1
|
Chen Q, Li Y, Fang Z, Wu Q, Tan L, Weng Q. CYP4BN4v7 regulates the population density dependent oocyte maturity rate in bean beetles. Sci Rep 2024; 14:28574. [PMID: 39562601 PMCID: PMC11576951 DOI: 10.1038/s41598-024-79866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
The bean beetle (Callosobruchus maculatus) clearly exhibits population density-dependent polymorphism. Cytochrome P450 (CYP) is involved in many aspects of the physiological activities of insects. However, the role of CYP in population density-dependent polymorphisms remains unknown. The terminal oocyte maturity rate of high-population-density individuals (H) was faster than that of low-population-density individuals (L). A total of 56 CYP-like genes were identified from transcriptomic and genomic data, including seven clan 2 CYP-like genes, seven mitochondrial CYP-like genes, 19 clan 3 CYP-like genes, and 23 clan 4 CYP-like genes. Gene duplication might occur in CYP9Z4-like, CYP345A1-like, CYP345A2-like, CYP349A1-like, CYP349A2-like, and CYP4BN4-like. Thirteen and two CYP-like genes were up-regulated and down-regulated, respectively, in H. Among these CYP-like genes, CYP4BN4v7-like was the most abundant CYP. CYP4BN4v7-like was more highly expressed in the head than in the thorax and abdomen. Its mRNA levels in the head, thorax, and abdomen were greater in H than in L. After RNA interference decreased its mRNA level, the terminal oocyte maturity rate decreased. Moreover, the expression level of insulin-like peptide 1 (ILP1), which plays a vital role in regulating terminal oocyte development, decreased in the head. In conclusion, CYP4BN4v7-like modulated the population density-dependent terminal oocyte maturity rate by regulating the expression of ILP1.
Collapse
Affiliation(s)
- Qianquan Chen
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
| | - Yongqin Li
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
- Qiannan Normal University for Nationalities, Duyun, Guizhou, China.
| |
Collapse
|
2
|
Li Y, Fang Z, Tan L, Wu Q, Liu Q, Wang Y, Weng Q, Chen Q. Gene redundancy and gene compensation of insulin-like peptides in the oocyte development of bean beetle. PLoS One 2024; 19:e0302992. [PMID: 38713664 PMCID: PMC11075890 DOI: 10.1371/journal.pone.0302992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/09/2024] Open
Abstract
Bean beetle (Callosobruchus maculatus) exhibits clear phenotypic plasticity depending on population density; However, the underlying molecular mechanism remains unknown. Compared to low-density individuals, high-density individuals showed a faster terminal oocyte maturity rate. Four insulin-like peptide (ILP) genes were identified in the bean beetle, which had higher expression levels in the head than in the thorax and abdomen. The population density could regulate the expression levels of CmILP1-3, CmILP2-3, and CmILP1 as well as CmILP3 in the head, thorax, and abdomen, respectively. RNA interference results showed that each CmILP could regulate terminal oocyte maturity rate, indicating that there was functional redundancy among CmILPs. Silencing each CmILP could lead to down-regulation of some other CmILPs, however, CmILP3 was up-regulated in the abdomen after silencing CmILP1 or CmILP2. Compared to single gene silencing, silencing CmILP3 with CmILP1 or CmILP2 at the same time led to more serious retardation in oocyte development, suggesting CmILP3 could be up-regulated to functionally compensate for the down-regulation of CmILP1 and CmILP2. In conclusion, population density-dependent plasticity in terminal oocyte maturity rate of bean beetle was regulated by CmILPs, which exhibited gene redundancy and gene compensation.
Collapse
Affiliation(s)
- Yongqin Li
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Yeying Wang
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
- Qiannan Normal University for Nationalities, Duyun, Guizhou, China
| | - Qianquan Chen
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| |
Collapse
|
3
|
Yang Z, Zhao A, Teng M, Li M, Wang H, Wang X, Liu Z, Zeng Q, Hu L, Hu J, Bao Z, Huang X. Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions. Evol Appl 2024; 17:e13657. [PMID: 38357357 PMCID: PMC10866071 DOI: 10.1111/eva.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Yantai Marine Economic Research InstituteYantaiChina
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
4
|
Parrett JM, Łukasiewicz A, Chmielewski S, Szubert-Kruszyńska A, Maurizio PL, Grieshop K, Radwan J. A sexually selected male weapon characterized by strong additive genetic variance and no evidence for sexually antagonistic polyphenic maintenance. Evolution 2023; 77:1289-1302. [PMID: 36848265 PMCID: PMC10234106 DOI: 10.1093/evolut/qpad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Sexual selection and sexual antagonism are important drivers of eco-evolutionary processes. The evolution of traits shaped by these processes depends on their genetic architecture, which remains poorly studied. Here, implementing a quantitative genetics approach using diallel crosses of the bulb mite, Rhizoglyphus robini, we investigated the genetic variance that underlies a sexually selected weapon that is dimorphic among males and female fecundity. Previous studies indicated that a negative genetic correlation between these two traits likely exists. We found male morph showed considerable additive genetic variance, which is unlikely to be explained solely by mutation-selection balance, indicating the likely presence of large-effect loci. However, a significant magnitude of inbreeding depression also indicates that morph expression is likely to be condition-dependent to some degree and that deleterious recessives can simultaneously contribute to morph expression. Female fecundity also showed a high degree of inbreeding depression, but the variance in female fecundity was mostly explained by epistatic effects, with very little contribution from additive effects. We found no significant genetic correlation, nor any evidence for dominance reversal, between male morph and female fecundity. The complex genetic architecture underlying male morph and female fecundity in this system has important implications for our understanding of the evolutionary interplay between purifying selection and sexually antagonistic selection.
Collapse
Affiliation(s)
- Jonathan M Parrett
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Łukasiewicz
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Paul L Maurizio
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Illinois, United States
| | - Karl Grieshop
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Lerch BA, Servedio MR. Predation drives complex eco-evolutionary dynamics in sexually selected traits. PLoS Biol 2023; 21:e3002059. [PMID: 37011094 PMCID: PMC10101644 DOI: 10.1371/journal.pbio.3002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/13/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
Predation plays a role in preventing the evolution of ever more complicated sexual displays, because such displays often increase an individual's predation risk. Sexual selection theory, however, omits a key feature of predation in modeling costs to sexually selected traits: Predation is density dependent. As a result of this density dependence, predator-prey dynamics should feed back into the evolution of sexual displays, which, in turn, feeds back into predator-prey dynamics. Here, we develop both population and quantitative genetic models of sexual selection that explicitly link the evolution of sexual displays with predator-prey dynamics. Our primary result is that predation can drive eco-evolutionary cycles in sexually selected traits. We also show that mechanistically modeling the cost to sexual displays as predation leads to novel outcomes such as the maintenance of polymorphism in sexual displays and alters ecological dynamics by muting prey cycles. These results suggest predation as a potential mechanism to maintain variation in sexual displays and underscore that short-term studies of sexual display evolution may not accurately predict long-run dynamics. Further, they demonstrate that a common verbal model (that predation limits sexual displays) with widespread empirical support can result in unappreciated, complex dynamics due to the density-dependent nature of predation.
