1
|
Jiranek J, Miller IF, An R, Bruns E, Metcalf CJE. Mechanistic models to meet the challenge of climate change in plant-pathogen systems. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220017. [PMID: 36744564 PMCID: PMC9900714 DOI: 10.1098/rstb.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence that climate change will impact the ecology and evolution of individual plant species is growing. However, little, as yet, is known about how climate change will affect interactions between plants and their pathogens. Climate drivers could affect the physiology, and thus demography, and ultimately evolutionary processes affecting both plant hosts and their pathogens. Because the impacts of climate drivers may operate in different directions at different scales of infection, and, furthermore, may be nonlinear, abstracting across these processes may mis-specify outcomes. Here, we use mechanistic models of plant-pathogen interactions to illustrate how counterintuitive outcomes are possible, and we introduce how such framing may contribute to understanding climate effects on plant-pathogen systems. We discuss the evidence-base derived from wild and agricultural plant-pathogen systems that could inform such models, specifically in the direction of estimates of physiological, demographic and evolutionary responses to climate change. We conclude by providing an overview of knowledge gaps and directions for future research in this important area. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Juliana Jiranek
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81244, USA
| | - Ian F. Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81244, USA
| | - Ruby An
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
| | - Emme Bruns
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
| |
Collapse
|
2
|
Ecology directs host-parasite coevolutionary trajectories across Daphnia-microparasite populations. Nat Ecol Evol 2021; 5:480-486. [PMID: 33589801 DOI: 10.1038/s41559-021-01390-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Host-parasite interactions often fuel coevolutionary change. However, parasitism is one of a myriad of possible ecological interactions in nature. Biotic (for example, predation) and abiotic (for example, temperature) variation can amplify or dilute parasitism as a selective force on hosts and parasites, driving population variation in (co)evolutionary trajectories. We dissected the relationships between wider ecology and coevolutionary trajectory using 16 ecologically complex Daphnia magna-Pasteuria ramosa ponds seeded with an identical starting host (Daphnia) and parasite (Pasteuria) population. We show, using a time-shift experiment and outdoor population data, how multivariate biotic and abiotic ecological differences between ponds caused coevolutionary divergence. Wider ecology drove variation in host evolution of resistance, but not parasite infectivity; parasites subsequently coevolved in response to the changing complement of host genotypes, such that parasites adapted to historically resistant host genotypes. Parasitism was a stronger interaction for the parasite than for its host, probably because the host is the principal environment and selective force, whereas for hosts, parasite-mediated selection is one of many sources of selection. Our findings reveal the mechanisms through which wider ecology creates coevolutionary hotspots and coldspots in biologically realistic arenas of host-parasite interaction, and sheds light on how the ecological theatre can affect the (co)evolutionary play.
Collapse
|
3
|
Burdon JJ. Lessons from a Life in Time and Space. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:1-13. [PMID: 31082308 DOI: 10.1146/annurev-phyto-082718-095938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A research career investigating epidemiological and evolutionary patterns in both natural and crop host-pathogen systems emphasizes the need for flexibility in thinking and a willingness to adopt ideas from a wide diversity of subdisciplines. Here, I reflect on the pivotal issues, research areas, and interactions, including the role of science management, that shaped my career in the hope of demonstrating that career paths and collaborations in science can be as diverse and unpredictable as the natural world in which we study our organisms of choice.
