1
|
Cosentino C, Armas C. Tacrolimus-induced Parkinsonism. J Neurol 2024; 272:3. [PMID: 39621156 DOI: 10.1007/s00415-024-12775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 01/31/2025]
Affiliation(s)
- Carlos Cosentino
- Movement Disorders Unit, Instituto Nacional de Ciencias Neurológicas, Ancash, 1271, Lima 1, Peru.
- School of Medicine of Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Cintia Armas
- Movement Disorders Unit, Instituto Nacional de Ciencias Neurológicas, Ancash, 1271, Lima 1, Peru
| |
Collapse
|
2
|
Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, Todi SK, Mohan A, Hegde A, Jagiasi BG, Krishna B, Rodrigues C, Govil D, Pal D, Divatia JV, Sengar M, Gupta M, Desai M, Rungta N, Prayag PS, Bhattacharya PK, Samavedam S, Dixit SB, Sharma S, Bandopadhyay S, Kola VR, Deswal V, Mehta Y, Singh YP, Myatra SN. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024; 28:S104-S216. [PMID: 39234229 PMCID: PMC11369928 DOI: 10.5005/jp-journals-10071-24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 09/06/2024] Open
Abstract
How to cite this article: Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, et al. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024;28(S2):S104-S216.
Collapse
Affiliation(s)
- Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, University of Health Sciences, Rohtak, Haryana, India
| | - Kapil G Zirpe
- Department of Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Subhash K Todi
- Department of Critical Care, AMRI Hospital, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Ashit Hegde
- Department of Medicine & Critical Care, P D Hinduja National Hospital, Mumbai, India
| | - Bharat G Jagiasi
- Department of Critical Care, Kokilaben Dhirubhai Ambani Hospital, Navi Mumbai, Maharashtra, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, India
| | - Camila Rodrigues
- Department of Microbiology, P D Hinduja National Hospital, Mumbai, India
| | - Deepak Govil
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Divya Pal
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Jigeeshu V Divatia
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mukesh Desai
- Department of Immunology, Pediatric Hematology and Oncology Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Narendra Rungta
- Department of Critical Care & Anaesthesiology, Rajasthan Hospital, Jaipur, India
| | - Parikshit S Prayag
- Department of Transplant Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Pradip K Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Srinivas Samavedam
- Department of Critical Care, Ramdev Rao Hospital, Hyderabad, Telangana, India
| | - Subhal B Dixit
- Department of Critical Care, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Sudivya Sharma
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Susruta Bandopadhyay
- Department of Critical Care, AMRI Hospitals Salt Lake, Kolkata, West Bengal, India
| | - Venkat R Kola
- Department of Critical Care Medicine, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Vikas Deswal
- Consultant, Infectious Diseases, Medanta - The Medicity, Gurugram, Haryana, India
| | - Yatin Mehta
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Yogendra P Singh
- Department of Critical Care, Max Super Speciality Hospital, Patparganj, New Delhi, India
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Velleca A, Shullo MA, Dhital K, Azeka E, Colvin M, DePasquale E, Farrero M, García-Guereta L, Jamero G, Khush K, Lavee J, Pouch S, Patel J, Michaud CJ, Shullo M, Schubert S, Angelini A, Carlos L, Mirabet S, Patel J, Pham M, Urschel S, Kim KH, Miyamoto S, Chih S, Daly K, Grossi P, Jennings D, Kim IC, Lim HS, Miller T, Potena L, Velleca A, Eisen H, Bellumkonda L, Danziger-Isakov L, Dobbels F, Harkess M, Kim D, Lyster H, Peled Y, Reinhardt Z. The International Society for Heart and Lung Transplantation (ISHLT) Guidelines for the Care of Heart Transplant Recipients. J Heart Lung Transplant 2022; 42:e1-e141. [PMID: 37080658 DOI: 10.1016/j.healun.2022.10.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
4
|
Velleca A, Shullo MA, Dhital K, Azeka E, Colvin M, DePasquale E, Farrero M, García-Guereta L, Jamero G, Khush K, Lavee J, Pouch S, Patel J, Michaud CJ, Shullo M, Schubert S, Angelini A, Carlos L, Mirabet S, Patel J, Pham M, Urschel S, Kim KH, Miyamoto S, Chih S, Daly K, Grossi P, Jennings D, Kim IC, Lim HS, Miller T, Potena L, Velleca A, Eisen H, Bellumkonda L, Danziger-Isakov L, Dobbels F, Harkess M, Kim D, Lyster H, Peled Y, Reinhardt Z. The International Society for Heart and Lung Transplantation (ISHLT) Guidelines for the Care of Heart Transplant Recipients. J Heart Lung Transplant 2022. [DOI: 10.1016/j.healun.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Marín-Díez E, Drake-Pérez M, Valle-San Román N, Mora Cuesta VM, Hernández-Hernández MÁ, Marco de Lucas E. Imaging findings of neurologic complications in lung transplantation: Review of a 9-year cohort. Acta Radiol Open 2021; 10:20584601211038721. [PMID: 34631151 PMCID: PMC8493320 DOI: 10.1177/20584601211038721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background Lung transplantation (LT) requires complex multidisciplinary organization and constitutes a therapeutic option and a life-saving procedure. Although the number of lung recipients continues to increase, neurological complications and death rates following lung transplantation are still higher than desirable. Purpose This study aims to analyse the neuroimaging findings in a cohort of adult patients with LT. Material and Methods A retrospective cohort study of all lung transplant recipients (344 patients: 205 men and 139 women) at a single institution from January 2011 to January 2020. The collected data included demographic features, clinical data and evaluation of the imaging findings. We also recorded the date of neurological complication(s) and the underlying disease motivating lung transplantation. Results We found an elevated rate of neuroimaging findings in patients following LT with 32.6% of positive studies. In our cohort, the average time after LT to a neurological complication was 4.9 months post-transplant. Encephalopathy, critical illness polyneuropathy and stroke, in that order, were the most frequent neurological complications. Structural abnormalities in brain imaging were more often detected using MRI than CT for indications of encephalopathy and seizures. Conclusions LT recipients constitute an especially vulnerable group that needs close surveillance, mainly during the early post-transplant period.