Collapse
Affiliation(s)
- Brian A. Lerch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maria R. Servedio
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Burny C, Nolte V, Dolezal M, Schlötterer C. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in Drosophila melanogaster. Proc Biol Sci 2022; 289:20221857. [PMID: 36259211 PMCID: PMC9579754 DOI: 10.1098/rspb.2022.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental evolution combined with whole-genome sequencing (evolve and resequence (E&R)) is a powerful approach to study the adaptive architecture of selected traits. Nevertheless, so far the focus has been on the selective response triggered by a single stressor. Building on the highly parallel selection response of founder populations with reduced variation, we evaluated how the presence of a second stressor affects the genomic selection response. After 20 generations of adaptation to laboratory conditions at either 18°C or 29°C, strong genome-wide selection signatures were observed. Only 38% of the selection signatures can be attributed to laboratory adaptation (no difference between temperature regimes). The remaining selection responses are either caused by temperature-specific effects, or reflect the joint effects of temperature and laboratory adaptation (same direction, but the magnitude differs between temperatures). The allele frequency changes resulting from the combined effects of temperature and laboratory adaptation were more extreme in the hot environment for 83% of the affected genomic regions-indicating widespread synergistic effects of the two stressors. We conclude that E&R with reduced genetic variation is a powerful approach to study genome-wide fitness consequences driven by the combined effects of multiple environmental factors.
Collapse
Affiliation(s)
- Claire Burny
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna 1210, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Vienna 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
7
|
Sepil I, Perry JC, Dore A, Chapman T, Wigby S. Experimental evolution under varying sex ratio and nutrient availability modulates male mating success in Drosophila melanogaster. Biol Lett 2022; 18:20210652. [PMID: 35642384 PMCID: PMC9156920 DOI: 10.1098/rsbl.2021.0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster, using experimental evolution. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved under protein restriction. By contrast, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success. Males that evolved under protein restriction were relatively poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.
Collapse
Affiliation(s)
- Irem Sepil
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jennifer C Perry
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alice Dore
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Cheng Y, Lu T, Guo J, Lin Z, Jin Q, Zhang X, Zou Z. Helicoverpa armigera miR-2055 regulates lipid metabolism via fatty acid synthase expression. Open Biol 2022; 12:210307. [PMID: 35232249 PMCID: PMC8889172 DOI: 10.1098/rsob.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insect hormones and microRNAs regulate lipid metabolism, but the mechanisms are not fully elucidated. Here, we found that cotton bollworm larvae feeding on Arabidopsis thaliana (AT) leaves had a lower triacylglycerol (TAG) level and more delayed development than individuals feeding on artificial diet (AD). Association analysis of small RNA and mRNA revealed that the level of miR-2055, a microRNA related to lipid metabolism, was significantly higher in larvae feeding on AT. Dual-luciferase reporter assays demonstrated miR-2055 binding to 3' UTR of fatty acid synthase (FAS) mRNA to suppress its expression. Elevating the level of miR-2055 in larvae by agomir injection decreased FAS mRNA and protein levels, which resulted in reduction of free fatty acid (FFA) and TAG in fat body. Interestingly, in vitro assays illustrated that juvenile hormone (JH) increased miR-2055 accumulation in a dosage-dependent manner, whereas knockdown of Methoprene tolerant (Met) or Kruppel homologue 1 (Kr-h1) decreased the miR-2055 level. This implied that JH induces the expression of miR-2055 via a Met-Kr-h1 signal. These findings demonstrate that JH and miRNA cooperate to modulate lipid synthesis, which provides new insights into the regulatory mechanisms of metabolism in insects.
Collapse
Affiliation(s)
- Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, People's Republic of China
| | - Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junliang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiao Jin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
9
|
Sharda S, Kawecki TJ, Hollis B. Adaptation to a bacterial pathogen in Drosophila melanogaster is not aided by sexual selection. Ecol Evol 2022; 12:e8543. [PMID: 35169448 PMCID: PMC8840902 DOI: 10.1002/ece3.8543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Theory predicts that sexual selection should aid adaptation to novel environments, but empirical support for this idea is limited. Pathogens are a major driver of host evolution and, unlike abiotic selection pressures, undergo epidemiological and co-evolutionary cycles with the host involving adaptation and counteradaptation. Because of this, populations harbor ample genetic variation underlying immunity and the opportunity for sexual selection based on condition-dependent "good genes" is expected to be large. In this study, we evolved populations of Drosophila melanogaster in a 2-way factorial design manipulating sexual selection and pathogen presence, using a gram-negative insect pathogen Pseudomonas entomophila, for 14 generations. We then examined how the presence of sexual selection and the pathogen, as well as any potential interaction, affected the evolution of pathogen resistance. We found increased resistance to P. entomophila in populations that evolved under pathogen pressure, driven primarily by increased female survival after infection despite selection for resistance acting only on males over the course of experimental evolution. This result suggests that the genetic basis of resistance is in part shared between the sexes. We did not find any evidence of sexual selection aiding adaptation to pathogen, however, a finding contrary to the predictions of "good genes" theory. Our results therefore provide no support for a role for sexual selection in the evolution of immunity in this experimental system.
Collapse
Affiliation(s)
- Sakshi Sharda
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Brian Hollis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
10
|
Heinen‐Kay JL, Kay AD, Zuk M. How urbanization affects sexual communication. Ecol Evol 2021; 11:17625-17650. [PMID: 35003629 PMCID: PMC8717295 DOI: 10.1002/ece3.8328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Urbanization is rapidly altering landscapes worldwide, changing environmental conditions, and creating novel selection pressures for many organisms. Local environmental conditions affect the expression and evolution of sexual signals and mating behaviors; changes in such traits have important evolutionary consequences because of their effect on reproduction. In this review, we synthesize research investigating how sexual communication is affected by the environmental changes associated with urbanization-including pollution from noise, light, and heavy metals, habitat fragmentation, impervious surfaces, urban heat islands, and changes in resources and predation. Urbanization often has negative effects on sexual communication through signal masking, altering condition-dependent signal expression, and weakening female preferences. Though there are documented instances of seemingly adaptive shifts in trait expression, the ultimate impact on fitness is rarely tested. The field of urban evolution is still relatively young, and most work has tested whether differences occur in response to various aspects of urbanization. There is limited information available about whether these responses represent phenotypic plasticity or genetic changes, and the extent to which observed shifts in sexual communication affect reproductive fitness. Our understanding of how sexual selection operates in novel, urbanized environments would be bolstered by more studies that perform common garden studies and reciprocal transplants, and that simultaneously evaluate multiple environmental factors to tease out causal drivers of observed phenotypic shifts. Urbanization provides a unique testing ground for evolutionary biologists to study the interplay between ecology and sexual selection, and we suggest that more researchers take advantage of these natural experiments. Furthermore, understanding how sexual communication and mating systems differ between cities and rural areas can offer insights on how to mitigate negative, and accentuate positive, consequences of urban expansion on the biota, and provide new opportunities to underscore the relevance of evolutionary biology in the Anthropocene.
Collapse
Affiliation(s)
- Justa L. Heinen‐Kay
- Department of Ecology, Evolution & BehaviorUniversity of MinnesotaSt. PaulUSA
| | - Adam D. Kay
- Biology DepartmentUniversity of St. ThomasSt. PaulUSA
| | - Marlene Zuk
- Department of Ecology, Evolution & BehaviorUniversity of MinnesotaSt. PaulUSA
| |
Collapse
|
11
|
Rowe L, Rundle HD. The Alignment of Natural and Sexual Selection. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-033324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection has the potential to decrease mean fitness in a population through an array of costs to nonsexual fitness. These costs may be offset when sexual selection favors individuals with high nonsexual fitness, causing the alignment of sexual and natural selection. We review the many laboratory experiments that have manipulated mating systems aimed at quantifying the net effects of sexual selection on mean fitness. These must be interpreted in light of population history and the diversity of ways manipulations have altered sexual interactions, sexual conflict, and sexual and natural selection. Theory and data suggest a net benefit is more likely when sexually concordant genetic variation is enhanced and that ecological context can mediate the relative importance of these different effects. Comparative studies have independently examined the consequences of sexual selection for population/species persistence. These provide little indication of a benefit, and interpreting these higher-level responses is challenging.