Collapse
|
4
|
Parratt SR, Laine A. Pathogen dynamics under both bottom-up host resistance and top-down hyperparasite attack. J Appl Ecol 2018; 55:2976-2985. [PMID: 30449900 PMCID: PMC6220889 DOI: 10.1111/1365-2664.13185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 02/04/2023]
Abstract
The relative importance of bottom-up versus top-down control of population dynamics has been the focus of much debate. In infectious disease biology, research is typically focused on the bottom-up process of host resistance, wherein the direction of control flows from the lower to the higher trophic level to impact on pathogen population size and epidemiology. However, the importance of top-down control by a pathogen's natural enemies has been mostly overlooked.Here, we explore the effects of, and interaction between, host genotype (i.e., genetic susceptibility to pathogen infection) and infection by a hyperparasitic fungus, Ampelomyces spp., on the establishment and early epidemic growth and transmission of a powdery mildew plant pathogen (Podosphaera plantaginis). We used a semi-natural field experiment to contrast the impacts of hyperparasite infection, host-plant resistance and spatial structure to reveal the key factors that determine pathogen spread. We then used a laboratory-based inoculation approach to test whether the field experiment results hold across multiple pathogen-host genetic combinations and to explore hyperparasite effects on the pathogen's later life-history stages.We found that hyperparasite infection had a negligible effect on within-host infection development and between-host spread of the pathogen during the onset of epidemics. In contrast, host-plant resistance was the major determinant of whether plants became infected, and host genotype and proximity to an infection source determined infection severity.Our laboratory study showed that, while the interaction between host and pathogen genotypes was the key determinant of infection outcome, hyperparasitism did, on average, reduce the severity of infection. Moreover, hyperparasite infection negatively influenced the production of the pathogen's overwintering structures. Synthesis and applications. Our results suggest that bottom-up host resistance affects pathogen spread, but top-down control of powdery mildew pathogens is likely more effective against later life-history stages. Further, while hyperparasitism in this system can reduce early pathogen growth under stable laboratory conditions, this effect is not detectable in a semi-natural environment. Considering the effects of hyperparasites at multiple points in pathogen's life history will be important when considering hyperparasite-derived biocontrol measures in other natural and agricultural systems.
Collapse
Affiliation(s)
- Steven R. Parratt
- Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Parratt SR, Barrès B, Penczykowski RM, Laine AL. Local adaptation at higher trophic levels: contrasting hyperparasite-pathogen infection dynamics in the field and laboratory. Mol Ecol 2017; 26:1964-1979. [PMID: 27859910 PMCID: PMC5412677 DOI: 10.1111/mec.13928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022]
Abstract
Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co-evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, studies of local adaptation in disease systems have mostly focused on interactions between competing pathogens or pathogens and their hosts. In nature, parasites and pathogens are also subject to attack by hyperparasitic natural enemies that can severely impact upon their infection dynamics. However, few studies have investigated whether this interaction varies across combinations of pathogen-hyperparasite strains, and whether this influences hyperparasite incidence in natural pathogen populations. Here, we test whether the association between a hyperparasitic fungus, Ampelomyces, and a single powdery mildew host, Podosphaera plantaginis, varies among genotype combinations, and whether this drives hyperparasite incidence in nature. Laboratory inoculation studies reveal that genotype, genotype × genotype interactions and local adaptation affect hyperparasite infection. However, observations of a natural pathogen metapopulation reveal that spatial rather than genetic factors predict the risk of hyperparasite presence. Our results highlight how sensitive the outcome of biocontrol using hyperparasites is to selection of hyperparasite strains.
Collapse
Affiliation(s)
- Steven R Parratt
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Benoit Barrès
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Rachel M Penczykowski
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| |
Collapse
|
6
|
Harrison S. Testing Spatial Ecological Theory on Californian Serpentine Outcrops: A Review. ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Susan Harrison
- Department of Environmental Science & Policy, 1023 Wickson Hall, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
7
|
Kraemer SA, Boynton PJ. Evidence for microbial local adaptation in nature. Mol Ecol 2017; 26:1860-1876. [DOI: 10.1111/mec.13958] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Susanne A. Kraemer
- Ashworth Laboratories; University of Edinburgh; King's Buildings EH9 3FL Edinburgh UK
| | - Primrose J. Boynton
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
| |
Collapse
|
8
|