Collapse
Affiliation(s)
- Elena Marín-Díez
- Department of Radiology, Marquis of Valdecilla University Hospital, Santander, Spain
| | - Marta Drake-Pérez
- Department of Radiology, Marquis of Valdecilla University Hospital, Santander, Spain
| | | | | | | | | |
Collapse
|
6
|
Vinnakota JM, Zeiser R. Acute Graft- Versus-Host Disease, Infections, Vascular Events and Drug Toxicities Affecting the Central Nervous System. Front Immunol 2021; 12:748019. [PMID: 34691059 PMCID: PMC8527894 DOI: 10.3389/fimmu.2021.748019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for patients with hematological malignancies. Acute Graft versus host diseases (GVHD) is a major immune mediated side effect of allo-HCT that can affect the central nervous system (CNS) in addition to post-allo-HCT vascular events, drug toxicity or infections. Here we summarize and discuss recent preclinical data on the CNS as a target of acute GVHD and the known mechanisms contributing to neurotoxicity with a focus on microglia and T cells. We also discuss open questions in the field and place the findings made in mouse models in a clinical context. While in mice the neurological deficits can be assessed in a controlled fashion, in patients the etiology of the CNS damage is difficult to attribute to acute GVHD versus infections, vascular events, and drug-induced toxicity. Ultimately, we discuss novel therapies for GVHD of the CNS. Our understanding of the biological mechanisms that lead to neurotoxicity after allo-HCT increased over the last decade. This review provides insights into CNS manifestations of GVHD versus other etiologies of CNS damage in mice and patients.
Collapse
Affiliation(s)
- Janaki Manoja Vinnakota
- Department of Medicine I - Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Shin YJ, Lim SW, Cui S, Ko EJ, Chung BH, Kim HL, Riew TR, Lee MY, Yang CW. Tacrolimus Decreases Cognitive Function by Impairing Hippocampal Synaptic Balance: a Possible Role of Klotho. Mol Neurobiol 2021; 58:5954-5970. [PMID: 34435330 DOI: 10.1007/s12035-021-02499-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
The influence of long-term tacrolimus treatment on cognitive function remains to be elucidated. Using a murine model of chronic tacrolimus neurotoxicity, we evaluated the effects of tacrolimus on cognitive function, synaptic balance, its regulating protein (Klotho), and oxidative stress in the hippocampus. Compared to vehicle-treated mice, tacrolimus-treated mice showed significantly decreased hippocampal-dependent spatial learning and memory function. Furthermore, tacrolimus caused synaptic imbalance, as demonstrated by decreased excitatory synapses and increased inhibitory synapses, and downregulated Klotho in a dose-dependent manner; the downregulation of Klotho was localized to excitatory hippocampal synapses. Moreover, tacrolimus increased oxidative stress and was associated with activation of the PI3K/AKT pathway in the hippocampus. These results indicate that tacrolimus impairs cognitive function via synaptic imbalance, and that these processes are associated with Klotho downregulation at synapses through tacrolimus-induced oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Yoo Jin Shin
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
- Transplant Research Center, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
- Transplant Research Center, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sheng Cui
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
- Transplant Research Center, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Eun Jeong Ko
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
- Transplant Research Center, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
- Transplant Research Center, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Tae Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Mun Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
- Transplant Research Center, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
8
|
Aksoy F, Dundar HZ, Bican Demir A, Kiyici M, Kaya E. Myelitis After Liver Transplant: A Case Report. EXP CLIN TRANSPLANT 2021. [PMID: 34085919 DOI: 10.6002/ect.2020.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report a case of neurotoxicity as a side effect of a calcineurin inhibitor (tacrolimus), which is used as an immunosuppressive drug after liver transplant. Our patient had chronic hepatic failure due to Budd-Chiari syndrome and underwent a liver transplant after an appropriate deceased donor organ was obtained. After organ transplant surgery, he was kept under the effect of an immunosuppressive drug (tacrolimus) with daily control of the level of drug in his blood to avoid drug toxicity. Despite the level of drug in his blood being within the ideal range, the patient developed neurotoxicity that presented as weakness of his extremities. Appropriate diagnostic tests were done, and all proved that these signs and symptoms were related to the use of tacrolimus. Therefore, the drug was changed to cyclosporine. After a few months, the patient regained normal neurological functions of his extremities. We should take precautions to monitor neurological symptoms and signs while we administer calcineurin inhibitors.
