1
|
Silberfeld A, Roe JM, Ellegood J, Lerch JP, Qiu L, Kim Y, Lee JG, Hopkins WD, Grandjean J, Ou Y, Pourquié O. Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain. Neuroimage 2025; 307:121017. [PMID: 39798830 DOI: 10.1016/j.neuroimage.2025.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes past the left. Here, we ask whether neuroanatomical asymmetries can be observed in mice, leveraging 6 mouse neuroimaging cohorts from 5 different research groups (∼3,500 animals). We found an anterior-posterior pattern of volume asymmetry with anterior regions larger on the right and posterior regions larger on the left. This pattern appears driven by similar trends in surface area and positional asymmetries, with the results together indicating a small brain-wide twisting pattern, similar to the human cerebral petalia. Furthermore, the results show no apparent relationship to known functional asymmetries in mice, emphasizing the complexity of the structure-function relationship in brain asymmetry. Our results recapitulate and extend previous patterns of asymmetry from two published studies as well as capture well-established, bilateral male-female differences in the mouse brain as a positive control. By establishing a signature of anatomical brain asymmetry in mice, we aim to provide a foundation for future studies to probe the mechanistic underpinnings of brain asymmetry seen in humans - a feature of the brain with extremely limited understanding.
Collapse
Affiliation(s)
- Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Preclinical Imaging, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lily Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William D Hopkins
- Department of Comparative Medicine & Michale E Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, Netherlands; Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, Netherlands
| | - Yangming Ou
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Abstract
Structural asymmetries in language-related brain regions have long been hypothesized to underlie hemispheric language laterality and variability in language functions. These structural asymmetries have been examined using voxel-level, gross volumetric, and surface area measures of gray matter and white matter. Here we used deformation-based and persistent homology approaches to characterize the three-dimensional topology of brain structure asymmetries within language-related areas that were defined in functional neuroimaging experiments. Persistence diagrams representing the range of values for each spatially unique structural asymmetry were collected within language-related regions of interest across 212 children (mean age (years) = 10.56, range 6.39–16.92; 39% female). These topological data exhibited both leftward and rightward asymmetries within the same language-related regions. Permutation testing demonstrated that age and sex effects were most consistent and pronounced in the superior temporal sulcus, where older children and males had more rightward asymmetries. While, consistent with previous findings, these associations exhibited small effect sizes that were observable because of the relatively large sample. In addition, the density of rightward asymmetry structures in nearly all language-related regions was consistently higher than the density of leftward asymmetric structures. These findings guide the prediction that the topological pattern of structural asymmetries in language-related regions underlies the organization of language.
Collapse
|
3
|
Gerrits R, Verhelst H, Dhollander T, Xiang L, Vingerhoets G. Structural perisylvian asymmetry in naturally occurring atypical language dominance. Brain Struct Funct 2021; 227:573-586. [PMID: 34173870 DOI: 10.1007/s00429-021-02323-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023]
Abstract
Functional and anatomical hemispheric asymmetries abound in the neural language system, yet the relationship between them remains elusive. One attractive proposal is that structural interhemispheric differences reflect or even drive functional language laterality. However, studies on structure-function couplings either find that left and right language dominant individuals display similar leftward structural asymmetry or yield inconsistent results. The current study aimed to replicate and extend prior work by comparing structural asymmetries between neurologically healthy left-handers with right hemispheric language dominance (N = 24) and typically lateralized left-handed controls (N = 39). Based on structural MRI data, anatomical measures of six 'language-related' perisylvian structures were derived, including the surface area of five gray matter regions with known language functions and the FDC (combined fiber density and fiber-bundle cross-sectional area) of the arcuate fasciculus. Only the surface area of the pars triangularis and the anterior insula differed significantly between participant groups, being on average leftward asymmetric in those with typical dominance, but right lateralized in volunteers with atypical language specialization. However, these findings did not survive multiple testing correction and the asymmetry of these structures demonstrated much inter-individual variability in either subgroup. By integrating our findings with those reported previously we conclude that while some perisylvian anatomical asymmetries may differ subtly between typical and atypical speech dominants at the group level, they serve as poor participant-specific predictors of hemispheric language specialization.