Collapse
Affiliation(s)
- Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Howard D. Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
12
|
Arnqvist G, Grieshop K, Hotzy C, Rönn J, Polak M, Rowe L. Direct and indirect effects of male genital elaboration in female seed beetles. Proc Biol Sci 2021; 288:20211068. [PMID: 34229496 PMCID: PMC8261210 DOI: 10.1098/rspb.2021.1068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 11/12/2022] Open
Abstract
Our understanding of coevolution between male genitalia and female traits remains incomplete. This is perhaps especially true for genital traits that cause internal injuries in females, such as the spiny genitalia of seed beetles where males with relatively long spines enjoy a high relative fertilization success. We report on a new set of experiments, based on extant selection lines, aimed at assessing the effects of long male spines on females in Callosobruchus maculatus. We first draw on an earlier study using microscale laser surgery, and demonstrate that genital spines have a direct negative (sexually antagonistic) effect on female fecundity. We then ask whether artificial selection for long versus short spines resulted in direct or indirect effects on female lifetime offspring production. Reference females mating with males from long-spine lines had higher offspring production, presumably due to an elevated allocation in males to those ejaculate components that are beneficial to females. Remarkably, selection for long male genital spines also resulted in an evolutionary increase in female offspring production as a correlated response. Our findings thus suggest that female traits that affect their response to male spines are both under direct selection to minimize harm but are also under indirect selection (a good genes effect), consistent with the evolution of mating and fertilization biases being affected by several simultaneous processes.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Karl Grieshop
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Cosima Hotzy
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Johanna Rönn
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Michal Polak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium for Advanced Study, Uppsala University, 752 38 Uppsala, Sweden
| |
Collapse
|
13
|
Pilakouta N, Ålund M. Editorial: Sexual selection and environmental change: what do we know and what comes next? Curr Zool 2021; 67:293-298. [PMID: 34616921 PMCID: PMC8488989 DOI: 10.1093/cz/zoab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Natalie Pilakouta
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D 75236 Uppsala, Sweden
| |
Collapse
|
14
|
Emberts Z, Wiens JJ. Do sexually selected weapons drive diversification? Evolution 2021; 75:2411-2424. [PMID: 33738793 DOI: 10.1111/evo.14212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Sexual selection is often thought to promote speciation. This expectation is largely driven by the fact that sexually selected traits can influence mating patterns and contribute to reproductive isolation. Indeed, some comparative studies have shown that clades with sexually selected traits have increased rates of speciation and diversification. However, these studies have almost exclusively focused on one mechanism of sexual selection: female choice. Another widespread mechanism is male-male competition. Few empirical studies (if any) have investigated the role of this alternative mechanism in driving diversification. Nevertheless, recent reviews have suggested that male-male competition can increase speciation rates. Here, we investigated whether traits associated with precopulatory male-male competition (i.e., sexually selected weapons) have promoted speciation and diversification in insects. We focused on three clades with both weapons and suitable phylogenies: leaf-footed and broad-headed bugs (Coreidae+Alydidae; ∼2850 species), stick insects and relatives (Phasmatodea; ∼3284 species), and scarab beetles (Scarabaeoidea; ∼39,717 species). We found no evidence that weapon-bearing lineages in these clades have higher rates of speciation or diversification than their weaponless relatives. Thus, our results suggest that precopulatory male-male competition may not have strong, general effects on speciation and diversification in insects, a group encompassing ∼60% of all described species.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
15
|
Kyogoku D, Sota T. Sexual selection increased offspring production via evolution of male and female traits. J Evol Biol 2020; 34:501-511. [PMID: 33314378 DOI: 10.1111/jeb.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 11/28/2022]
Abstract
Phenotypic evolution driven by sexual selection can impact the fitness of individuals and thus population performance through multiple mechanisms, but it is unresolved how and when sexual selection affects offspring production by females. We examined the effects of sexual selection on offspring production by females using replicated experimental evolutionary lines of Callosobruchus chinensis that were kept under polygamy (with sexual selection) or monogamy (without sexual selection) for 21 generations. We found that polygamous-line pairs produced more offspring than monogamous-line pairs, because polygamous-line beetles evolved to be larger than monogamous-line beetles, and larger females were more fecund. Egg hatchability did not differ between polygamous- and monogamous-line pairs, as a result of the positive and negative effects of sexual selection cancelling out. When mated with an individual from a common tester line, both polygamous-line females and males showed higher hatchability in resultant eggs than monogamous ones. Further, cohabitation with a male reduced egg hatchability, and this effect was more pronounced in polygamous-line than in monogamous-line males. These results demonstrate multiple mechanisms by which sexual selection affects female fitness, with the net effect being positive. Analyses of how development time, body size and male genital morphology were influenced by selection regime suggest that these results arose from both evolution via good-gene processes and sexually antagonistic selection. Our results are also consistent with the hypothesis that the fitness consequences of sexual selection for females are dependent on the evolutionary history of the population.
Collapse
Affiliation(s)
- Daisuke Kyogoku
- Ecological Integration, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Stångberg J, Immonen E, Moreno PP, Bolund E. Experimentally induced intrasexual mating competition and sex-specific evolution in female and male nematodes. J Evol Biol 2020; 33:1677-1688. [PMID: 32945028 PMCID: PMC7756511 DOI: 10.1111/jeb.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Sexual dimorphism in life history traits and their trade-offs is widespread among sexually reproducing animals and is strongly influenced by the differences in reproductive strategies between the sexes. We investigated how intrasexual competition influenced specific life history traits, important to fitness and their trade-offs in the outcrossing nematode Caenorhabditis remanei. Here, we altered the strength of sex-specific selection through experimental evolution with increased potential for intrasexual competition by skewing the adult sex ratio towards either females or males (1:10 or 10:1) over 30 generations and subsequently measured the phenotypic response to selection in three traits related to fitness: body size, fecundity and tolerance to heat stress. We observed a greater evolutionary change in females than males for body size and peak fitness, suggesting that females may experience stronger net selection and potentially harbour higher amounts of standing genetic variance compared to males. Our study highlights the importance of investigating direct and indirect effects of intrasexual competition in both sexes in order to capture sex-specific responses and understand the evolution of sexual dimorphism in traits expressed by both sexes.
Collapse
Affiliation(s)
- Josefine Stångberg
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Pilar Puimedon Moreno
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Bolund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Messina FJ, Lish AM, Springer A, Gompert Z. Colonization of Marginal Host Plants by Seed Beetles (Coleoptera: Chrysomelidae): Effects of Geographic Source and Genetic Admixture. ENVIRONMENTAL ENTOMOLOGY 2020; 49:938-946. [PMID: 32484545 DOI: 10.1093/ee/nvaa065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 06/11/2023]
Abstract
The ability to adapt to a novel host plant may vary among insect populations with different genetic histories, and colonization of a marginal host may be facilitated by genetic admixture of disparate populations. We assembled populations of the seed beetle, Callosobruchus maculatus (F.), from four continents, and compared their ability to infest two hosts, lentil and pea. We also formed two cross-continent hybrids (Africa × N.A. and Africa × S.A.). In pre-selection assays, survival was only ~3% in lentil and ~40% in pea. For three replicate populations per line, colonization success on lentil was measured as cumulative exit holes after 75-175 d. On pea, we estimated the change in larval survival after five generations of selection. Females in all lines laid few eggs on lentil, and survival of F1 larvae was uniformly <5%. Subsequently, however, the lines diverged considerably in population growth. Performance on lentil was highest in the Africa × N.A. hybrid, which produced far more adults (mean > 11,000) than either parental line. At the other extreme, Asian populations on lentil appeared to have gone extinct. The Africa × N.A. line also exhibited the highest survival on pea, and again performed better than either parent line. However, no line displayed a rapid increase in survival on pea, as is sometimes observed on lentil. Our results demonstrate that geographic populations can vary substantially in their responses to the same novel resource. In addition, genetic admixtures (potentially caused by long-distance transport of infested seeds) may facilitate colonization of an initially poor host.