Collapse
Affiliation(s)
- Fuat Aksoy
- From the Department of General Surgery, Bursa Uludag University, Bursa, Turkey
| | | | | | | | | |
Collapse
|
9
|
Lokhandwala S, Sendowski M, Grafe M, Rakita RM, Kapnadak SG. Progressive Behavior Changes and Brain Lesions in a Lung Transplant Recipient. Clin Infect Dis 2020; 68:887-889. [PMID: 30766993 DOI: 10.1093/cid/ciy404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sharukh Lokhandwala
- Divison of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle.,Divison of Epidemiology, University of Washington School of Public Health, Seattle
| | | | - Marjorie Grafe
- Division of Neuropathology, Oregon Health and Science University, Portland
| | - Robert M Rakita
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle
| | - Siddhartha G Kapnadak
- Divison of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle
| |
Collapse
|
10
|
Influence of Tacrolimus on Depressive-Like Behavior in Diabetic Rats Through Brain-Derived Neurotrophic Factor Regulation in the Hippocampus. Neurotox Res 2019; 36:396-410. [PMID: 31201731 DOI: 10.1007/s12640-019-00062-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
The neurotoxicity of immunosuppressive agents and diabetes mellitus are known risk factors of neurological complications in kidney transplant recipients. The aim of the present study was to investigate the influence of tacrolimus on brain-derived neurotrophic factor (BDNF), the critical protein for maintenance of neuronal functions, in the hippocampus in a diabetic condition. A diabetic rat model was established by a single streptozotocin injection (60 mg/kg). Control and diabetic rats then received daily tacrolimus (1.5 mg/kg per day) injections for 6 weeks. BDNF expression in the hippocampus was examined in the dentate gyrus (DG) and CA3 region using immunohistochemistry. There was a significant decrease of BDNF expression in the DG and CA3 region in tacrolimus-treated and diabetic rats compared with that of the control group injected with vehicle only. However, there was no difference in BDNF expression between the two experimental groups. Tacrolimus treatment in diabetic rats further decreased the BDNF expression level in the DG and CA3 region. Interestingly, mossy fiber sprouting, demonstrated by prominent punctate immunolabeling of BDNF with synaptoporin, was observed in the diabetic group treated with tacrolimus, which localized at the stratum oriens of the CA3 region. These data suggest that tacrolimus treatment or a diabetic condition decreases BDNF expression in the hippocampus, and that tacrolimus treatment in the diabetic condition further injures the CA3 region of the hippocampus. In addition to BDNF expression, decreased locomotor activity and evident depressive behavior were observed in tacrolimus-treated diabetic rats. Moreover, there were significant decreases of the mRNA levels of γ-aminobutyric acid and serotonin receptors in the diabetic hippocampus with tacrolimus treatment. This finding suggests that tacrolimus treatment may cause further psychiatric and neurological complications for patients with diabetes, and should thus be used with caution.
Collapse
|
11
|
Kulkarni, AP, Sengar, M, Chinnaswamy, G, Hegde, A, Rodrigues, C, Soman, R, Khilnani, GC, Ramasubban, S, Desai, M, Pandit, R, Khasne, R, Shetty, A, Gilada, T, Bhosale, S, Kothekar, A, Dixit, S, Zirpe, K, Mehta, Y, Pulinilkunnathil, JG, Bhagat, V, Khan, MS, Narkhede, AM, Baliga, N, Ammapalli, S, Bamne, S, Turkar, S, K, VB, Choudhary, J, Kumar, R, Divatia JV. Indian Antimicrobial Prescription Guidelines in Critically Ill Immunocompromised Patients. Indian J Crit Care Med 2019; 23:S64-S96. [PMID: 31516212 PMCID: PMC6734470 DOI: 10.5005/jp-journals-10071-23102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
How to cite this article: Kulkarni AP, Sengar M, Chinnaswamy G, Hegde A, Rodrigues C, Soman R, Khilnani GC, Ramasubban S, Desai M, Pandit R, Khasne R, Shetty A, Gilada T, Bhosale S, Kothekar A, Dixit S, Zirpe K, Mehta Y, Pulinilkunnathil JG, Bhagat V, Khan MS, Narkhede AM, Baliga N, Ammapalli S, Bamne S, Turkar S, Bhat KV, Choudhary J, Kumar R, Divatia JV. Indian Journal of Critical Care Medicine 2019;23(Suppl 1): S64-S96.
