1
|
Su YC, Su SH, Li HY, Wang HY, Lee SC. Implication of single year seasonal sampling to genetic diversity fluctuation that coordinates with oceanographic dynamics in torpedo scads near Taiwan. Sci Rep 2020; 10:16829. [PMID: 33033371 PMCID: PMC7544891 DOI: 10.1038/s41598-020-74025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
Many fisheries management and conservation plans are based on the genetic structure of organisms in pelagic ecosystems; however, these structures tend to vary over time, particularly in cyclic ocean currents. We performed genetic analyses on the populations of the pelagic fish, Megalaspis cordyla (Osteichthyes: Carangidae) in the area surrounding Taiwan during 2000–2001. Genotyping was performed on M. cordyla collected seasonally around Taiwan as well as specimens collected from Singapore (Malacca strait) and Indonesia (Banda Sea). Gonadosomatic indices (GSI) revealed that M. cordyla does not spawn near Taiwan. Data related to the mitochondrial control region revealed that the samples from Singapore and Indonesia represented two distinct genetic cohorts. Genotyping revealed that during the summer (June–August 2000), the Indonesian variant was dominant in eastern Taiwan (presumably following the Kuroshio Current) and in the Penghu region (following the Kuroshio Branch Current). During the same period, the Singapore genotype was dominant along the western coast of Taiwan (presumably following the South China Sea Current); however, the number dropped during the winter (December–February 2001) under the effects of the China Coast Current. Divergence time estimates indicate that the two genetic cohorts split during the last glacial maximum. Despite the fact that these results are based on sampling from a single year, they demonstrate the importance of seasonal sampling in unravelling the genetic diversity in pelagic ecosystems.
Collapse
Affiliation(s)
- Yong-Chao Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shan-Hui Su
- Kaohsiung Municipal Zhongshan Elementary School, Kaohsiung, 80457, Taiwan
| | - Han-Yun Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hurng-Yi Wang
- Institute of Clinical Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Sin-Che Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Li JJ, Liu ZY, Zhong ZH, Zhuang LC, Bi YX, Qin S. Limited Genetic Connectivity Among Sargassum horneri (Phaeophyceae) Populations in the Chinese Marginal Seas Despite Their high Dispersal Capacity. JOURNAL OF PHYCOLOGY 2020; 56:994-1005. [PMID: 32173868 DOI: 10.1111/jpy.12990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Sargassum horneri is a habitat-forming species in the Northwest Pacific and an important contributor to seaweed rafts. In this study, 131 benthic samples and 156 floating samples were collected in the Yellow Sea and East China Sea (ECS) to test the effects of seaweed rafts on population structure and connectivity. Our results revealed high levels of genetic diversity in both benthic and floating samples based on concatenated mitochondrial markers (rpl5-rps3, rnl-atp9, and cob-cox2). Phylogenetic analyses consistently supported the existence of two lineages (lineages I and II), with divergence dating to c. 0.692 Mya (95% HPD: 0.255-1.841 Mya), indicating that long-term isolation may have occurred during the mid-Pleistocene (0.126-0.781 Mya). Extended Bayesian skyline plots demonstrated a constant population size over time in lineage I and slight demographic expansion in lineage II. Both lineages were found in each marginal sea (including both benthic and floating samples), but PCoA, FST , and AMOVA analyses consistently revealed deep genetic variation between regions. Highly structured phylogeographic pattern supports limited genetic connectivity between regions. IMA analyses demonstrated that asymmetric gene flow between benthic populations in the North Yellow Sea (NYS) and ECS was extremely low (ECS→NYS, 2Nm = 0.6), implying that high dispersal capacity cannot be assumed to lead to widespread population connectivity, even without dispersal barriers. In addition, there were only a few shared haplotypes between benthic and floating samples, suggesting the existence of hidden donors for the floating masses in the Chinese marginal seas.