Collapse
Affiliation(s)
| | | | - Amy Springer
- Department of Biology, Utah State University, Logan, UT
| | | |
Collapse
|
18
|
Godwin JL, Lumley AJ, Michalczyk Ł, Martin OY, Gage MJG. Mating patterns influence vulnerability to the extinction vortex. GLOBAL CHANGE BIOLOGY 2020; 26:4226-4239. [PMID: 32558066 DOI: 10.1111/gcb.15186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix 'good genes' and purge 'bad genes', then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95-generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.
Collapse
Affiliation(s)
- Joanne L Godwin
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alyson J Lumley
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Oliver Y Martin
- Department of Biology (D-BIOL) & Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
19
|
Gibson Vega A, Kennington WJ, Tomkins JL, Dugand RJ. Experimental evidence for accelerated adaptation to desiccation through sexual selection on males. J Evol Biol 2020; 33:1060-1067. [PMID: 32315476 DOI: 10.1111/jeb.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
The impact of sexual selection on the adaptive process remains unclear. On the one hand, sexual selection might hinder adaptation by favouring costly traits and preferences that reduce nonsexual fitness. On the other hand, condition dependence of success in sexual selection may accelerate adaptation. Here, we used replicate populations of Drosophila melanogaster to artificially select on male desiccation resistance while manipulating the opportunity for precopulatory sexual selection in a factorial design. Following five generations of artificial selection, we measured the desiccation resistance of males and females to test whether the addition of sexual selection accelerated adaptation. We found a significant interaction between the effects of natural selection and sexual selection: desiccation resistance was highest in populations where sexual selection was allowed to operate. Despite only selecting on males, we also found a correlated response in females. These results provide empirical support for the idea that sexual selection can accelerate the rate of adaptation.
Collapse
Affiliation(s)
- Aline Gibson Vega
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Robert J Dugand
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
20
|
Godinho DP, Cruz MA, Charlery de la Masselière M, Teodoro‐Paulo J, Eira C, Fragata I, Rodrigues LR, Zélé F, Magalhães S. Creating outbred and inbred populations in haplodiploids to measure adaptive responses in the laboratory. Ecol Evol 2020; 10:7291-7305. [PMID: 32760529 PMCID: PMC7391545 DOI: 10.1002/ece3.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field-collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib-mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Miguel A. Cruz
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Maud Charlery de la Masselière
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Jéssica Teodoro‐Paulo
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Cátia Eira
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Inês Fragata
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
21
|
Rayner JG, Schneider WT, Bailey NW. Can behaviour impede evolution? Persistence of singing effort after morphological song loss in crickets. Biol Lett 2020; 16:20190931. [PMID: 32544378 DOI: 10.1098/rsbl.2019.0931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evolutionary loss of sexual signals is widespread. Examining the consequences for behaviours associated with such signals can provide insight into factors promoting or inhibiting trait loss. We tested whether a behavioural component of a sexual trait, male calling effort, has been evolutionary reduced in silent populations of Hawaiian field crickets (Teleogryllus oceanicus). Cricket song requires energetically costly wing movements, but 'flatwing' males have feminized wings that preclude song and protect against a lethal, eavesdropping parasitoid. Flatwing males express wing movement patterns associated with singing but, in contrast with normal-wing males, sustained periods of wing movement cannot confer sexual selection benefits and should be subject to strong negative selection. We developed an automated technique to quantify how long males spend expressing wing movements associated with song. We compared calling effort among populations of Hawaiian crickets with differing proportions of silent males and between male morphs. Contrary to expectation, silent populations invested as much in calling effort as non-silent populations. Additionally, flatwing and normal-wing males from the same population did not differ in calling effort. The lack of evolved behavioural adjustment following morphological change in silent Hawaiian crickets illustrates how behaviour might sometimes impede, rather than facilitate, evolution.
Collapse
Affiliation(s)
- Jack G Rayner
- School of Biology, University of St Andrews, St Andrews, UK
| | | | | |
Collapse
|
22
|
Rêgo A, Chaturvedi S, Springer A, Lish AM, Barton CL, Kapheim KM, Messina FJ, Gompert Z. Combining Experimental Evolution and Genomics to Understand How Seed Beetles Adapt to a Marginal Host Plant. Genes (Basel) 2020; 11:genes11040400. [PMID: 32276323 PMCID: PMC7230198 DOI: 10.3390/genes11040400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Genes that affect adaptive traits have been identified, but our knowledge of the genetic basis of adaptation in a more general sense (across multiple traits) remains limited. We combined population-genomic analyses of evolve-and-resequence experiments, genome-wide association mapping of performance traits, and analyses of gene expression to fill this knowledge gap and shed light on the genomics of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus maculatus. Using population-genomic approaches, we detected modest parallelism in allele frequency change across replicate lines during adaptation to lentil. Mapping populations derived from each lentil-adapted line revealed a polygenic basis for two host-specific performance traits (weight and development time), which had low to modest heritabilities. We found less evidence of parallelism in genotype-phenotype associations across these lines than in allele frequency changes during the experiments. Differential gene expression caused by differences in recent evolutionary history exceeded that caused by immediate rearing host. Together, the three genomic datasets suggest that genes affecting traits other than weight and development time are likely to be the main causes of parallel evolution and that detoxification genes (especially cytochrome P450s and beta-glucosidase) could be especially important for colonization of lentil by C. maculatus.
Collapse
Affiliation(s)
- Alexandre Rêgo
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
- Department of Zoology, Stockholm University, 114 19 Stockholm, Sweden
| | - Samridhi Chaturvedi
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
| | - Amy Springer
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Alexandra M. Lish
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Caroline L. Barton
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Karen M. Kapheim
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Frank J. Messina
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA; (A.R.); (A.S.); (A.M.L.); (C.L.B.); (K.M.K.); (F.J.M.)
- Correspondence:
| |
Collapse
|
23
|
Absence of reproduction-immunity trade-off in male Drosophila melanogaster evolving under differential sexual selection. BMC Evol Biol 2020; 20:13. [PMID: 31992187 PMCID: PMC6988192 DOI: 10.1186/s12862-019-1574-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
Background The theory of trade-off suggests that limited resources should lead to trade-off in resource intensive traits such as, immunity related and sexually selected traits in males. Alternatively, sexual exaggerations can also act as an honest indicator of underlying immunocompetence, leading to positive correlations between these traits. Evidences in support of either hypothesis in invertebrates are equivocal. Whereas several studies have addressed this question, few have used naturally occurring pathogens and realized post infection realized immunity (e.g., survivorship) to assay the fitness correlations between these two sets of traits. Results Adopting an experimental evolution approach, we evolved replicate populations of Drosophila melanogaster under high and low sexual selection regimes for over a hundred generations and found the following in virgin and mated males in three separate assays:
Post infection survivorship against two natural pathogens - Pseudomonas entomophila (Pe) and Staphylococcus succinus (Ss): Mated males survived better against Pe, but were no different than virgins against Ss. Bacterial clearance ability against a third natural pathogen Providencia rettgeri (Pr): Mated males had significantly lower CFUs than virgins.
However, sexual selection history had no effect on realized immunity of either virgin or mated males. Conclusion We show that while mating can affect realized immunity in a pathogen specific way, sexual selection did not affect the same. The results highlight that complex polygenic traits such as immunity and reproductive traits not necessarily evolve following a binary trade-off model. We also stress the importance natural pathogens while studying sexual selection-immunity correlations.