Collapse
Affiliation(s)
- Atul P Kulkarni,
- Division of Critical Care Medicine, Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Dr Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Manju Sengar,
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Dr Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Girish Chinnaswamy,
- Department of Paediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Dr Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Ashit Hegde,
- Consultant in Medicine and Critical Care, PD Hinduja National Hospital, Mahim, Mumbai, Maharashtra, India
| | - Camilla Rodrigues,
- Consultant Microbiologist and Chair Infection Control, Hinduja Hospital, Mahim, Mumbai, Maharashtra, India
| | - Rajeev Soman,
- Consultant ID Physician, Jupiter Hospital, Pune, DeenanathMangeshkar Hospital, Pune, BharatiVidyapeeth, Deemed University Hospital, Pune, Courtsey Visiting Consultant, Hinduja Hospital Mumbai, Maharashtra, India
| | - Gopi C Khilnani,
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Suresh Ramasubban,
- Pulmomary and Critical Care Medicine, Apollo Gleneagles Hospital, 58, Canal Circular Road, Kolkata, West Bengal, India
| | - Mukesh Desai,
- Department of Immunology, Prof of Pediatric Hematology and Oncology, Bai Jerbaiwadia Hospital for Children, Consultant, Hematologist, Nanavati Superspeciality Hospital, Director of Pediatric Hematology, Surya Hospitals, Mumbai, Maharashtra, India
| | - Rahul Pandit,
- Intensive Care Unit, Fortis Hospital, Mulund Goregaon Link Road, Mulund (W), Mumbai, Maharashtra, India
| | - Ruchira Khasne,
- Critical Care Medicine, Ashoka - Medicover Hospital, Indira Nagar, Wadala Nashik, Maharashtra, India
| | - Anjali Shetty,
- Microbiology Section, 5th Floor, S1 Building, PD Hinduja Hospital, Veer Savarkar Marg, Mahim, Mumbai, Maharashtra, India
| | - Trupti Gilada,
- Consultant Physician in Infectious Disease, Unison Medicare and Research Centre and Prince Aly Khan Hospital, Maharukh Mansion, Alibhai Premji Marg, Grant Road, Mumbai, Maharashtra, India
| | - Shilpushp Bhosale,
- Intensive Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Amol Kothekar,
- Division of Critical Care Medicine, Departemnt of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Subhal Dixit,
- Consultant in Critical Care, Director, ICU Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Kapil Zirpe,
- Neuro-Trauma Unit, Grant Medical Foundation, Ruby Hall Clinic, Pune, Maharashtra, India
| | - Yatin Mehta,
- Institute of Critical Care and Anesthesiology, Medanta The Medicity, Gurgaon, Haryana, India
| | - Jacob George Pulinilkunnathil,
- Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Dr E Borges Road, Mumbai, Maharashtra, India
| | - Vikas Bhagat,
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, HomiBhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Mohammad Saif Khan,
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Amit M Narkhede,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Nishanth Baliga,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Srilekha Ammapalli,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Shrirang Bamne,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Siddharth Turkar,
- Department of Medical Oncology, Tata Memorial Hospital, HomiBhabha National Institute, Mumbai, Maharashtra, India
| | - Vasudeva Bhat K,
- Department of Pediatric Oncology, Tata Memorial Hospital, HomiBhabha National Institute, Dr E. Borges Marg, Parel, Mumbai, Maharashtra, India
| | - Jitendra Choudhary,
- Critical Care, Fortis Hospital, 102, Nav Sai Shakti CHS, Near Bhoir Gymkhana, M Phule Road, Dombivali West Mumbai, Maharashtra, India
| | - Rishi Kumar,
- Critical Care Medicine, PD Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| | - Jigeeshu V Divatia
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Karunaratne K, Taube D, Khalil N, Perry R, Malhotra PA. Neurological complications of renal dialysis and transplantation. Pract Neurol 2017; 18:115-125. [PMID: 29288211 DOI: 10.1136/practneurol-2017-001657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 11/04/2022]
Abstract
Neurological complications from renal replacement therapy contribute significantly to morbidity and mortality in patients with renal failure. Such complications can affect either the central or peripheral nervous systems. Most neurological disturbances associated with the uraemic state do not respond fully to renal replacement therapy. There are also complications specifically associated with dialysis and transplantation. A multidisciplinary approach, involving both nephrologists and neurologists, is critical for the diagnosis and effective management of these disorders.
Collapse
Affiliation(s)
- Kushan Karunaratne
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
| | - David Taube
- Department of Renal and Transplantation Medicine, West London Renal and Transplant Centre, Imperial College Kidney and Transplant Institute, London, UK
| | - Nofal Khalil
- Department of Neurophysiology, Imperial College Healthcare NHS Trust, London, UK
| | - Richard Perry
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK.,Division of Brain Sciences, Imperial College London, London, UK
| | - Paresh A Malhotra
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK.,Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
13
|
Imaging spectrum of central nervous system complications of hematopoietic stem cell and solid organ transplantation. Neuroradiology 2017; 59:105-126. [PMID: 28255902 DOI: 10.1007/s00234-017-1804-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023]
Abstract
Neurologic complications are common after hematopoietic stem cell transplantation (HSCT) and solid organ transplantation (SOT) and affect 30-60% of transplant recipients. The aim of this article is to provide a practical imaging approach based on the timeline and etiology of CNS abnormalities, and neurologic complications related to transplantation of specific organs. The lesions will be classified based upon the interval from HSCT procedure: pre-engraftment period <30 days, early post-engraftment period 30-100 days, late post-engraftment period >100 days, and the interval from SOT procedure: postoperative phase 1-4 weeks, early posttransplant syndromes 1-6 months, late posttransplant syndromes >6 months. Further differentiation will be based on etiology: infections, drug toxicity, metabolic derangements, cerebrovascular complications, and posttransplantation malignancies. In addition, differentiation will be based on complications specific to the type of transplantation: allogeneic and autologous hematopoietic stem cells (HSC), heart, lung, kidney, pancreas, and liver. Thus, in this article we emphasize the strategic role of neuroradiology in the diagnosis and response to treatment by utilizing a methodical approach in the work up of patients with neurologic complications after transplantation.