Collapse
Affiliation(s)
- Jing-Jing Li
- College of Oceanography, Institute of Marine Biology, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Zhi-Hai Zhong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Long-Chuan Zhuang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Yuan-Xin Bi
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
3
|
Li JJ, Hu ZM, Sun ZM, Yao JT, Liu FL, Fresia P, Duan DL. Historical isolation and contemporary gene flow drive population diversity of the brown alga Sargassum thunbergii along the coast of China. BMC Evol Biol 2017; 17:246. [PMID: 29216823 PMCID: PMC5721624 DOI: 10.1186/s12862-017-1089-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-term survival in isolated marginal seas of the China coast during the late Pleistocene ice ages is widely believed to be an important historical factor contributing to population genetic structure in coastal marine species. Whether or not contemporary factors (e.g. long-distance dispersal via coastal currents) continue to shape diversity gradients in marine organisms with high dispersal capability remains poorly understood. Our aim was to explore how historical and contemporary factors influenced the genetic diversity and distribution of the brown alga Sargassum thunbergii, which can drift on surface water, leading to long-distance dispersal. RESULTS We used 11 microsatellites and the plastid RuBisCo spacer to evaluate the genetic diversity of 22 Sargassum thunbergii populations sampled along the China coast. Population structure and differentiation was inferred based on genotype clustering and pairwise F ST and allele-frequency analyses. Integrated genetic analyses revealed two genetic clusters in S. thunbergii that dominated in the Yellow-Bohai Sea (YBS) and East China Sea (ECS) respectively. Higher levels of genetic diversity and variation were detected among populations in the YBS than in the ECS. Bayesian coalescent theory was used to estimate contemporary and historical gene flow. High levels of contemporary gene flow were detected from the YBS (north) to the ECS (south), whereas low levels of historical gene flow occurred between the two regions. CONCLUSIONS Our results suggest that the deep genetic divergence in S. thunbergii along the China coast may result from long-term geographic isolation during glacial periods. The dispersal of S. thunbergii driven by coastal currents may facilitate the admixture between southern and northern regimes. Our findings exemplify how both historical and contemporary forces are needed to understand phylogeographical patterns in coastal marine species with long-distance dispersal.
Collapse
Affiliation(s)
- Jing-Jing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098 China
| | - Zi-Min Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| | - Zhong-Min Sun
- Laboratory of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Jian-Ting Yao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| | - Fu-Li Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Pablo Fresia
- Unidad de Bioinform atica, Institut Pasteur de Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - De-Lin Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| |
Collapse
|
4
|
Van Wynsberge S, Andréfouët S, Gaertner-Mazouni N, Tiavouane J, Grulois D, Lefèvre J, Pinsky ML, Fauvelot C. Considering reefscape configuration and composition in biophysical models advance seascape genetics. PLoS One 2017; 12:e0178239. [PMID: 28542261 PMCID: PMC5444781 DOI: 10.1371/journal.pone.0178239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/10/2017] [Indexed: 01/10/2023] Open
Abstract
Previous seascape genetics studies have emphasized the role of ocean currents and geographic distances to explain the genetic structure of marine species, but the role of benthic habitat has been more rarely considered. Here, we compared the population genetic structure observed in West Pacific giant clam populations against model simulations that accounted habitat composition and configuration, geographical distance, and oceanic currents. Dispersal determined by geographical distance provided a modelled genetic structure in better agreement with the observations than dispersal by oceanic currents, possibly due to insufficient spatial resolution of available oceanographic and coastal circulation models. Considering both habitat composition and configuration significantly improved the match between simulated and observed genetic structures. This study emphasizes the importance of a reefscape genetics approach to population ecology, evolution and conservation in the sea.
Collapse
Affiliation(s)
- Simon Van Wynsberge
- UMR-241 EIO, Université de la Polynésie Française, Laboratoire d’Excellence CORAIL, Faa’a, Tahiti, French Polynesia
- UMR-9220 ENTROPIE (Institut de Recherche pour le Développement, Université de La Réunion, CNRS), Laboratoire d’excellence-CORAIL, centre IRD de Nouméa, Nouméa, New Caledonia
- * E-mail:
| | - Serge Andréfouët
- UMR-9220 ENTROPIE (Institut de Recherche pour le Développement, Université de La Réunion, CNRS), Laboratoire d’excellence-CORAIL, centre IRD de Nouméa, Nouméa, New Caledonia
| | - Nabila Gaertner-Mazouni
- UMR-241 EIO, Université de la Polynésie Française, Laboratoire d’Excellence CORAIL, Faa’a, Tahiti, French Polynesia
| | - Josina Tiavouane
- UMR-9220 ENTROPIE (Institut de Recherche pour le Développement, Université de La Réunion, CNRS), Laboratoire d’excellence-CORAIL, centre IRD de Nouméa, Nouméa, New Caledonia
| | - Daphné Grulois