Collapse
Affiliation(s)
- Robin Gerrits
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| | - Helena Verhelst
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Li Xiang
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Guy Vingerhoets
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Guadalupe T, Kong XZ, Akkermans SEA, Fisher SE, Francks C. Relations between hemispheric asymmetries of grey matter and auditory processing of spoken syllables in 281 healthy adults. Brain Struct Funct 2021; 227:561-572. [PMID: 33502621 PMCID: PMC8844177 DOI: 10.1007/s00429-021-02220-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Most people have a right-ear advantage for the perception of spoken syllables, consistent with left hemisphere dominance for speech processing. However, there is considerable variation, with some people showing left-ear advantage. The extent to which this variation is reflected in brain structure remains unclear. We tested for relations between hemispheric asymmetries of auditory processing and of grey matter in 281 adults, using dichotic listening and voxel-based morphometry. This was the largest study of this issue to date. Per-voxel asymmetry indexes were derived for each participant following registration of brain magnetic resonance images to a template that was symmetrized. The asymmetry index derived from dichotic listening was related to grey matter asymmetry in clusters of voxels corresponding to the amygdala and cerebellum lobule VI. There was also a smaller, non-significant cluster in the posterior superior temporal gyrus, a region of auditory cortex. These findings contribute to the mapping of asymmetrical structure–function links in the human brain and suggest that subcortical structures should be investigated in relation to hemispheric dominance for speech processing, in addition to auditory cortex.
Collapse
Affiliation(s)
- Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands
| | - Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands.,Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Sophie E A Akkermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Keller SS, Roberts N, Baker G, Sluming V, Cezayirli E, Mayes A, Eldridge P, Marson AG, Wieshmann UC. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients. Hum Brain Mapp 2018; 39:3032-3045. [PMID: 29569808 PMCID: PMC6055618 DOI: 10.1002/hbm.24058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole‐brain voxel‐based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty‐four controls were also studied. Right‐handed controls and right‐handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo‐occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right‐handed. These results suggest that structural asymmetries of an insular‐fronto‐temporal network may be related to HLD.
Collapse
Affiliation(s)
- Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Neil Roberts
- Edinburgh Imaging, The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gus Baker
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Vanessa Sluming
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, United Kingdom
| | - Enis Cezayirli
- School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Andrew Mayes
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - Paul Eldridge
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Udo C Wieshmann
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
6
|
Ocklenburg S, Hugdahl K, Westerhausen R. Structural white matter asymmetries in relation to functional asymmetries during speech perception and production. Neuroimage 2013; 83:1088-97. [PMID: 23921095 DOI: 10.1016/j.neuroimage.2013.07.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/04/2013] [Accepted: 07/28/2013] [Indexed: 12/21/2022] Open
Abstract
Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | | | | |
Collapse
|
7
|
Chiarello C, Vazquez D, Felton A, Leonard CM. Structural asymmetry of anterior insula: behavioral correlates and individual differences. BRAIN AND LANGUAGE 2013; 126:109-22. [PMID: 23681069 PMCID: PMC3722256 DOI: 10.1016/j.bandl.2013.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/22/2013] [Accepted: 03/28/2013] [Indexed: 06/01/2023]
Abstract
The current study investigated behavioral correlates of structural asymmetry of the insula, and traditional perisylvian language regions, in a large sample of young adults (N=200). The findings indicated (1) reliable leftward surface area asymmetry of the anterior insula, (2) association of this asymmetry with divided visual field lateralization of visual word recognition, and (3) modulation of the correlation of structural and linguistic asymmetry by consistency of hand preference. Although leftward asymmetry of cortical surface area was observed for the anterior insula, pars opercularis and triangularis, and planum temporale, only the anterior insula asymmetry was associated with lateralized word recognition. We interpret these findings within the context of recent structural and functional findings about the human insula. We suggest that leftward structural lateralization of earlier developing insular cortex may bootstrap asymmetrical functional lateralization even if the insula is only a minor component of the adult language network.