Collapse
|
14
|
Lee YJ, Yum MS, Kim EH, Kim MJ, Kim KM, Im HJ, Kim YH, Park YS, Ko TS. Clinical Characteristics of Transplant-associated Encephalopathy in Children. J Korean Med Sci 2017; 32:457-464. [PMID: 28145649 PMCID: PMC5290105 DOI: 10.3346/jkms.2017.32.3.457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/30/2016] [Indexed: 12/27/2022] Open
Abstract
We aimed to analyze characteristics of encephalopathy after both hematopoietic stem cell and solid organ pediatric transplantation. We retrospectively reviewed medical records of 662 pediatric transplant recipients (201 with liver transplantation [LT], 55 with heart transplantation [HT], and 67 with kidney transplantation [KT], 339 with allogeneic hematopoietic stem cell transplantation [HSCT]) who received their graft organs at Asan Medical Center between January 2000 and July 2014. Of the 662 patients, 50 (7.6%) experienced encephalopathy after transplantation. The incidence of encephalopathy was significantly different according to the type of organ transplant: LT, 16/201 (8.0%), HT, 13/55 (23.6%), KT, 5/67 (7.5%), and HSCT, 16/339 (4.7%) (P < 0.001). Drug-induced encephalopathy (n = 14) was the most common encephalopathy for all transplant types, but particularly after HSCT. Hypertensive encephalopathy was the most common after KT and HT, whereas metabolic encephalopathy was the most common after LT. The median time to encephalopathy onset also differed according to the transplant type: 5 days after KT (range 0-491 days), 10 days after HT (1-296 days), 49.5 days after HSCT (9-1,405 days), and 39 days after LT (1-1,092 days) (P = 0.018). The mortality rate among patients with encephalopathy was 42.0% (n = 21/50). Only 5 patients died of neurologic complications. Transplant-associated encephalopathy presented different characteristics according to the type of transplant. Specialized diagnostic approach for neurologic complications specific to the type of transplant may improve survival and quality of life in children after transplantation.
Collapse
Affiliation(s)
- Yun Jeong Lee
- Department of Pediatrics, Kyungpook National University Hospital, Daegu, Korea
| | - Mi Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Kim
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Min Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Joon Im
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hwue Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
The immunologic considerations in human head transplantation. Int J Surg 2017; 41:196-202. [PMID: 28130190 DOI: 10.1016/j.ijsu.2017.01.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/24/2022]
Abstract
The idea of head transplantation appears at first as unrealistic, unethical, and futile. Here we discuss immunological considerations in human head transplantation. In a separate accompanying article we discuss surgical, ethical, and psychosocial issues concerned in body-to-head transplantation (BHT) [1]. The success of such an unusual allograft, where the donor and the recipient can reject each other, depends on prevention of complex immunologic reactions, especially rejection of the head by the body (graft-vs-host) or probably less likely, the possibility of the head rejecting the total body allograft (host-vs-graft). The technical and immunologic difficulties are enormous, especially since rapid nerve and cord connections and regeneration have not yet been possible to achieve. In this article we begin by briefly reviewing neuro-immunologic issues that may favor BHT such as the blood brain barrier (BBB) and point out its shortcomings. And we touch on the cellular and humoral elements in the brain proper that differ in some respects from those in other organs and in the periphery. Based on recent successes in vascular composite allografts (VCAs), we will elaborate on potential specific advantages and difficulties in BHT of various available immunosuppressive medications already utilized in VCAs. The risk/benefit ratio of these drugs will be emphasized in relation to direct brain toxicity such as seizure disorders, interference, or promotion of nerve regeneration, and potentiation of cerebral viral infections. The final portion of this article will focus on pre-transplant immunologic manipulation of the deceased donor body along with pretreatment of the recipient.
Collapse
|
16
|
Guzmán-De-Villoria J, Fernández-García P, Borrego-Ruiz P. Neurologic emergencies in HIV-negative immunosuppressed patients. RADIOLOGIA 2017. [DOI: 10.1016/j.rxeng.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Guzmán-De-Villoria JA, Fernández-García P, Borrego-Ruiz PJ. Neurologic emergencies in HIV-negative immunosuppressed patients. RADIOLOGIA 2016; 59:2-16. [PMID: 28012729 DOI: 10.1016/j.rx.2016.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 12/28/2022]
Abstract
HIV-negative immunosuppressed patients comprise a heterogeneous group including transplant patients, patients undergoing treatment with immunosuppressors, uremic patients, alcoholics, undernourished patients, diabetics, patients on dialysis, elderly patients, and those diagnosed with severe or neoplastic processes. Epileptic seizures, focal neurologic signs, and meningoencephalitis are neurologic syndromes that require urgent action. In most of these situations, neuroimaging tests are necessary, but the findings can be different from those observed in immunocompetent patients in function of the inflammatory response. Infectious disease is the first diagnostic suspicion, and the identification of an opportunistic pathogen should be oriented in function of the type and degree of immunosuppression. Other neurologic emergencies include ischemic stroke, cerebral hemorrhage, neoplastic processes, and pharmacological neurotoxicity. This article reviews the role of neuroimaging in HIV-negative immunodepressed patients with a neurologic complication that requires urgent management.
Collapse
Affiliation(s)
- J A Guzmán-De-Villoria
- Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, España; CIBER de Salud Mental (CIBERSAM), Madrid, España.
| | - P Fernández-García
- Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - P J Borrego-Ruiz
- Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
18
|
Gangliocytoma Presenting With Tacrolimus Neurotoxicity in a Renal Transplant Recipient: Case Report. Transplant Proc 2016; 48:3142-3144. [PMID: 27932167 DOI: 10.1016/j.transproceed.2016.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022]
Abstract
Tacrolimus is a widely used macrolide immunosuppressant in transplant surgery, with mild and major neurologic side effects. A 21-year-old woman had undergone preemptive transplantation of a kidney from her mother. On the 1st postoperative day, the patient had headache, nausea, vomiting, and agitation. Magnetic resonance imaging (MRI) of the brain showed hyperintensity and a lesion in the right mesial temporal lobe. After we switched from tacrolimus to cyclosporine, the symptoms regressed. Persistence of the lesion, confirmed by repeated MRI, required that the patient be operated on. Pathologic examination showed the gangliocytoma, a rare brain tumor. Our case shows that preexisting brain lesions may cause tacrolimus-induced neurotoxicity in the early postoperative period.