Collapse
|
24
|
Chen Q, Ma J, Yang H, Gong J, Gong X, Weng Q. Seed-Coat Colour Affects Oviposition in the Bean Beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae). ANN ZOOL FENN 2019. [DOI: 10.5735/086.056.0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qianquan Chen
- School of Life Sciences, Guizhou Normal University, CN-550025 Guian, China
| | - Jinjin Ma
- School of Life Sciences, Guizhou Normal University, CN-550025 Guian, China
| | - Hua Yang
- School of Life Sciences, Guizhou Normal University, CN-550025 Guian, China
| | - Jiahui Gong
- School of Life Sciences, Guizhou Normal University, CN-550025 Guian, China
| | - Xiaoqin Gong
- School of Life Sciences, Guizhou Normal University, CN-550025 Guian, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, CN-550025 Guian, China
| |
Collapse
|
25
|
Martinossi‐Allibert I, Thilliez E, Arnqvist G, Berger D. Sexual selection, environmental robustness, and evolutionary demography of maladapted populations: A test using experimental evolution in seed beetles. Evol Appl 2019; 12:1371-1384. [PMID: 31417621 PMCID: PMC6691221 DOI: 10.1111/eva.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023] Open
Abstract
Whether sexual selection impedes or aids adaptation has become an outstanding question in times of rapid environmental change and parallels the debate about how the evolution of individual traits impacts on population dynamics. The net effect of sexual selection on population viability results from a balance between genetic benefits of "good-genes" effects and costs of sexual conflict. Depending on how these facets of sexual selection are affected under environmental change, extinction of maladapted populations could be either avoided or accelerated. Here, we evolved seed beetles under three alternative mating regimes to disentangle the contributions of sexual selection, fecundity selection, and male-female coevolution to individual reproductive success and population fitness. We compared these contributions between the ancestral environment and two stressful environments (elevated temperature and a host plant shift). We found evidence that sexual selection on males had positive genetic effects on female fitness components across environments, supporting good-genes sexual selection. Interestingly, however, when males evolved under sexual selection with fecundity selection removed, they became more robust to both temperature and host plant stress compared to their conspecific females and males from the other evolution regimes that applied fecundity selection. We quantified the population-level consequences of this sex-specific adaptation and found evidence that the cost of sociosexual interactions in terms of reduced offspring production was higher in the regime applying only sexual selection to males. Moreover, the cost tended to be more pronounced at the elevated temperature to which males from the regime were more robust compared to their conspecific females. These results illustrate the tension between individual-level adaptation and population-level viability in sexually reproducing species and suggest that the relative efficacies of sexual selection and fecundity selection can cause inherent sex differences in environmental robustness that may impact demography of maladapted populations.
Collapse
Affiliation(s)
| | - Emma Thilliez
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
26
|
Parrett JM, Mann DJ, Chung AYC, Slade EM, Knell RJ. Sexual selection predicts the persistence of populations within altered environments. Ecol Lett 2019; 22:1629-1637. [DOI: 10.1111/ele.13358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/22/2019] [Accepted: 07/05/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Jonathan M. Parrett
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Darren J. Mann
- Hope Entomological Collections, Museum of Natural History Oxford University Oxford UK
| | - Arthur Y. C. Chung
- Forestry Department Forest Research Centre P.O. Box 1407 90715 Sandakan Sabah Malaysia
| | - Eleanor M. Slade
- Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK
- Asian School of the Environment Nanyang Technological University 50 Nanyang Avenue Singapore City 639798 Singapore
| | - Robert J. Knell
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
27
|
Baur J, Nsanzimana JD, Berger D. Sexual selection and the evolution of male and female cognition: A test using experimental evolution in seed beetles. Evolution 2019; 73:2390-2400. [PMID: 31273775 DOI: 10.1111/evo.13793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
The mating system is thought to be important in shaping animal intelligence and sexual selection has been depicted as a driver of cognitive evolution, either directly by promoting superior cognitive ability during mate competition, or indirectly via genic capture of sexually selected traits. However, it remains unclear if intensified sexual selection leads to general improvements in cognitive abilities. Here, we evaluated this hypothesis by applying experimental evolution in seed beetles. Replicate lines, maintained for 35 generations of either enforced monogamy (eliminating sexual selection) or polygamy, were challenged to locate and discriminate among mates (male assays) or host seeds (female assays) in a spatial chemosensory learning task. All lines displayed learning between trials. Moreover, polygamous males outperformed monogamous males, providing evidence that sexual selection can lead to the evolution of improved male cognition. However, there were no differences between regimes in rates of male learning, and polygamous females showed no improvement in host search and even signs of reduced learning. Hence, sexual selection increased performance in cognitively demanding mate search, but it did not lead to general increases in cognitive abilities. We discuss the possibility that sexually antagonistic selection is an important factor maintaining abundant genetic variation in cognitive traits.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Animal Ecology program, Uppsala University, Uppsala, Sweden
| | - Jean d'Amour Nsanzimana
- Department of Ecology and Genetics, Animal Ecology program, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology program, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Yun L, Bayoumi M, Yang S, Chen PJ, Rundle HD, Agrawal AF. Testing for local adaptation in adult male and female fitness among populations evolved under different mate competition regimes. Evolution 2019; 73:1604-1616. [DOI: 10.1111/evo.13787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Li Yun
- Department of Ecology & Evolutionary BiologyUniversity of Toronto Toronto Ontario Canada
- Department of BiologyUniversity of Ottawa Ottawa Ontario Canada
| | - Malak Bayoumi
- Department of Ecology & Evolutionary BiologyUniversity of Toronto Toronto Ontario Canada
| | - Seon Yang
- Department of Ecology & Evolutionary BiologyUniversity of Toronto Toronto Ontario Canada
| | - Patrick J. Chen
- Department of Ecology & Evolutionary BiologyUniversity of Toronto Toronto Ontario Canada
| | | | - Aneil F. Agrawal
- Department of Ecology & Evolutionary BiologyUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
29
|
Boycheva Woltering S, Romeis J, Collatz J. Influence of the Rearing Host on Biological Parameters of Trichopria drosophilae, a Potential Biological Control Agent of Drosophila suzukii. INSECTS 2019; 10:insects10060183. [PMID: 31242634 PMCID: PMC6628421 DOI: 10.3390/insects10060183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/06/2023]
Abstract
Trichopria drosophilae is a pupal parasitoid that can develop in a large number of drosophilid host species including the invasive pest Drosophila suzukii, and is considered a biological control agent. We investigated the influence of the rearing host on the preference and performance of the parasitoid, using two different strains of T. drosophilae, reared on D. melanogaster or D. suzukii for approximately 30 generations. Host switching was employed to assess the impact of host adaptation on T. drosophilae performance. In a no-choice experimental setup, T. drosophilae produced more and larger offspring on the D. suzukii host. When given a choice, T. drosophilae showed a preference towards D. suzukii, and an increased female ratio on this host compared to D. melanogaster and D. immigrans. The preference was independent from the rearing host and was confirmed in behavioral assays. However, the preference towards D. suzukii increased further after a host switch from D. melanogaster to D. suzukii in just one generation. Our data indicate that rearing T. drosophilae for several years on D. melanogaster does not compromise its performance on D. suzukii in the laboratory. However, producing a final generation on D. suzukii prior to release could increase its efficacy towards the pest.
Collapse
Affiliation(s)
- Svetlana Boycheva Woltering
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| | - Jana Collatz
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| |
Collapse
|
30
|
Qureshi A, Aldersley A, Hollis B, Ponlawat A, Cator LJ. Male competition and the evolution of mating and life-history traits in experimental populations of Aedes aegypti. Proc Biol Sci 2019; 286:20190591. [PMID: 31185872 PMCID: PMC6571471 DOI: 10.1098/rspb.2019.0591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae. aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.
