie, Forschungslabor, Hufelandstr. 55, 45447 Essen, Germany
| | - Katrin Ehlers
- Justus-Liebig-Universität Gießen, Institut für Botanik, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| | - Christian Wilhelm
- Universität Leipzig, Department of Plant Physiology, Johannisallee 21–23, 04103 Leipzig, Germany
| | - Reinhard Schnetter
- Justus-Liebig-Universität Gießen, Institut für Botanik, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| |
Collapse
|
12
|
Abstract
Within plastid-bearing species, the mutation rate of the plastid genome is often assumed to be greater than that of the mitochondrial genome. This assumption is based on early, pioneering studies of land plant molecular evolution, which uncovered higher rates of synonymous substitution in plastid versus mitochondrial DNAs. However, much of the plastid-containing eukaryotic diversity falls outside of land plants, and the patterns of plastid DNA evolution for embryophytes do not necessarily reflect those of other groups. Recent analyses of plastid and mitochondrial substitution rates in diverse lineages have uncovered very different trends than those recorded for land plants. Here, I explore these new data and argue that for many protists the plastid mutation rate is lower than that of the mitochondrion, including groups with primary or secondary plastids as well as nonphotosynthetic algae. These findings have far-reaching implications for how we view plastid genomes and how their sequences are used for evolutionary analyses, and might ultimately reflect a general tendency toward more efficient DNA repair mechanisms in plastids than in mitochondria.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 2015; 112:10177-84. [PMID: 25814499 DOI: 10.1073/pnas.1422049112] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial and plastid genomes show a wide array of architectures, varying immensely in size, structure, and content. Some organelle DNAs have even developed elaborate eccentricities, such as scrambled coding regions, nonstandard genetic codes, and convoluted modes of posttranscriptional modification and editing. Here, we compare and contrast the breadth of genomic complexity between mitochondrial and plastid chromosomes. Both organelle genomes have independently evolved many of the same features and taken on similar genomic embellishments, often within the same species or lineage. This trend is most likely because the nuclear-encoded proteins mediating these processes eventually leak from one organelle into the other, leading to a high likelihood of processes appearing in both compartments in parallel. However, the complexity and intensity of genomic embellishments are consistently more pronounced for mitochondria than for plastids, even when they are found in both compartments. We explore the evolutionary forces responsible for these patterns and argue that organelle DNA repair processes, mutation rates, and population genetic landscapes are all important factors leading to the observed convergence and divergence in organelle genome architecture.
Collapse
|
14
|
Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, Chertkov O, Monnat RJ, Cattolico RA. The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genomics 2014; 15:604. [PMID: 25034814 PMCID: PMC4226036 DOI: 10.1186/1471-2164-15-604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Haptophytes are widely and abundantly distributed in both marine and freshwater ecosystems. Few genomic analyses of representatives within this taxon have been reported, despite their early evolutionary origins and their prominent role in global carbon fixation. RESULTS The complete mitochondrial and chloroplast genome sequences of the haptophyte Chrysochromulina tobin (Prymnesiales) provide insight into the architecture and gene content of haptophyte organellar genomes. The mitochondrial genome (~34 kb) encodes 21 protein coding genes and contains a complex, 9 kb tandem repeat region. Similar to other haptophytes and rhodophytes, but not cryptophytes or stramenopiles, the mitochondrial genome has lost the nad7, nad9 and nad11 genes. The ~105 kb chloroplast genome encodes 112 protein coding genes, including ycf39 which has strong structural homology to NADP-binding nitrate transcriptional regulators; a divergent 'CheY-like' two-component response regulator (ycf55) and Tic/Toc (ycf60 and ycf80) membrane transporters. Notably, a zinc finger domain has been identified in the rpl36 ribosomal protein gene of all chloroplasts sequenced to date with the exception of haptophytes and cryptophytes--algae that have gained (via lateral gene transfer) an alternative rpl36 lacking the zinc finger motif. The two C. tobin chloroplast ribosomal RNA operon spacer regions differ in tRNA content. Additionally, each ribosomal operon contains multiple single nucleotide polymorphisms (SNPs)--a pattern observed in rhodophytes and cryptophytes, but few stramenopiles. Analysis of small (<200 bp) chloroplast encoded tandem and inverted repeats in C. tobin and 78 other algal chloroplast genomes show that repeat type, size and location are correlated with gene identity and taxonomic clade. CONCLUSION The Chrysochromulina tobin organellar genomes provide new insight into organellar function and evolution. These are the first organellar genomes to be determined for the prymnesiales, a taxon that is present in both oceanic and freshwater systems and represents major primary photosynthetic producers and contributors to global ecosystem stability.