- UMR-9220 ENTROPIE (Institut de Recherche pour le Développement, Université de La Réunion, CNRS), Laboratoire d’excellence-CORAIL, centre IRD de Nouméa, Nouméa, New Caledonia
| | - Jérôme Lefèvre
- UMR-065 LEGOS and UMR-235 MIO, Centre IRD de Nouméa, Nouméa, New Caledonia
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, United States of America
- Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Cécile Fauvelot
- UMR-9220 ENTROPIE (Institut de Recherche pour le Développement, Université de La Réunion, CNRS), Laboratoire d’excellence-CORAIL, centre IRD de Nouméa, Nouméa, New Caledonia
| |
Collapse
|
5
|
Biogeographical role of the Kuroshio Current in the amphibious mudskipper Periophthalmus modestus indicated by mitochondrial DNA data. Sci Rep 2015; 5:15645. [PMID: 26508474 PMCID: PMC4623607 DOI: 10.1038/srep15645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 11/08/2022] Open
Abstract
Quaternary climatic cycles have influenced marine organisms’ spatial distribution and population dynamics. This study aimed to elucidate the evolutionary influences of contemporary and glacial physical barriers on the population structure, demography and colonization history of the mudskipper (Periophthalmus modestus) based on a mitochondrial gene segment (ND5) from 131 individual fish sampled in the northwestern Pacific Ocean. The current Kuroshio Current and the glacial exposure of the Taiwan Strait appeared to have restricted migration among the South China Sea, coastal East China and Japan. However, genetic homogeneity (Nm>1) also suggested contemporary larval transportation by sea circulation between the East China Sea and the South China Sea or historical dispersal along the glacial exposed shoreline among China, Japan and the Ryukyu Islands. Evolutionary signals of the strengthened East Asian Summer Monsoon in the mid-Pleistocene and regional difference in intertidal primary productions were indicated by a late-Pleistocene population expansion of P. modestus with a higher effective population size in the South China Sea than in the East China Sea. Furthermore, a potential colonization origin from the South China Sea was consistently inferred by different clues, including the populations’ coalescence times, the ancestral haplotype distribution, the number of private haplotypes and species/genetic diversity.
Collapse
|
6
|
Postaire B, Bruggemann JH, Magalon H, Faure B. Evolutionary dynamics in the southwest Indian ocean marine biodiversity hotspot: a perspective from the rocky shore gastropod genus Nerita. PLoS One 2014; 9:e95040. [PMID: 24736639 PMCID: PMC3988148 DOI: 10.1371/journal.pone.0095040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/22/2014] [Indexed: 01/14/2023] Open
Abstract
The Southwest Indian Ocean (SWIO) is a striking marine biodiversity hotspot. Coral reefs in this region host a high proportion of endemics compared to total species richness and they are particularly threatened by human activities. The island archipelagos with their diverse marine habitats constitute a natural laboratory for studying diversification processes. Rocky shores in the SWIO region have remained understudied. This habitat presents a high diversity of molluscs, in particular gastropods. To explore the role of climatic and geological factors in lineage diversification within the genus Nerita, we constructed a new phylogeny with an associated chronogram from two mitochondrial genes [cytochrome oxidase sub-unit 1 and 16S rRNA], combining previously published and new data from eight species sampled throughout the region. All species from the SWIO originated less than 20 Ma ago, their closest extant relatives living in the Indo-Australian Archipelago (IAA). Furthermore, the SWIO clades within species with Indo-Pacific distribution ranges are quite recent, less than 5 Ma. These results suggest that the regional diversification of Nerita is closely linked to tectonic events in the SWIO region. The Reunion mantle plume head reached Earth's surface 67 Ma and has been stable and active since then, generating island archipelagos, some of which are partly below sea level today. Since the Miocene, sea-level fluctuations have intermittently created new rocky shore habitats. These represent ephemeral stepping-stones, which have likely facilitated repeated colonization by intertidal gastropods, like Nerita populations from the IAA, leading to allopatric speciation. This highlights the importance of taking into account past climatic and geological factors when studying diversification of highly dispersive tropical marine species. It also underlines the unique history of the marine biodiversity of the SWIO region.
Collapse
Affiliation(s)
- Bautisse Postaire
- Laboratoire d’ECOlogie MARine, Université de la Réunion, FRE3560 INEE-CNRS, Saint Denis, La Réunion, France
- Labex CORAIL, Perpignan, France
| | - J. Henrich Bruggemann
- Laboratoire d’ECOlogie MARine, Université de la Réunion, FRE3560 INEE-CNRS, Saint Denis, La Réunion, France
- Labex CORAIL, Perpignan, France
| | - Hélène Magalon
- Laboratoire d’ECOlogie MARine, Université de la Réunion, FRE3560 INEE-CNRS, Saint Denis, La Réunion, France
- Labex CORAIL, Perpignan, France
| | - Baptiste Faure
- Laboratoire d’ECOlogie MARine, Université de la Réunion, FRE3560 INEE-CNRS, Saint Denis, La Réunion, France
- Biotope, Service Recherche et Développement, Mèze, France
| |
Collapse
|
7
|
Huelsken T, Keyse J, Liggins L, Penny S, Treml EA, Riginos C. A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS One 2013; 8:e80858. [PMID: 24278333 PMCID: PMC3835327 DOI: 10.1371/journal.pone.0080858] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species.