Collapse
Affiliation(s)
- Alima Qureshi
- 1 Department of Life Sciences, Imperial College London , Silwood Park, Ascot SL5 7PY , UK
| | - Andrew Aldersley
- 1 Department of Life Sciences, Imperial College London , Silwood Park, Ascot SL5 7PY , UK
| | - Brian Hollis
- 2 School of Life Sciences, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Alongkot Ponlawat
- 3 Department of Entomology, Armed Forces Research Institute of Medical Sciences , Bangkok 10400 , Thailand
| | - Lauren J Cator
- 1 Department of Life Sciences, Imperial College London , Silwood Park, Ascot SL5 7PY , UK
| |
Collapse
|
31
|
Sexual conflict drives male manipulation of female postmating responses in Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:8437-8444. [PMID: 30962372 PMCID: PMC6486729 DOI: 10.1073/pnas.1821386116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In species with males and females, reproduction requires contributions from both sexes and therefore some degree of cooperation. At the same time, antagonistic interactions can evolve because of the differing goals of males and females. We aligned the interests of the sexes in the naturally promiscuous fruit fly Drosophila melanogaster by enforcing randomized monogamy for more than 150 generations. Males repeatedly evolved to manipulate females less, a pattern visible in both the timing of female reproductive effort and gene expression changes after mating. Male investment in expression of genes encoding seminal fluid proteins, which shape the female postmating response, declined concurrently. Our results confirm the presence of sexually antagonistic selection on postcopulatory interactions that can be reversed by monogamy. In many animals, females respond to mating with changes in physiology and behavior that are triggered by molecules transferred by males during mating. In Drosophila melanogaster, proteins in the seminal fluid are responsible for important female postmating responses, including temporal changes in egg production, elevated feeding rates and activity levels, reduced sexual receptivity, and activation of the immune system. It is unclear to what extent these changes are mutually beneficial to females and males or instead represent male manipulation. Here we use an experimental evolution approach in which females are randomly paired with a single male each generation, eliminating any opportunity for competition for mates or mate choice and thereby aligning the evolutionary interests of the sexes. After >150 generations of evolution, males from monogamous populations elicited a weaker postmating stimulation of egg production and activity than males from control populations that evolved with a polygamous mating system. Males from monogamous populations did not differ from males from polygamous populations in their ability to induce refractoriness to remating in females, but they were inferior to polygamous males in sperm competition. Mating-responsive genes in both the female abdomen and head showed a dampened response to mating with males from monogamous populations. Males from monogamous populations also exhibited lower expression of genes encoding seminal fluid proteins, which mediate the female response to mating. Together, these results demonstrate that the female postmating response, and the male molecules involved in eliciting this response, are shaped by ongoing sexual conflict.
Collapse
|
32
|
Molecular evidence supports a genic capture resolution of the lek paradox. Nat Commun 2019; 10:1359. [PMID: 30911052 PMCID: PMC6433924 DOI: 10.1038/s41467-019-09371-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
The genic capture hypothesis, where sexually selected traits capture genetic variation in condition and the condition reflects genome-wide mutation load, stands to explain the presence of abundant genetic variation underlying sexually selected traits. Here we test this hypothesis by applying bidirectional selection to male mating success for 14 generations in replicate populations of Drosophila melanogaster. We then resequenced the genomes of flies from each population. Consistent with the central predictions of the genic capture hypothesis, we show that genetic variance decreased with success selection and increased with failure selection, providing evidence for purifying sexual selection. This pattern was distributed across the genome and no consistent molecular pathways were associated with divergence, consistent with condition being the target of selection. Together, our results provide molecular evidence suggesting that strong sexual selection erodes genetic variation, and that genome-wide mutation-selection balance contributes to its maintenance.
Collapse
|
33
|
Parrett JM, Knell RJ. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc Biol Sci 2019; 285:rspb.2018.0303. [PMID: 29669902 DOI: 10.1098/rspb.2018.0303] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 01/03/2023] Open
Abstract
Strong sexual selection has been reported to both enhance and hinder the adaptive capacity and persistence of populations when exposed to novel environments. Consequently, how sexual selection influences population adaption and persistence under stress remains widely debated. Here, we present two empirical investigations of the fitness consequences of sexual selection on populations of the Indian meal moth, Plodia interpunctella, exposed to stable or gradually increasing temperatures. When faced with increasing temperatures, strong sexual selection was associated with both increased fecundity and offspring survival compared with populations experiencing weak sexual selection, suggesting sexual selection acts to drive adaptive evolution by favouring beneficial alleles. Strong sexual selection did not, however, delay extinction when the temperature became excessively high. By manipulating individuals' mating opportunities during fitness assays, we were able to assess the effect of multiple mating independently from the effect of population-level sexual selection, and found that polyandry has a positive effect on both fecundity and offspring survival under increasing temperatures in those populations evolving with weak sexual selection. Within stable temperatures, there were some benefits from strong sexual selection but these were not consistent across the entire experiment, possibly reflecting changing costs and benefits of sexual selection under stabilizing and directional selection. These results indicate that sexual selection can provide a buffer against climate change and increase adaptation rates within a continuously changing environment. These positive effects of sexual selection may, however, be too small to protect populations and delay extinction when environmental changes are relatively rapid.
Collapse
Affiliation(s)
- Jonathan M Parrett
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Robert J Knell
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
34
|
Bayram H, Sayadi A, Immonen E, Arnqvist G. Identification of novel ejaculate proteins in a seed beetle and division of labour across male accessory reproductive glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:50-57. [PMID: 30529580 DOI: 10.1016/j.ibmb.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The male ejaculate contains a multitude of seminal fluid proteins (SFPs), many of which are key reproductive molecules, as well as sperm. However, the identification of SFPs is notoriously difficult and a detailed understanding of this complex phenotype has only been achieved in a few model species. We employed a recently developed proteomic method involving whole-organism stable isotope labelling coupled with proteomic and transcriptomic analyses to characterize ejaculate proteins in the seed beetle Callosobruchus maculatus. We identified 317 proteins that were transferred to females at mating, and a great majority of these showed signals of secretion and were highly male-biased in expression in the abdomen. These male-derived proteins were enriched with proteins involved in general metabolic and catabolic processes but also with proteolytic enzymes and proteins involved in protection against oxidative stress. Thirty-seven proteins showed significant homology with SFPs previously identified in other insects. However, no less than 92 C. maculatus ejaculate proteins were entirely novel, receiving no significant blast hits and lacking homologs in extant data bases, consistent with a rapid and divergent evolution of SFPs. We used 3D micro-tomography in conjunction with proteomic methods to identify 5 distinct pairs of male accessory reproductive glands and to show that certain ejaculate proteins were only recovered in certain male glands. Finally, we provide a tentative list of 231 candidate female-derived reproductive proteins, some of which are likely important in ejaculate processing and/or sperm storage.
Collapse
Affiliation(s)
- Helen Bayram
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
35
|
Affiliation(s)
- Erik I. Svensson
- Evolutionary Ecology Unit, Department of Biology Lund University Lund Sweden
| |
Collapse
|
36
|
Messina FJ, Lish AM, Gompert Z. Variable Responses to Novel Hosts by Populations of the Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:1194-1202. [PMID: 30052864 DOI: 10.1093/ee/nvy108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Cosmopolitan pests can consist of geographic populations that differ in their current host ranges or in their ability to colonize a novel host. We compared the responses of cowpea-adapted, seed-beetle populations (Callosobruchus maculatus [F.] (Coleoptera: Chrysomelidae: Bruchinae)) from Africa, North America, and South America to four novel legumes: chickpea, lentil, mung bean, and pea. We also qualitatively compared these results to those obtained earlier for an Asian population. For each host, we measured larval survival to adult emergence and used both no-choice and choice tests to estimate host acceptance. The pattern of larval survival was similar among populations: high or moderately high survival on cowpea, mung bean, and chickpea, intermediate survival on pea, and very low survival on lentil. One exception was unusually high survival of African larvae on pea, and there was modest variation among populations for survival on lentil. The African population was also an outlier with respect to host acceptance; under no-choice conditions, African females showed a much greater propensity to accept the two least preferred hosts, chickpea and lentil. However, greater acceptance of these hosts by African females was not evident in choice tests. Inferences about population differences in host acceptance can thus strongly depend on experimental protocol. Future selection experiments can be used to determine whether the observed population differences in initial performance will affect the probability of producing self-sustaining populations on a marginal crop host.