Collapse
|
19
|
Abstract
Transplantation is the rescue treatment for end-stage organ failure with more than 110,000 solid organs transplantations performed worldwide annually. Recent advances in transplantation procedures and posttransplantation management have improved long-term survival and quality of life of transplant recipients, shifting the focus from acute perioperative critical care needs toward long-term chronic medical problems. Neurologic complications affect up to 30-60 % of solid organ transplant recipients. Common etiologies include opportunistic infections and toxicities of antirejection medications, and wide spectrum of toxic and metabolic disturbances. Most complications are common to all allograft types, but some are relatively specific for individual allograft types (e.g., central pontine myelinolysis in liver transplant recipients). Close collaboration between neurologists and other transplant team members is essential for effective management. Early recognition of complications and accurate diagnosis leading to timely treatment is essential to reduce the morbidity and improve the overall transplant outcome.
Collapse
|
20
|
Josephson MA, Perazella MA, Choi MJ. American society of Nephrology Quiz and Questionnaire 2014: transplantation. Clin J Am Soc Nephrol 2015; 10:903-9. [PMID: 25862775 DOI: 10.2215/cjn.12221214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Nephrology Quiz and Questionnaire remains an extremely popular session for attendees of the Annual Kidney Week Meeting of the American Society of Nephrology. Once again, the conference hall was overflowing with audience members and eager quiz participants. Topics covered by the expert discussants included electrolyte and acid-base disorders, glomerular disease, ESRD/dialysis, and transplantation. Complex cases representing each of these categories along with single best answer questions were prepared and submitted by the panel of experts. Before the meeting, program directors of United States nephrology training programs and nephrology fellows answered the questions through an internet-based questionnaire. During the live session, members of the audience tested their knowledge and judgment on a series of case-oriented questions prepared and discussed by experts. They compared their answers in real time using audience response devices with the answers of the nephrology fellows and training program directors. The correct and incorrect answers were then discussed after the audience responses and the results of the questionnaire were displayed. As always, the audience, lecturers, and moderators enjoyed this educational session. This article recapitulates the session and reproduces its educational value for the readers of CJASN. Enjoy the clinical cases and expert discussions.
Collapse
Affiliation(s)
| | - Mark A Perazella
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Michael J Choi
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Infektionen. NEUROINTENSIV 2015. [PMCID: PMC7175474 DOI: 10.1007/978-3-662-46500-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In diesem Kapitel werden zunächst die für die Neurointensivmedizin wesentlichen bakteriellen Infektionen (Meningitis, spinale und Hirnabszesse, Spondylodiszitis, septisch-embolische Herdenzephalitis) abgehandelt, die trotz gezielt eingesetzter Antibiotika und neurochirurgischer Therapieoptionen noch mit einer erheblichen Morbidität und Mortalität behaftet sind. Besonderheiten wie neurovaskuläre Komplikationen, die Tuberkulose des Nervensystems, Neuroborreliose, Neurosyphilis und opportunistische Infektionen bei Immunsuppressionszuständen finden hierbei besondere Berücksichtigung. Der zweite Teil dieses Kapitels behandelt akute und chronische Virusinfektionen des ZNS sowie in einem gesonderten Abschnitt die HIVInfektion und HIV-assoziierte Krankheitsbilder sowie Parasitosen und Pilzinfektionen, die in Industrieländern seit Einführung der HAART bei HIV zwar eher seltener, aber mit zunehmender Globalisierung auch in unseren Breiten immer noch anzutreffen sind.
Collapse
|
22
|
Wright AJ, Fishman JA. Central nervous system syndromes in solid organ transplant recipients. Clin Infect Dis 2014; 59:1001-11. [PMID: 24917660 DOI: 10.1093/cid/ciu428] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Solid organ transplant recipients have a high incidence of central nervous system (CNS) complications, including both focal and diffuse neurologic deficits. In the immunocompromised host, the initial clinical evaluation must focus on both life-threatening CNS infections and vascular or anatomic lesions. The clinical signs and symptoms of CNS processes are modified by the immunosuppression required to prevent graft rejection. In this population, these etiologies often coexist with drug toxicities and metabolic abnormalities that complicate the development of a specific approach to clinical management. This review assesses the multiple risk factors for CNS processes in solid organ transplant recipients and establishes a timeline to assist in the evaluation and management of these complex patients.
Collapse
Affiliation(s)
- Alissa J Wright
- Transplant Infectious Disease Program, Massachusetts General Hospital
| | - Jay A Fishman
- Transplant Infectious Disease Program, Massachusetts General Hospital Transplant Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Hoffman MJ, Stosor V. Central nervous system infections in cancer patients and hematopoietic stem cell transplant recipients. Cancer Treat Res 2014; 161:253-298. [PMID: 24706228 DOI: 10.1007/978-3-319-04220-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Central nervous system (CNS) infections in cancer patients present a diagnostic and therapeutic challenge for clinicians. While CNS infections are not frequent complications of cancer, its therapies, or hematopoietic stem cell transplantation, the importance of CNS infections lies in their propensity to result in profound morbidity and substantial mortality in this vulnerable patient population. With an expanding population of patients with malignant disease undergoing more potent and aggressive therapies and with the advent of newer immunomodulatory agents, the incidence of CNS infectious complications is likely to rise. This chapter will summarize the clinical and diagnostic evaluation of potential infections of the CNS in these patients and will discuss particular pathogens of interest with regard to this at-risk patient population.