Collapse
Affiliation(s)
- Thomas Huelsken
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
| | - Jude Keyse
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
| | - Libby Liggins
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
| | - Shane Penny
- Charles Darwin University, Research Institute for Environment and Livelihoods, Casuarina, Australia
| | - Eric A. Treml
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
- University of Melbourne, Department of Zoology, Melbourne, Australia
| | - Cynthia Riginos
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
- * E-mail:
| |
Collapse
|
8
|
Jennings RM, Etter RJ, Ficarra L. Population differentiation and species formation in the deep sea: the potential role of environmental gradients and depth. PLoS One 2013; 8:e77594. [PMID: 24098590 PMCID: PMC3788136 DOI: 10.1371/journal.pone.0077594] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve (Nuculaatacellana) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna.
Collapse
Affiliation(s)
- Robert M. Jennings
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Ron J. Etter
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Lynn Ficarra
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Chiu YW, Bor H, Tan MS, Lin HD, Jean CT. Phylogeography and genetic differentiation among populations of the Moon Turban Snail Lunella granulata Gmelin, 1791 (Gastropoda: Turbinidae). Int J Mol Sci 2013; 14:9062-79. [PMID: 23698764 PMCID: PMC3676773 DOI: 10.3390/ijms14059062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022] Open
Abstract
We examined the genetic variation and phylogeographic relationships among 10 populations of Lunella granulata from mainland China, Penghu Archipelago, Taiwan Island, and Japan using mitochondrial COI and 16S markers. A total of 45 haplotypes were obtained in 112 specimens, and relatively high levels of haplotype diversity (h = 0.903) and low levels of nucleotide diversity (π = 0.0046) were detected. Four major phylogenetic lineage clusters were revealed and were concordant with their geographic distribution, agreeing with the haplotype network. These results suggested that geographic barrier isolating effects were occurring among the populations. This hypothesis was also supported by a significant genetic differentiation index (FST = 0.709) and by a spatial analysis of molecular variance (SAMOVA) analysis. A mismatch distribution analysis, neutrality tests and Bayesian skyline plots found a single significant population expansion. This expansion occurred on the coast of mainland China before 20–17 ka. Consequently, although the dispersal ability of the planktonic stage and the circulation of ocean currents generally promote genetic exchanges among populations, L. granulata has tended to maintain distinct genetic groups that reflect the respective geographic origins of the constituent lineages. Although the circulation of ocean currents, in principle, may still play a role in determining the genetic composition of populations, long-distance migration between regions is difficult even at the planktonic stage.
Collapse
Affiliation(s)
- Yuh-Wen Chiu
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan; E-Mail:
| | - Hor Bor
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Ksohsiung 807, Taiwan; E-Mails: (H.B.); (M.-S.T.)
| | - Mian-Shin Tan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Ksohsiung 807, Taiwan; E-Mails: (H.B.); (M.-S.T.)
| | - Hung-Du Lin
- Department of Physical Therapy, Shu Zen College of Medicine and Management, Kaohsiung 821, Taiwan; E-Mail:
- The Affiliated School of National Tainan First Senior High School, Tainan 701, Taiwan
| | - Chuen-Tan Jean
- Department of Physical Therapy, Shu Zen College of Medicine and Management, Kaohsiung 821, Taiwan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-7-697-9315; Fax: +886-7-697-9398
| |
Collapse
|
10
|
Sanciangco JC, Carpenter KE, Etnoyer PJ, Moretzsohn F. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific. PLoS One 2013; 8:e56245. [PMID: 23457533 PMCID: PMC3574161 DOI: 10.1371/journal.pone.0056245] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/07/2013] [Indexed: 11/20/2022] Open
Abstract
Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.