Collapse
|
37
|
Godwin JL, Spurgin LG, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T, Gage MJG. Lineages evolved under stronger sexual selection show superior ability to invade conspecific competitor populations. Evol Lett 2018; 2:511-523. [PMID: 30283698 PMCID: PMC6145403 DOI: 10.1002/evl3.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Despite limitations on offspring production, almost all multicellular species use sex to reproduce. Sex gives rise to sexual selection, a widespread force operating through competition and choice within reproduction, however, it remains unclear whether sexual selection is beneficial for total lineage fitness, or if it acts as a constraint. Sexual selection could be a positive force because of selection on improved individual condition and purging of mutation load, summing into lineages with superior fitness. On the other hand, sexual selection could negate potential net fitness through the actions of sexual conflict, or because of tensions between investment in sexually selected and naturally selected traits. Here, we explore these ideas using a multigenerational invasion challenge to measure consequences of sexual selection for the overall net fitness of a lineage. After applying experimental evolution under strong versus weak regimes of sexual selection for 77 generations with the flour beetle Tribolium castaneum, we measured the overall ability of introductions from either regime to invade into conspecific competitor populations across eight generations. Results showed that populations from stronger sexual selection backgrounds had superior net fitness, invading more rapidly and completely than counterparts from weak sexual selection backgrounds. Despite comprising only 10% of each population at the start of the invasion experiment, colonizations from strong sexual selection histories eventually achieved near-total introgression, almost completely eliminating the original competitor genotype. Population genetic simulations using the design and parameters of our experiment indicate that this invasion superiority could be explained if strong sexual selection had improved both juvenile and adult fitness, in both sexes. Using a combination of empirical and modeling approaches, our findings therefore reveal positive and wide-reaching impacts of sexual selection for net population fitness when facing the broad challenge of invading competitor populations across multiple generations.
Collapse
Affiliation(s)
- Joanne L. Godwin
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | - Lewis G. Spurgin
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | - Łukasz Michalczyk
- Department of EntomologyInstitute of ZoologyJagiellonian University30–387KrakówPoland
| | - Oliver Y. Martin
- ETH ZurichInstitute of Integrative BiologyD‐USYS8092ZürichSwitzerland
| | - Alyson J. Lumley
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | | |
Collapse
|
38
|
Knell RJ, Martínez-Ruiz C. Selective harvest focused on sexual signal traits can lead to extinction under directional environmental change. Proc Biol Sci 2018; 284:rspb.2017.1788. [PMID: 29187627 DOI: 10.1098/rspb.2017.1788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
Humans commonly harvest animals based on their expression of secondary sexual traits such as horns or antlers. This selective harvest is thought to have little effect on harvested populations because offtake rates are low and usually only the males are targeted. These arguments do not, however, take the relationship between secondary sexual trait expression and animal condition into account: there is increasing evidence that in many cases the degree of expression of such traits is correlated with an animal's overall well-being, which is partly determined by their genetic match to the environment. Using an individual-based model, we find that when there is directional environmental change, selective harvest of males with the largest secondary sexual traits can lead to extinction in otherwise resilient populations. When harvest is not selective, the males best suited to a new environment gain the majority of matings and beneficial alleles spread rapidly. When these best-adapted males are removed, however, their beneficial alleles are lost, leading to extinction. Given the current changes happening globally, these results suggest that trophy hunting and other cases of selective harvest (such as certain types of insect collection) should be managed with extreme care whenever populations are faced with changing conditions.
Collapse
Affiliation(s)
- Robert J Knell
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Carlos Martínez-Ruiz
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
39
|
Abstract
Competition for mates can be a major source of selection, not just on secondary sexual traits but across the genome. Mate competition strengthens selection on males via sexual selection, which typically favors healthy, vigorous individuals and, thus, all genetic variants that increase overall quality. However, recent studies suggest another major effect of mate competition that could influence genome-wide selection: Sexual harassment by males can drastically weaken selection on quality in females. Because of these conflicting effects, the net effect of mate competition is uncertain, although perhaps not entirely unpredictable. We propose that the environment in which mate competition occurs mediates the importance of sexual selection relative to sexual conflict and, hence, the net effect of mate competition on nonsexual fitness. To test this, we performed experimental evolution with 63 fruit fly populations adapting to novel larval conditions where each population was maintained with or without mate competition. In half the populations with mate competition, adults interacted in simple, high-density environments. In the remainder, adults interacted in more spatially complex environments in which male-induced harm is reduced. Populations evolving with mate competition in the complex environment adapted faster to novel larval environments than did populations evolving without mate competition or with mate competition in the simple environment. Moreover, mate competition in the complex environment caused a substantial reduction in inbreeding depression for egg-to-adult viability relative to the other two mating treatments. These results demonstrate that the mating environment has a substantial and predictable effect on nonsexual fitness through adaptation and purging.
Collapse
|
40
|
Berger D, Stångberg J, Grieshop K, Martinossi-Allibert I, Arnqvist G. Temperature effects on life-history trade-offs, germline maintenance and mutation rate under simulated climate warming. Proc Biol Sci 2018; 284:rspb.2017.1721. [PMID: 29118134 DOI: 10.1098/rspb.2017.1721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/06/2017] [Indexed: 01/28/2023] Open
Abstract
Mutation has a fundamental influence over evolutionary processes, but how evolutionary processes shape mutation rate remains less clear. In asexual unicellular organism, increased mutation rates have been observed in stressful environments and the reigning paradigm ascribes this increase to selection for evolvability. However, this explanation does not apply in sexually reproducing species, where little is known about how the environment affects mutation rate. Here we challenged experimental lines of seed beetle, evolved at ancestral temperature or under simulated climate warming, to repair induced mutations at ancestral and stressful temperature. Results show that temperature stress causes individuals to pass on a greater mutation load to their grand-offspring. This suggests that stress-induced mutation rates, in unicellular and multicellular organisms alike, can result from compromised germline DNA repair in low condition individuals. Moreover, lines adapted to simulated climate warming had evolved increased longevity at the cost of reproduction, and this allocation decision improved germline repair. These results suggest that mutation rates can be modulated by resource allocation trade-offs encompassing life-history traits and the germline and have important implications for rates of adaptation and extinction as well as our understanding of genetic diversity in multicellular organisms.
Collapse
Affiliation(s)
- David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Josefine Stångberg
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Karl Grieshop
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | | | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Servedio MR, Boughman JW. The Role of Sexual Selection in Local Adaptation and Speciation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022905] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection plays several intricate and complex roles in the related processes of local adaptation and speciation. In some cases sexual selection can promote these processes, but in others it can be inhibitory. We present theoretical and empirical evidence supporting these dual effects of sexual selection during local adaptation, allopatric speciation, and speciation with gene flow. Much of the empirical evidence for sexual selection promoting speciation is suggestive rather than conclusive; we present what would constitute strong evidence for sexual selection driving speciation. We conclude that although there is ample evidence that sexual selection contributes to the speciation process, it is very likely to do so only in concert with natural selection.