Kraemer SA, Kassen R. Temporal patterns of local adaptation in soil pseudomonads. Proc Biol Sci 2016; 283:20161652. [PMID: 27708150 PMCID: PMC5069515 DOI: 10.1098/rspb.2016.1652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Strong divergent selection leading to local adaptation is often invoked to explain the staggering diversity of bacteria in microbial ecosystems. However, examples of specialization by bacterial clones to alternative niches in nature are rare. Here, we investigate the extent of local adaptation in natural isolates of pseudomonads and their relatives to their soil environments across both space and time. Though most isolates grew well in most environments, patchily distributed low-quality environments were found to drive specialization. In contrast to experimental evolution work on microbial adaptation, temporal adaptation was stronger than spatial adaptation among the isolates and environments we sampled. Time-shift analysis of fitness across two seasons of growth revealed an unexpectedly strong effect of preadaptation. This pattern of apparent future adaptation may be caused by unknown abiotic properties of these environments, phages, bacterial competitors or general mechanisms of ecological niche release, and warrants future study.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Rees Kassen
- University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Affiliation(s)
- Casey P. terHorst
- Biology Department California State University, Northridge 18111 Nordhoff Street Northridge California91330‐8303 USA
| | - Peter C. Zee
- Biology Department California State University, Northridge 18111 Nordhoff Street Northridge California91330‐8303 USA
| |
Collapse
|
10
|
Zhang N, Tonsor SJ, Traw MB. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2015; 10:e992741. [PMID: 25875692 PMCID: PMC4622845 DOI: 10.4161/15592324.2014.992741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Stephen J Tonsor
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - M Brian Traw
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| |
Collapse
|
11
|
Abbate JL, Antonovics J. Elevational disease distribution in a natural plant-pathogen system: insights from changes across host populations and climate. OIKOS 2014. [DOI: 10.1111/oik.01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica L. Abbate
- Centre d'Écologie Fonctionelle et Évolutive (CEFE); UMR 5175, CNRS, 1919 route de Mende FR-34293 Montpellier France
| | - Janis Antonovics
- Dept of Biology; Univ. of Virginia; Charlottesville VA 22904 USA
| |
Collapse
|
12
|
Abstract
Plant populations are often adapted to their local conditions, including abiotic factors as well as the biotic communities with which they interact. Soil communities, in particular, have strong effects on both the ecology and evolution of plant populations. Many invasive plant species alter the ecological relationships between native plants and soil communities; however, whether invaders also alter the evolutionary dynamics between native plants and soils is less well known. Here I show that populations of a native annual, Pilea pumila, shift from being maladapted to adapted to their local soil community with increasing history of invasion by Alliaria petiolata, an invader known to alter microbial communities. Additionally, native populations showed a signal of adaptation to soils of particular invasion stages, independent of local coevolutionary dynamics. These results suggest that invasive species affect not only the ecological, but also the evolutionary relationships of native species.
Collapse
Affiliation(s)
- Richard A Lankau
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
13
|
Tack AJM, Thrall PH, Barrett LG, Burdon JJ, Laine AL. Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems: causes and consequences. J Evol Biol 2012; 25:1918-1936. [PMID: 22905782 DOI: 10.1111/j.1420-9101.2012.02588.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Variation in host resistance and in the ability of pathogens to infect and grow (i.e. pathogenicity) is important as it provides the raw material for antagonistic (co)evolution and therefore underlies risks of disease spread, disease evolution and host shifts. Moreover, the distribution of this variation in space and time may inform us about the mode of coevolutionary selection (arms race vs. fluctuating selection dynamics) and the relative roles of G × G interactions, gene flow, selection and genetic drift in shaping coevolutionary processes. Although variation in host resistance has recently been reviewed, little is known about overall patterns in the frequency and scale of variation in pathogenicity, particularly in natural systems. Using 48 studies from 30 distinct host-pathogen systems, this review demonstrates that variation in pathogenicity is ubiquitous across multiple spatial and temporal scales. Quantitative analysis of a subset of extensively studied plant-pathogen systems shows that the magnitude of within-population variation in pathogenicity is large relative to among-population variation and that the distribution of pathogenicity partly mirrors the distribution of host resistance. At least part of the variation in pathogenicity found at a given spatial scale is adaptive, as evidenced by studies that have examined local adaptation at scales ranging from single hosts through metapopulations to entire continents and - to a lesser extent - by comparisons of pathogenicity with neutral genetic variation. Together, these results support coevolutionary selection through fluctuating selection dynamics. We end by outlining several promising directions for future research.