Collapse
Affiliation(s)
- Jonnell C Sanciangco
- Marine Biodiversity Unit/Global Marine Species Assessment, Global Species Programme, International Union for Conservation of Nature, Gland, Switzerland.
| | | | | | | |
Collapse
|
11
|
Thornhill DJ, Xiang Y, Fitt WK, Santos SR. Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One 2009; 4:e6262. [PMID: 19603078 PMCID: PMC2706050 DOI: 10.1371/journal.pone.0006262] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 06/19/2009] [Indexed: 11/30/2022] Open
Abstract
Background The dinoflagellate genus Symbiodinium forms symbioses with numerous protistan and invertebrate metazoan hosts. However, few data on symbiont genetic structure are available, hindering predictions of how these populations and their host associations will fair in the face of global climate change. Methodology/Principal Findings Here, Symbiodinium population structure from two of the Caribbean's ecologically dominant scleractinian corals, Montastraea faveolata and M. annularis, was examined. Tagged colonies on Florida Keys and Bahamian (i.e., Exuma Cays) reefs were sampled from 2003–2005 and their Symbiodinium diversity assessed via internal transcribed spacer 2 (ITS2) rDNA and three Symbiodinium Clade B-specific microsatellite loci. Generally, the majority of host individuals at a site harbored an identical Symbiodinium ITS2 “type” B1 microsatellite genotype. Notably, symbiont genotypes were largely reef endemic, suggesting a near absence of dispersal between populations. Relative to the Bahamas, sympatric M. faveolata and M. annularis in the Florida Keys harbored unique Symbiodinium populations, implying regional host specificity in these relationships. Furthermore, within-colony Symbiodinium population structure remained stable through time and environmental perturbation, including a prolonged bleaching event in 2005. Conclusions/Significance Taken together, the population-level endemism, specificity and stability exhibited by Symbiodinium raises concerns about the long-term adaptive capacity and persistence of these symbioses in an uncertain future of climate change.
Collapse
Affiliation(s)
- Daniel J Thornhill
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America.
| | | | | | | |
Collapse
|
12
|
Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 2008; 136:439-47. [PMID: 19109695 DOI: 10.1007/s10709-008-9344-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
Abstract
In this study we analysed mitochondrial DNA variation in Penaeus kerathurus prawns collected from seven locations along a transect across the Siculo-Tunisian region in order to verify if any population structuring exists over a limited geographical scale and to delineate the putative transition zone with sufficient accuracy. Partial DNA sequences of COI and 16S genes were analysed. In contrast to the highly conservative 16S gene, the COI sequences exhibited sufficient diversity for population analysis. The COI gene revealed low levels of haplotype and nucleotide diversities. The size of the annual landings of this commercial species suggests large population sizes. Hence, the low genetic diversity detected in this study could indicate a possible reduction in effective population sizes in the past. We detected significant genetic differentiation between eastern and western populations likely due to restricted gene flow across the Siculo-Tunisian boundary. We discuss the different evolutionary forces that may have shaped the genetic variation and suggest that the genetic divide is probably maintained by present-day dispersal limitation.
Collapse
|
13
|
Chenoweth SF, Hughes JM. Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indo-Pacific tasselfish, Polynemus sheridani. Mol Ecol 2003; 12:2387-97. [PMID: 12919476 DOI: 10.1046/j.1365-294x.2003.01921.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We assayed mtDNA haplotype [300 base pairs (bp) control region] geography and genealogy in the Indo-Pacific tasselfish, Polynemus sheridani from its contiguous estuarine distribution across northern Australia (n = 169). Eight estuaries were sampled from three oceanographic regions (Timor Sea, Gulf of Carpentaria and the Coral Sea) to assess the impact of Pleistocene sea level changes on the historical connectivity among P. sheridani populations. Specifically, we investigated the genetic consequences of disruption to Indian-Pacific Ocean connectivity brought about by the closure of the Torres Strait. Overall there was significant population subdivision among estuaries (FST = 0.161, PhiST = 0.187). Despite a linear distribution, P. sheridani did not show isolation by distance over the entire sampled range because of genetic similarity of estuaries greater than 3000 km apart. However, significant isolation by distance was detected between estuaries separated by less than 3000 km of coastline. Unlike many genetic studies of Indo-Pacific marine species, there was no evidence for an historical division between eastern and western populations. Instead, phylogeographical patterns were dominated by a starlike intraspecific phylogeny coupled with evidence for population expansion in both the Gulf of Carpentaria and the Coral Sea but not the Timor Sea. This was interpreted as evidence for recent west to east recolonization across of northern Australia following the last postglacial marine advance. We argue that although sufficient time has elapsed postcolonization for populations to approach gene flow-drift equilibrium over smaller spatial scales (< 3000 km), the signal of historical colonization persists to obscure the expected equilibrium pattern of isolation by distance over large spatial scales (> 3000 km).
Collapse
Affiliation(s)
- Stephen F Chenoweth
- Molecular Ecology Laboratory, Faculty of Environmental Sciences, Griffith University, Nathan, Queensland, Australia 4111.
| | | |
Collapse
|