Collapse
Affiliation(s)
- Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
42
|
Wensing KU, Koppik M, Fricke C. Precopulatory but not postcopulatory male reproductive traits diverge in response to mating system manipulation in Drosophila melanogaster. Ecol Evol 2017; 7:10361-10378. [PMID: 29238561 PMCID: PMC5723610 DOI: 10.1002/ece3.3542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
Competition between males creates potential for pre‐ and postcopulatory sexual selection and conflict. Theory predicts that males facing risk of sperm competition should evolve traits to secure their reproductive success. If those traits are costly to females, the evolution of such traits may also increase conflict between the sexes. Conversely, under the absence of sperm competition, one expectation is for selection on male competitive traits to relax thereby also relaxing sexual conflict. Experimental evolution studies are a powerful tool to test this expectation. Studies in multiple insect species have yielded mixed and partially conflicting results. In this study, we evaluated male competitive traits and male effects on female costs of mating in Drosophila melanogaster after replicate lines evolved for more than 50 generations either under enforced monogamy or sustained polygamy, thus manipulating the extent of intrasexual competition between males. We found that in a setting where males competed directly with a rival male for access to a female and fertilization of her ova polygamous males had superior reproductive success compared to monogamous males. When comparing reproductive success solely in double mating standard sperm competition assays, however, we found no difference in male sperm defense competitiveness between the different selection regimes. Instead, we found monogamous males to be inferior in precopulatory competition, which indicates that in our system, enforced monogamy relaxed selection on traits important in precopulatory rather than postcopulatory competition. We discuss our findings in the context of findings from previous experimental evolution studies in Drosophila ssp. and other invertebrate species.
Collapse
Affiliation(s)
- Kristina U. Wensing
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
- Muenster Graduate School of EvolutionUniversity of MuensterMuensterGermany
| | - Mareike Koppik
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
| | - Claudia Fricke
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
| |
Collapse
|
43
|
Singh A, Agrawal AF, Rundle HD. Environmental complexity and the purging of deleterious alleles. Evolution 2017; 71:2714-2720. [DOI: 10.1111/evo.13334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Amardeep Singh
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada M5S 3B2
| | - Aneil F. Agrawal
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada M5S 3B2
| | - Howard D. Rundle
- Department of Biology; University of Ottawa; Ottawa ON Canada K1N 6N5
| |
Collapse
|
44
|
Jacomb F, Marsh J, Holman L. Sexual selection expedites the evolution of pesticide resistance. Evolution 2016; 70:2746-2751. [PMID: 27677862 DOI: 10.1111/evo.13074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
The evolution of insecticide resistance by crop pests and disease vectors causes serious problems for agriculture and health. Sexual selection can accelerate or hinder adaptation to abiotic challenges in a variety of ways, but the effect of sexual selection on resistance evolution is little studied. Here, we examine this question using experimental evolution in the pest insect Tribolium castaneum. The experimental removal of sexual selection slowed the evolution of resistance in populations treated with pyrethroid pesticide, and also reduced the rate at which resistance was lost from pesticide-free populations. These results suggest that selection arising from variance in mating and fertilization success can augment natural selection on pesticide resistance, meaning that sexual selection should be considered when designing strategies to limit the evolution of pesticide resistance.
Collapse
Affiliation(s)
- Frances Jacomb
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Jason Marsh
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Luke Holman
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
45
|
Berger D, Martinossi-Allibert I, Grieshop K, Lind MI, Maklakov AA, Arnqvist G. Intralocus Sexual Conflict and the Tragedy of the Commons in Seed Beetles. Am Nat 2016; 188:E98-E112. [DOI: 10.1086/687963] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Rodrigues LR, Duncan AB, Clemente SH, Moya-Laraño J, Magalhães S. Integrating Competition for Food, Hosts, or Mates via Experimental Evolution. Trends Ecol Evol 2016; 31:158-170. [DOI: 10.1016/j.tree.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
|
47
|
Messina FJ, Durham SL. Loss of adaptation following reversion suggests trade-offs in host use by a seed beetle. J Evol Biol 2015. [DOI: 10.1111/jeb.12704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- F. J. Messina
- Department of Biology; Utah State University; Logan UT USA
| | - S. L. Durham
- Ecology Center; Utah State University; Logan UT USA
| |
Collapse
|
48
|
Marinosci C, Magalhães S, Macke E, Navajas M, Carbonell D, Devaux C, Olivieri I. Effects of host plant on life-history traits in the polyphagous spider mite Tetranychus urticae. Ecol Evol 2015; 5:3151-8. [PMID: 26356681 PMCID: PMC4559057 DOI: 10.1002/ece3.1554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 11/10/2022] Open
Abstract
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.
Collapse
Affiliation(s)
- Cassandra Marinosci
- ISEM, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Sara Magalhães
- CE3C, Centre for Ecology, Evolution and Environmental Sciences, Faculdade de Ciências da Universidade de Lisboa Edificio C2, 3° Piso, Campo Grande, P-1749016, Lisbon, Portugal
| | - Emilie Macke
- Laboratory Aquatic Biology, KU Leuven Kulak E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Maria Navajas
- INRA UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Campus International de Baillarguet, CS 30016, F-34988, Montferrier-sur-Lez Cedex, France
| | - David Carbonell
- CNRS, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Bât. 22, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Céline Devaux
- ISEM, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Isabelle Olivieri
- ISEM, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| |
Collapse
|
49
|
Fritzsche K, Timmermeyer N, Wolter M, Michiels NK. Female, but not male, nematodes evolve under experimental sexual coevolution. Proc Biol Sci 2015; 281:20140942. [PMID: 25339719 DOI: 10.1098/rspb.2014.0942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coevolution between the sexes is often considered to be male-driven: the male genome is constantly scanned by selection for traits that increase relative male fertilization success. Whenever these traits are harmful to females, the female genome is scanned for resistance traits. The resulting antagonistic coevolution between the sexes is analogous to Red Queen dynamics, where adaptation and counteradaptation keep each other in check. However, the underlying assumption that male trait evolution precedes female trait counteradaptation has received few empirical tests. Using the gonochoristic nematode Caenorhabditis remanei, we now show that 20 generations of relaxed versus increased sexual selection pressure lead to female, but not to male, trait evolution, questioning the generality of a male-driven process.
Collapse
Affiliation(s)
- K Fritzsche
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - N Timmermeyer
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - M Wolter
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - N K Michiels
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
50
|
Chenoweth SF, Appleton NC, Allen SL, Rundle HD. Genomic Evidence that Sexual Selection Impedes Adaptation to a Novel Environment. Curr Biol 2015; 25:1860-6. [PMID: 26119752 DOI: 10.1016/j.cub.2015.05.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/01/2015] [Accepted: 05/15/2015] [Indexed: 01/01/2023]
Abstract
Sexual selection is widely appreciated for generating remarkable phenotypic diversity, but its contribution to adaptation and the purging of deleterious mutations is unresolved. To provide insight into the impact of sexual selection on naturally segregating polymorphisms across the genome, we previously evolved 12 populations of Drosophila serrata in a novel environment employing a factorial manipulation of the opportunities for natural and sexual selection. Here, we genotype more than 1,400 SNPs in the evolved populations and reveal that sexual selection affected many of the same genomic regions as natural selection, aligning with it as often as opposing it. Intriguingly, more than half of the 80 SNPs showing treatment effects revealed an interaction between natural and sexual selection. For these SNPs, while sexual selection alone often caused a change in allele frequency in the same direction as natural selection alone, when natural and sexual selection occurred together, changes in allele frequency were greatly reduced or even reversed. This suggests an antagonism between natural and sexual selection arising from male-induced harm to females. Behavioral experiments showed that males preferentially courted and mated with high-fitness females, and that the harm associated with this increased male attention eliminated the female fitness advantage. During our experiment, females carrying otherwise adaptive alleles may therefore have disproportionally suffered male-induced harm due to their increased sexual attractiveness. These results suggest that a class of otherwise adaptive mutations may not contribute to adaptation when mating systems involve sexual conflict and male mate preferences.
Collapse
Affiliation(s)
- Stephen F Chenoweth
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | - Nicholas C Appleton
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Scott L Allen
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|