Collapse
Affiliation(s)
- A J M Tack
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - P H Thrall
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - L G Barrett
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - J J Burdon
- CSIRO-Plant Industry, Canberra, ACT, Australia
| | - A-L Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Laine AL, Burdon JJ, Dodds PN, Thrall PH. Spatial variation in disease resistance: from molecules to metapopulations. THE JOURNAL OF ECOLOGY 2011; 99:96-112. [PMID: 21243068 PMCID: PMC3020101 DOI: 10.1111/j.1365-2745.2010.01738.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels - within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales.We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level.Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively).Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens.Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance.Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
- Metapopulation Research Group, Department of Biosciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Jeremy J. Burdon
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Peter N. Dodds
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Peter H. Thrall
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
|
16
|
Meyer SE, Nelson DL, Clement S, Ramakrishnan A. Ecological genetics of the Bromus tectorum (Poaceae)-Ustilago bullata (Ustilaginaceae) pathosystem: A role for frequency-dependent selection? AMERICAN JOURNAL OF BOTANY 2010; 97:1304-1312. [PMID: 21616883 DOI: 10.3732/ajb.0900261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Evolutionary processes that maintain genetic diversity in plants are likely to include selection imposed by pathogens. Negative frequency-dependent selection is a mechanism for maintenance of resistance polymorphism in plant-pathogen interactions. We explored whether such selection operates in the Bromus tectorum-Ustilago bullata pathosystem. Gene-for-gene relationships between resistance and avirulence loci have been demonstrated for this pathosystem. • METHODS We used molecular markers and cross-inoculation trials to learn whether the SSR genotypes of the host exhibited resistance to co-occurring pathogen races, whether host genotypes within a population had equal disease probability, and whether a common resistance locus and its corresponding avirulence locus exhibited predicted allele frequency changes during an epidemic. • KEY RESULTS Five of six putative resistance loci that conferred resistance to co-occurring pathogen races occurred in common host SSR genotypes. Some common genotypes within populations were more likely to be diseased than others, and genotype frequencies sometimes changed across years in patterns consistent with frequency-dependent selection. Observed changes in frequency of resistance and virulence alleles during an epidemic provided further support, but evidence was inconclusive. • CONCLUSIONS Frequency-dependent selection may operate at endemic disease levels in this pathosystem, but is difficult to detect because many susceptible plants escape infection. Most pathogen isolates were virulent on most host genotypes, minimizing the apparent importance of frequency-dependent selection even during epidemics.
Collapse
Affiliation(s)
- Susan E Meyer
- U.S. Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, 735 North 500 East, Provo, Utah 84606 USA
| | | | | | | |
Collapse
|
17
|
Alexander HM. Disease in Natural Plant Populations, Communities, and Ecosystems: Insights into Ecological and Evolutionary Processes. PLANT DISEASE 2010; 94:492-503. [PMID: 30754479 DOI: 10.1094/pdis-94-5-0492] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
18
|
DONOVAN LA, ROSENTHAL DR, SANCHEZ-VELENOSI M, RIESEBERG LH, LUDWIG F. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats? J Evol Biol 2010; 23:805-16. [DOI: 10.1111/j.1420-9101.2010.01950.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Fight or flight? A geographic mosaic in host reaction and potency of a chemical weapon in the social parasite Harpagoxenus sublaevis. Behav Ecol Sociobiol 2009. [DOI: 10.1007/s00265-009-0817-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Springer YP. Edaphic quality and plant–pathogen interactions: effects of soil calcium on fungal infection of a serpentine flax. Ecology 2009; 90:1852-62. [DOI: 10.1890/08-0740.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Van der Merwe MM, Kinnear MW, Barrett LG, Dodds PN, Ericson L, Thrall PH, Burdon JJ. Positive selection in AvrP4 avirulence gene homologues across the genus Melampsora. Proc Biol Sci 2009; 276:2913-22. [PMID: 19457888 DOI: 10.1098/rspb.2009.0328] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogen genes involved in interactions with their plant hosts are expected to evolve under positive Darwinian selection or balancing selection. In this study a single copy avirulence gene, AvrP4, in the plant pathogen Melampsora lini, was used to investigate the evolution of such a gene across species. Partial translation elongation factor 1-alpha sequences were obtained to establish phylogenetic relationships among the Melampsora species. We amplified AvrP4 homologues from species pathogenic on hosts from different plant families and orders, across the inferred phylogeny. Translations of the AvrP4 sequences revealed a predicted signal peptide and towards the C-terminus of the protein, six identically spaced cysteines were identified in all sequences. Maximum likelihood analysis of synonymous versus non-synonymous substitution rates indicated that positive selection played a role in the evolution of the gene during the diversification of the genus. Fourteen codons under significant positive selection reside in the C-terminal 28 amino acid region, suggesting that this region interacts with host molecules in most sequenced accessions. Selection pressures on the gene may be either due to the pathogenicity or avirulence function of the gene or both.