Collapse
Affiliation(s)
- Christine Chiarello
- Department of Psychology, University of California, Riverside, Riverside CA 92521, USA.
| | | | | | | |
Collapse
|
8
|
Perlaki G, Horvath R, Orsi G, Aradi M, Auer T, Varga E, Kantor G, Altbäcker A, John F, Doczi T, Komoly S, Kovacs N, Schwarcz A, Janszky J. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis. Brain Cogn 2013; 82:319-28. [PMID: 23792788 DOI: 10.1016/j.bandc.2013.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 01/19/2023]
Abstract
Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system.
Collapse
Affiliation(s)
- Gabor Perlaki
- Department of Neurology, University of Pecs, Ret U. 2, 7623 Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Speech dominance is a better predictor of functional brain asymmetry than handedness: a combined fMRI word generation and behavioral dichotic listening study. Neuropsychologia 2012; 51:91-7. [PMID: 23149380 DOI: 10.1016/j.neuropsychologia.2012.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/21/2022]
Abstract
An unresolved issue in behavioral studies of hemispheric asymmetry is why both left-handers and right-handers show a right ear advantage at the group level. In the present study we screened left-handers for left- versus right-hemisphere speech dominance with fMRI by comparing right versus left hemisphere frontal lobe activity (in Broca's area) in a silent word generation task. A left hemisphere dominant right-handed control group was included as well. All participants took part in a dichotic listening task with consonant-vowel syllables. The results showed that left-handers and right-handers with left-hemisphere speech dominance showed a right ear advantage. However, the left-handers with right hemisphere speech dominance had a left ear advantage. Thus, at the group level the direction of the ear advantage in dichotic listening was predicted by language dominance but not by hand preference. At the individual level, the dichotic task we used showed more variability than the fMRI results. Further research will have to indicate whether this is a feature inherent to dichotic listening, or whether the variability is due to alternative explanations such as a more bilateral representation of speech perception compared to speech production.
Collapse
|
10
|
Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One 2012; 7:e45081. [PMID: 23028771 PMCID: PMC3445568 DOI: 10.1371/journal.pone.0045081] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/16/2012] [Indexed: 11/24/2022] Open
Abstract
Automated gray matter segmentation of magnetic resonance imaging data is essential for morphometric analyses of the brain, particularly when large sample sizes are investigated. However, although detection of small structural brain differences may fundamentally depend on the method used, both accuracy and reliability of different automated segmentation algorithms have rarely been compared. Here, performance of the segmentation algorithms provided by SPM8, VBM8, FSL and FreeSurfer was quantified on simulated and real magnetic resonance imaging data. First, accuracy was assessed by comparing segmentations of twenty simulated and 18 real T1 images with corresponding ground truth images. Second, reliability was determined in ten T1 images from the same subject and in ten T1 images of different subjects scanned twice. Third, the impact of preprocessing steps on segmentation accuracy was investigated. VBM8 showed a very high accuracy and a very high reliability. FSL achieved the highest accuracy but demonstrated poor reliability and FreeSurfer showed the lowest accuracy, but high reliability. An universally valid recommendation on how to implement morphometric analyses is not warranted due to the vast number of scanning and analysis parameters. However, our analysis suggests that researchers can optimize their individual processing procedures with respect to final segmentation quality and exemplifies adequate performance criteria.