Collapse
Affiliation(s)
- Michael J Hoffman
- Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E. Huron St. Feinberg 16-738, Chicago, IL, 60605, USA,
| | | |
Collapse
|
24
|
Abstract
Cardiac transplantation remains the best treatment option for patients with end-stage, NYHA class IV heart failure who have failed conventional therapy. However, transplant rates have remained static largely due to limited organ donor supplies. Therefore, appropriate allocation of this precious resource is critical to maximize benefit, both at a patient level and at a societal level. Neurologic diseases, such as cerebrovascular disease and peripheral neuropathy, are prevalent in this patient population, as the major risk factors for heart disease place patients at risk for neurologic disease as well. Examples include hypertension, smoking, hypercholesterolemia, obesity, and diabetes. Pretransplant neurologic evaluation is very important to identify conditions that may limit survival after cardiac transplantation. In general, systemic diseases exacerbated by immunosuppression, conditions limiting ability to rehabilitate, and dementias are considered contraindications. Post-transplant neurologic complications are divided into central versus peripheral, and early versus late. The most common early complication is ischemic stroke. Other serious complications include hemorrhagic stroke, encephalopathy, and critical illness neuropathy. Over the long term, post-transplant immunosuppressive regimens are considered "a double edged sword." Although immunosuppressive medications are critical to preventing rejection and allograft dysfunction, they do have significant risk of morbidity and mortality associated with them, including neurologic side-effects. These include: (1) drug toxicities, such as lowering of seizure thresholds; (2) encephalopathy, such as posterior reversible encephalopathy syndrome (PRES); (3) infections; (4) malignancies, such as post-transplant lymphoproliferative disorder (PTLD). Many of the same considerations discussed in adult heart transplant recipients apply to pediatric heart transplant recipients as well. In children, seizures are the most common neurologic complication, although other neurologic complication rates are comparable.
Collapse
Affiliation(s)
- Alain Heroux
- Heart Failure and Heart Transplant Program, Loyola University Medical Center, Maywood, IL, USA.
| | - Salpy V Pamboukian
- Section of Advanced Heart Failure, Cardiac Transplant, Mechanical Circulatory Support and Pulmonary Vascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Živković SA. Neurologic complications after liver transplantation. World J Hepatol 2013; 5:409-416. [PMID: 24023979 PMCID: PMC3767839 DOI: 10.4254/wjh.v5.i8.409] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/21/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023] Open
Abstract
Neurologic complications are relatively common after solid organ transplantation and affect 15%-30% of liver transplant recipients. Etiology is often related to immunosuppressant neurotoxicity and opportunistic infections. Most common complications include seizures and encephalopathy, and occurrence of central pontine myelinolysis is relatively specific for liver transplant recipients. Delayed allograft function may precipitate hepatic encephalopathy and neurotoxicity of calcineurin inhibitors typically manifests with tremor, headaches and encephalopathy. Reduction of neurotoxic immunosuppressants or conversion to an alternative medication usually result in clinical improvement. Standard preventive and diagnostic protocols have helped to reduce the prevalence of opportunistic central nervous system (CNS) infections, but viral and fungal CNS infections still affect 1% of liver transplant recipients, and the morbidity and mortality in the affected patients remain fairly high. Critical illness myopathy may also affect up to 7% of liver transplant recipients. Liver insufficiency is also associated with various neurologic disorders which may improve or resolve after successful liver transplantation. Accurate diagnosis and timely intervention are essential to improve outcomes, while advances in clinical management and extended post-transplant survival are increasingly shifting the focus to chronic post-transplant complications which are often encountered in a community hospital and an outpatient setting.
Collapse
|
26
|
Fernández-Ramos JA, López-Laso E, Ordóñez-Díaz MD, Camino-León R, Ibarra-de la Rosa I, Frías-Pérez MA, Gilbert-Pérez JJ, Pérez-Navero JL. [Neurological complications in patients receiving solid organ transplants]. An Pediatr (Barc) 2012; 78:149-56. [PMID: 22974597 DOI: 10.1016/j.anpedi.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 06/17/2012] [Accepted: 08/01/2012] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Neurological complications (NC) are a significant cause of morbidity and mortality in paediatric patients receiving solid organ transplants. Our aim was to describe the experience of our hospital with NC in paediatric patients receiving heart, lung and liver transplants. PATIENTS AND METHODS A retrospective study was conducted on 140 paediatric patients who received a solid organ transplant during the period 2000-2011. RESULTS A total of 23 paediatric solid organ transplant recipients (16.4% of cases), with a median age of 6 years, had NC. The symptoms were, in order of frequency: acute symptomatic seizures (12 patients); acute encephalopathy (11 patients); neuromuscular weakness (4 children), tremor (4 children), headache (2 children), neuropathic pain (2 children), and visual disturbances (2 children). The aetiologies of NC were: the neurotoxicity of the immunosuppressive drugs (12 patients), post-hypoxic-ischaemic encephalopathy (6 patients), infections (2 cases), mechanical compression of peripheral nerve during surgery (2 cases), and a metabolic complication (1 case). The five patients who met the criteria of posterior reversible encephalopathy syndrome had a favourable outcome. Seven patients died, four of them due to hypoxic-ischaemic encephalopathy. CONCLUSIONS NC are common in paediatric patients receiving heart, liver, lung, and renal transplants, with acute symptomatic seizures and acute encephalopathy being the most common clinical signs. No differences were found in the NC with the different types of transplants. Neurotoxicity of the immunosuppressive drugs and hypoxic-ischaemic encephalopathy were the main causes of NC, having different management and outcomes. The prognosis was favourable in most of the patients, except for those who had moderate or severe post-hypoxic-ischaemic damage.