Collapse
|
15
|
Smith DR, Jackson CJ, Reyes-Prieto A. Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida. Mol Phylogenet Evol 2014; 79:380-4. [PMID: 25017510 DOI: 10.1016/j.ympev.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
A lot is known about the evolution and architecture of plastid, mitochondrial, and nuclear genomes, but surprisingly little is known about their relative rates of mutation. Most available relative-rate data come from seed plants, which, with few exceptions, have a mitochondrial mutation rate that is lower than those of the plastid and nucleus. But new findings from diverse plastid-bearing lineages have shown that for some eukaryotes the mitochondrial mutation rate is an order of magnitude greater than those of the plastid and nucleus. Here, we explore for the first time relative rates of mutation within the Glaucophyta-one of three main lineages that make up the Archaeplastida (or Plantae sensu lato). Nucleotide substitution analyses from distinct isolates of the unicellular glaucophyte Cyanophora paradoxa reveal 4-5-fold lower rates of mutation in the plastid and nucleus than the mitochondrion, which is similar to the mutational pattern observed in red algae and haptophytes, but opposite to that of seed plants. These data, together with data from previous reports, suggest that for much of the known photosynthetic eukaryotic diversity, plastid DNA mutations occur less frequently than those in mitochondrial DNA.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada.
| | - Christopher J Jackson
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Canada
| |
Collapse
|
16
|
Nishimura Y, Kamikawa R, Hashimoto T, Inagaki Y. An intronic open reading frame was released from one of group II introns in the mitochondrial genome of the haptophyte Chrysochromulina sp. NIES-1333. Mob Genet Elements 2014; 4:e29384. [PMID: 25054084 PMCID: PMC4091101 DOI: 10.4161/mge.29384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial (mt) genome sequences, which often bear introns, have been sampled from phylogenetically diverse eukaryotes. Thus, we can anticipate novel insights into intron evolution from previously unstudied mt genomes. We here investigated the origins and evolution of three introns in the mt genome of the haptophyte Chrysochromulina sp. NIES-1333, which was sequenced completely in this study. All the three introns were characterized as group II, on the basis of predicted secondary structure, and the conserved sequence motifs at the 5′ and 3′ termini. Our comparative studies on diverse mt genomes prompt us to propose that the Chrysochromulina mt genome laterally acquired the introns from mt genomes in distantly related eukaryotes. Many group II introns harbor intronic open reading frames for the proteins (intron-encoded proteins or IEPs), which likely facilitate the splicing of their host introns. However, we propose that a “free-standing,” IEP-like protein, which is not encoded within any introns in the Chrysochromulina mt genome, is involved in the splicing of the first cox1 intron that lacks any open reading frames.
Collapse
Affiliation(s)
- Yuki Nishimura
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan ; Graduate School of Systems and Information Engineering; University of Tsukuba; Tsukuba, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies; Kyoto University; Kyoto, Japan ; Graduate School of Global Environmental Studies; Kyoto University; Kyoto, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan ; Center for Computational Sciences; University of Tsukuba; Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan ; Center for Computational Sciences; University of Tsukuba; Tsukuba, Japan
| |
Collapse
|
17
|
Pochon X, Putnam HM, Gates RD. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ 2014; 2:e394. [PMID: 24883254 PMCID: PMC4034598 DOI: 10.7717/peerj.394] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/03/2014] [Indexed: 11/20/2022] Open
Abstract
Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has been historically constrained by the limited number of molecular markers available to study evolution in the genus. Here we compare six functional genes, representing three cellular compartments, in the nine known Symbiodinium lineages. Despite striking similarities among the single gene phylogenies from distinct organelles, none were evolutionarily identical. A fully concatenated reconstruction, however, yielded a well-resolved topology identical to the current benchmark nr28S gene. Evolutionary rates differed among cellular compartments and clades, a pattern largely driven by higher rates of evolution in the chloroplast genes of Symbiodinium clades D2 and I. The rapid rates of evolution observed amongst these relatively uncommon Symbiodinium lineages in the functionally critical chloroplast may translate into potential innovation for the symbiosis. The multi-gene analysis highlights the potential power of assessing genome-wide evolutionary patterns using recent advances in sequencing technology and emphasizes the importance of integrating ecological data with more comprehensive sampling of free-living and symbiotic Symbiodinium in assessing the evolutionary adaptation of this enigmatic dinoflagellate.