Collapse
|
22
|
Ericson L, Burdon JJ. Linking field epidemiological and individual plant resistance patterns in the Betula pubescens- Melampsoridium betulinumhost-pathogen interaction. OIKOS 2009. [DOI: 10.1111/j.1600-0706.2008.16988.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Jump AS, Marchant R, Peñuelas J. Environmental change and the option value of genetic diversity. TRENDS IN PLANT SCIENCE 2009; 14:51-8. [PMID: 19042147 DOI: 10.1016/j.tplants.2008.10.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 05/21/2023]
Abstract
Rapid anthropogenic environmental change is altering selection pressures on natural plant populations. However, it is difficult to predict easily the novel selection pressures to which populations will be exposed. There is heavy reliance on plant genetic diversity for future crop security in agriculture and industry, but the implications of genetic diversity for natural populations receives less attention. Here, we examine the links between the genetic diversity of natural populations and aspects of plant performance and fitness. We argue that accumulating evidence demonstrates the future benefit or 'option value' of genetic diversity within natural populations when subject to anthropogenic environmental changes. Consequently, the loss of that diversity will hinder their ability to adapt to changing environments and is, therefore, of serious concern.
Collapse
Affiliation(s)
- Alistair S Jump
- KITE (York Institute for Tropical Ecosystem Dynamics), Environment Department, University of York, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
24
|
Laine AL, Tellier A. Heterogeneous selection promotes maintenance of polymorphism in host-parasite interactions. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16563.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Forde SE, Thompson JN, Holt RD, Bohannan BJM. Coevolution drives temporal changes in fitness and diversity across environments in a bacteria-bacteriophage interaction. Evolution 2008; 62:1830-9. [PMID: 18452575 DOI: 10.1111/j.1558-5646.2008.00411.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coevolutionary interactions are thought to play a crucial role in diversification of hosts and parasitoids. Furthermore, resource availability has been shown to be a fundamental driver of species diversity. Yet, we still do not have a clear understanding of how resource availability mediates the diversity generated by coevolution between hosts and parasitoids over time. We used experiments with bacteria and bacteriophage to test how resources affect variation in the competitive ability of resistant hosts and temporal patterns of diversity in the host and parasitoid as a result of antagonistic coevolution. Bacteria and bacteriophage coevolved for over 150 bacterial generations under high and low-resource conditions. We measured relative competitive ability of the resistant hosts and phenotypic diversity of hosts and parasitoids after the initial invasion of resistant mutants and again at the end of the experiment. Variation in relative competitive ability of the hosts was both time- and environment-dependent. The diversity of resistant hosts, and the abundance of host-range mutants attacking these phenotypes, differed among environments and changed over time, but the direction of these changes differed between the host and parasitoid. Our results demonstrate that patterns of fitness and diversity resulting from coevolutionary interactions can be highly dynamic.
Collapse
Affiliation(s)
- Samantha E Forde
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | |
Collapse
|
26
|
Hoeksema JD, Forde SE. A Meta‐Analysis of Factors Affecting Local Adaptation between Interacting Species. Am Nat 2008; 171:275-90. [PMID: 18205532 DOI: 10.1086/527496] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jason D Hoeksema
- National Evolutionary Synthesis Center, Durham, North Carolina 27705, USA.
| | | |
Collapse
|
27
|
Hopkins R, Schmitt J, Stinchcombe JR. A latitudinal cline and response to vernalization in leaf angle and morphology in Arabidopsis thaliana (Brassicaceae). THE NEW PHYTOLOGIST 2008; 179:155-164. [PMID: 18422898 DOI: 10.1111/j.1469-8137.2008.02447.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Adaptation to latitudinal patterns of environmental variation is predicted to result in clinal variation in leaf traits. Therefore, this study tested for geographic differentiation and plastic responses to vernalization in leaf angle and leaf morphology in Arabidopsis thaliana. Twenty-one European ecotypes were grown in a common growth chamber environment. Replicates of each ecotype were exposed to one of four treatments: 0, 10, 20 or 30 d of vernalization. Ecotypes from lower latitudes had more erect leaves, as predicted from functional arguments about selection to maximize photosynthesis. Lower-latitude ecotypes also had more elongated petioles as predicted by a biomechanical constraint hypothesis. In addition, extended vernalization resulted in shorter and more erect leaves. As predicted by functional and adaptive hypotheses, our results show genetically based clinal variation as well as environmentally induced variation in leaf traits.
Collapse
Affiliation(s)
- Robin Hopkins
- Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Present address: Biology, Duke University, Durham, NC, USA
| | - Johanna Schmitt
- Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - John R Stinchcombe
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|