Collapse
|
11
|
Atypical language lateralisation associated with right fronto-temporal grey matter increases--a combined fMRI and VBM study in left-sided mesial temporal lobe epilepsy patients. Neuroimage 2011; 59:728-37. [PMID: 21839176 DOI: 10.1016/j.neuroimage.2011.07.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/09/2011] [Accepted: 07/18/2011] [Indexed: 12/30/2022] Open
Abstract
By combining language functional magnetic resonance imaging and voxel-based morphometry in patients with left-sided mesial temporal lobe epilepsy and hippocampal sclerosis, we studied whether atypical language dominance is associated with temporal and/or extratemporal cortical changes. Using verbal fluency functional magnetic resonance imaging for language lateralisation, we identified 20 patients with left-sided mesial temporal lobe epilepsy with hippocampal sclerosis and atypical language lateralisation. These patients were compared with a group of 20 matched left-sided mesial temporal lobe epilepsy patients who had typical language lateralisation. Using T1-weighted 3D images of all patients and voxel-based morphometry, we compared grey matter volumes between the groups of patients. We also correlated grey matter volumes with the degree of atypical language activation. Patients with atypical language lateralisation had increases of grey matter volumes, mainly within right-sided temporo-lateral cortex (x=59, y=-16, z=-1, T=6.36, p<.001 corrected), and less significantly within frontal brain regions compared to patients with typical language lateralisation. The degree of atypical fronto-temporal language activation (measured by lateralisation indices and relative functional magnetic resonance imaging activity) was correlated with right-sided temporal and frontal grey matter volumes. Patients with atypical language lateralisation did not differ in terms of language performance from patients with typical language dominance. Atypical language lateralisation in patients with left-sided mesial temporal lobe epilepsy was associated with increased grey matter volume within the non-epileptic right temporal and frontal lobe. Grey matter increases associated with atypical language might represent morphological changes underlying functional reorganisation of the language network. This hard-wired reorganised atypical language network seems to be suitable to support language functions.
Collapse
|
12
|
Menghini D, Costanzo F, Vicari S. Relationship between brain and cognitive processes in Down syndrome. Behav Genet 2011; 41:381-93. [PMID: 21279430 DOI: 10.1007/s10519-011-9448-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/10/2011] [Indexed: 12/11/2022]
Abstract
We investigated regional grey matter (GM) density in adolescents with Down syndrome (DS) compared to age-matched controls and correlated MRI data with neuropsychological measures in the DS group. Inter-group comparisons documented several GM concentration abnormalities in the participants with DS compared to controls. In the adolescents with DS, intra-group results also showed associations between regional GM density and the neuropsychological measures considered. In particular, GM density of the cerebellum and middle and inferior temporal gyrus was associated with linguistic measures. Short-term memory performances were correlated with the inferior parietal lobule, insula, superior temporal gyrus, medial occipital lobe, and cerebellum. Long-term memory abilities were correlated with GM density in the orbitofrontal cortex, lateral and medial temporal lobe regions, and anterior cingulum and visuo-perceptual abilities with GM density the left middle frontal gyrus. Results of this preliminary study are consistent with a not always efficient brain organization in DS.
Collapse
Affiliation(s)
- Deny Menghini
- Department of Neuroscience, Children's Hospital Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
13
|
McCrea SM. Intuition, insight, and the right hemisphere: Emergence of higher sociocognitive functions. Psychol Res Behav Manag 2010; 3:1-39. [PMID: 22110327 PMCID: PMC3218761 DOI: 10.2147/prbm.s7935] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intuition is the ability to understand immediately without conscious reasoning and is sometimes explained as a 'gut feeling' about the rightness or wrongness of a person, place, situation, temporal episode or object. In contrast, insight is the capacity to gain accurate and a deep understanding of a problem and it is often associated with movement beyond existing paradigms. Examples include Darwin, Einstein and Freud's theories of natural selection, relativity, or the unconscious; respectively. Many cultures name these concepts and acknowledge their value, and insight is recognized as particularly characteristic of eminent achievements in the arts, sciences and politics. Considerable data suggests that these two concepts are more related than distinct, and that a more distributed intuitive network may feed into a predominately right hemispheric insight-based functional neuronal architecture. The preparation and incubation stages of insight may rely on the incorporation of domain-specific automatized expertise schema associated with intuition. In this manuscript the neural networks associated with intuition and insight are reviewed. Case studies of anomalous subjects with ability-achievement discrepancies are summarized. This theoretical review proposes the prospect that atypical localization of cognitive modules may enhance intuitive and insightful functions and thereby explain individual achievement beyond that expected by conventionally measured intelligence tests. A model and theory of intuition and insight's neuroanatomical basis is proposed which could be used as a starting point for future research and better understanding of the nature of these two distinctly human and highly complex poorly understood abilities.
Collapse
Affiliation(s)
- Simon M McCrea
- Departments of Neurology and Neuroophthalmology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|