Collapse
Affiliation(s)
- Xavier Pochon
- Environmental Technologies, Cawthron Institute , Nelson , New Zealand
| | - Hollie M Putnam
- University of Hawaii, Hawaii Institute of Marine Biology , Kaneohe, HI , USA
| | - Ruth D Gates
- University of Hawaii, Hawaii Institute of Marine Biology , Kaneohe, HI , USA
| |
Collapse
|
18
|
Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Mol Phylogenet Evol 2014; 71:36-40. [DOI: 10.1016/j.ympev.2013.10.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 01/11/2023]
|
19
|
Bendif EM, Probert I, Carmichael M, Romac S, Hagino K, de Vargas C. Genetic delineation between and within the widespread coccolithophore morpho-species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta). JOURNAL OF PHYCOLOGY 2014; 50:140-8. [PMID: 26988015 DOI: 10.1111/jpy.12147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 10/13/2013] [Indexed: 05/26/2023]
Abstract
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho-species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal-cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho-species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho-species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho-species delineation was achieved with mitochondrial markers and common intra-morpho-species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho-species, in particular in the context of environmental monitoring.
Collapse
Affiliation(s)
- El Mahdi Bendif
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Ian Probert
- CNRS/UPMC, FR2424, Station Biologique de Roscoff, Roscoff, 29682, France
| | - Margaux Carmichael
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
| | - Sarah Romac
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
| | - Kyoko Hagino
- Institute for Study of the Earth's Interior Okayama University, 827 Yamada, Misasa, Tottori, 682-0193, Japan
| | - Colomban de Vargas
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
| |
Collapse
|
20
|
Abstract
Recently, it was shown that gene conversion between the ends of linear mitochondrial chromosomes can cause telomere expansion and the duplication of subtelomeric loci. However, it is not yet known how widespread this phenomenon is and how significantly it has impacted organelle genome architecture. Using linear mitochondrial DNAs and mitochondrial plasmids from diverse eukaryotes, we argue that telomeric recombination has played a major role in fashioning linear organelle chromosomes. We find that mitochondrial telomeres frequently expand into subtelomeric regions, resulting in gene duplications, homogenizations, and/or fragmentations. We suggest that these features are a product of subtelomeric gene conversion, provide a hypothetical model for this process, and employ genetic diversity data to support the idea that the greater the effective population size the greater the potential for gene conversion between subtelomeric loci.
Collapse
Affiliation(s)
- David Roy Smith
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
21
|
Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture. Mol Phylogenet Evol 2012; 65:339-44. [PMID: 22760027 DOI: 10.1016/j.ympev.2012.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/08/2012] [Accepted: 06/18/2012] [Indexed: 11/22/2022]
Abstract
In photosynthetic eukaryotes, relative silent-site nucleotide substitution rates (which can be used to approximate relative mutation rates) among mitochondrial, plastid, and nuclear genomes (mtDNAs, ptDNAs, and nucDNAs) are estimated to be 1:3:10 respectively for seed plants and roughly equal for green algae. These estimates correlate with certain genome characteristics, such as size and coding density, and have therefore been taken to support a relationship between mutation rate and genome architecture. Plants and green algae, however, represent a small fraction of the major eukaryotic plastid-bearing lineages. Here, we investigate relative rates of mutation within the model red algal genus Porphyra. In contrast to plants, we find that the levels of silent-site divergence between the Porphyra purpurea and Porphyra umbilicalis mtDNAs are three times that of their ptDNAs and five times that of their nucDNAs. Moreover, relative mutation rates do not correlate with genome architecture: despite an estimated three-fold difference in their mutation rate, the mitochondrial and plastid genome coding densities are equivalent - an observation that extends to organisms with secondary red algal plastids. These findings are supported by within-species silent-site polymorphism data from P. purpurea.
Collapse
|