Collapse
Affiliation(s)
- J A Fernández-Ramos
- Unidad de Neurología Pediátrica, Hospital Universitario Reina Sofía, Córdoba, España.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ce P, Koskderelioglu A, Coban G, Gedizlioglu M, Nart A, Uslu A. Neurologic Complications of Renal Transplant. EXP CLIN TRANSPLANT 2012; 10:243-6. [DOI: 10.6002/ect.2011.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Infektionen. NEUROINTENSIV 2012. [PMCID: PMC7123678 DOI: 10.1007/978-3-642-16911-3_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trotz Weiterentwicklung moderner Antibiotika in den letzten Jahren sind die Letalitätszahlen der bakteriellen (eitrigen) Meningitis weiterhin hoch; Überlebende haben häufig neurologische Residuen. Die ungünstigen klinischen Verläufe der bakteriellen Meningitis sind meist Folge intrakranieller Komplikationen, wie z. B. eines generalisierten Hirnödems, einer zerebrovaskulären arteriellen oder venösen Beteiligung oder eines Hydrozephalus.
Collapse
|
29
|
Pustavoitau A, Bhardwaj A, Stevens R. Analytic Review: Neurological Complications of Transplantation. J Intensive Care Med 2011; 26:209-22. [DOI: 10.1177/0885066610389549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recipients of solid organ or hematopoietic cell transplants are at risk of life-threatening neurological disorders including encephalopathy, seizures, infections and tumors of the central nervous system, stroke, central pontine myelinolysis, and neuromuscular disorders—often requiring admission to, or occurring in, the intensive care unit (ICU). Many of these complications are linked directly or indirectly to immunosuppressive therapy. However, neurological disorders may also result from graft versus host disease, or be an expression of the underlying disease which prompted transplantation, as well as injury induced during radiation, chemotherapy, surgery, and ICU stay. In rare cases, neuroinfectious pathogens may be transmitted with the transplanted tissue or organ. Diagnosis may be a challenge because clinical symptoms and findings on neuroimaging lack specificity, and a biological specimen or tissue diagnosis is often needed for definitive diagnosis. Management is centered on preventing further neurological injury, etiology-targeted therapy, and balancing the benefits and toxicities of specific immunosuppressive agents.
Collapse
Affiliation(s)
- Aliaksei Pustavoitau
- Departments of Anesthesiology Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anish Bhardwaj
- Departments of Neurology and Neurological Surgery, Tufts University School of Medicine, Boston, MA, USA,
| | - Robert Stevens
- Departments of Anesthesiology Critical Care Medicine, Neurology, Neurosurgery, and Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Abstract
Neurologic complications affect posttransplant recovery of more than 20% of transplant recipients. Etiology is usually related to surgical procedure of transplantation, primary disorders causing failure of transplanted organ, opportunistic infections, and neurotoxicity of immunosuppressive medications. Risk of opportunistic infections and immunosuppressant neurotoxicity is greatest within the first six months, but it persists along with long-term maintenance immunosuppression required to prevent graft rejection. Neurotoxicity may require alteration of immunosuppressive regimen, and prompt therapy of opportunistic infections improves outcomes.
Collapse
Affiliation(s)
- Sasa A Zivković
- Neurology Service, VA Pittsburgh Healthcare System, University Drive C, Pittsburgh, PA 15240, USA.
| | | |
Collapse
|
31
|
Oda N, Kato TS, Hanatani A, Niwaya K, Nakatani T, Ishibashi-Ueda H, Kitamura S, Hashimura K, Kitakaze M, Komamura K. Reversible posterior leukoencephalopathy syndrome (RPLS) in a heart transplant recipient treated by substitution of cyclosporine A with tacrolimus. Intern Med 2010; 49:1013-6. [PMID: 20519818 DOI: 10.2169/internalmedicine.49.3012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible posterior leukoencephalopathy syndrome (RPLS) is one of the important adverse events following organ transplantation, associated with calcineurin inhibitors (CNIs). We describe a case of 54-year-old woman, who was diagnosed with RPLS within weeks after transplantation. Considering the risk of causing fatal rejection by discontinuation of CNIs, the immunosuppressive regimen of the patient was switched from a cyclosporine A-based regimen to a tacrolimus-based regimen. The patient recovered rapidly from RPLS following the switch to tacrolimus. This case demonstrated that not only discontinuation but also a substitution of CNIs would be a valid treatment option for RPLS in transplant recipients.
Collapse
Affiliation(s)
- Noboru Oda
- Department of Cardiovascular Medicine, National Cardiovascular Center, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Neff RT, Hurst FP, Falta EM, Bohen EM, Lentine KL, Dharnidharka VR, Agodoa LY, Jindal RM, Yuan CM, Abbott KC. Progressive Multifocal Leukoencephalopathy and Use of Mycophenolate Mofetil After Kidney Transplantation. Transplantation 2008; 86:1474-8. [DOI: 10.1097/tp.0b013e31818b62c8] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|