1
|
Bagdonaitė L, Leder EH, Lifjeld JT, Johnsen A, Mauvisseau Q. Assessing reliability and accuracy of qPCR, dPCR and ddPCR for estimating mitochondrial DNA copy number in songbird blood and sperm cells. PeerJ 2025; 13:e19278. [PMID: 40231068 PMCID: PMC11995889 DOI: 10.7717/peerj.19278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) copy number varies across species, individuals, and cell types. In birds, there are two types of cells with a relatively low number of mitochondria: red blood cells and spermatozoa. Previous studies investigating variation of mitochondrial abundance in animal sperm have generally used quantitative PCR (qPCR), but this method shows potential limitations when quantifying targets at low abundance. To mitigate such issues, we investigated and compared the reliability and accuracy of qPCR, digital PCR (dPCR) and droplet digital PCR (ddPCR) to quantify high and low concentration DNA. We used synthetic DNA targets, to calculate the limit of detection and the limit of quantification and found that with both dPCR and ddPCR, these limits were lower than with qPCR. Then, to compare quantification accuracy and repeatability, we used DNA extracted from blood and sperm cells of Eurasian siskin. We found that qPCR, dPCR and ddPCR all reliably quantified mitochondrial DNA in sperm samples but showed significant differences when analyzing the typically lower levels of mtDNA in blood, with ddPCR consistently showing lower variation among replicates. Our study provides critical insights and recommendations for future studies aiming to quantify target mtDNA and indicates that dPCR and ddPCR are the preferred methods when working with samples with low abundance of mtDNA.
Collapse
Affiliation(s)
| | - Erica H. Leder
- Natural History Museum, University of Oslo, Oslo, Norway
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
- Section of Ecology and Evolution, Department of Biology, University of Turku, Turku, Finland
| | - Jan T. Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
2
|
Barbosa da Silva H, Ayala-Costa D, Barbosa RC, Lino-Neto J. Morphology of the male reproductive system and spermatozoa variation in Anopheles darlingi (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf037. [PMID: 40105626 DOI: 10.1093/jme/tjaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
In this study, we present an analysis of the male reproductive system and spermatozoa of Anopheles darlingi Root, 1926, the primary malaria vector in Brazil. The reproductive system consists of a pair of unifollicular testes, deferent ducts, a muscular ejaculatory duct, and a pair of accessory glands. The average spermatozoa length was 188 µm, with a continuous variation from 92 to 246 µm. This significant variation may be associated with the mosquito's copulatory behavior, in which females are monandrous. This scenario may reduce the selective pressure for uniformity of male gametes in this species.
Collapse
Affiliation(s)
| | | | | | - José Lino-Neto
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
3
|
Lifjeld JT, Cramer ERA, Leder EH, Voje KL. Sperm as a speciation phenotype in promiscuous songbirds. Evolution 2024; 79:134-143. [PMID: 39485024 DOI: 10.1093/evolut/qpae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Sperm morphology varies considerably among species. Sperm traits may contribute to speciation if they diverge fast in allopatry and cause conspecific sperm precedence upon secondary contact. However, their role in driving prezygotic isolation has been poorly investigated. Here we test the hypothesis that, early in the speciation process, female promiscuity promotes a reduction in overlap in sperm length distributions among songbird populations. We assembled a data set of 20 pairs of populations with known sperm length distributions, a published estimate of divergence time, and an index of female promiscuity derived from extrapair paternity rates or relative testis size. We found that sperm length distributions diverged more rapidly in more promiscuous species. Faster divergence between sperm length distributions was caused by the lower variance in the trait in more promiscuous species, and not by faster divergence of the mean sperm lengths. The reduced variance is presumably due to stronger stabilizing selection on sperm length mediated by sperm competition. If divergent sperm length optima in allopatry causes conspecific sperm precedence in sympatry, which remains to be shown empirically, female promiscuity may promote prezygotic isolation, and rapid speciation in songbirds.
Collapse
Affiliation(s)
- Jan T Lifjeld
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Emily R A Cramer
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Erica H Leder
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - Kjetil Lysne Voje
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Pintus E, Kotrba R, Ros-Santaella JL. Horn size is linked to Sertoli cell efficiency and sperm size homogeneity during sexual development in common eland ( Taurotragus oryx). Front Cell Dev Biol 2024; 12:1421634. [PMID: 39228403 PMCID: PMC11368866 DOI: 10.3389/fcell.2024.1421634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background: In polygynous species, the development of secondary sexual characters is usually decisive for male reproductive success. However, our understanding about the links between the growth of these traits and reproductive efficiency is still elusive. Most research efforts in this topic have been also focused on adult males, although the development of some secondary sexual characters, like bovid horns, typically starts after birth, continues during the puberty and in some species, such as the common eland, slows or even stops during adulthood. In this study, we investigated the relationships between horn size and testicular function during sexual development in common elands using a comprehensive approach that considers both spermatogenic and sperm parameters. Methods: Twenty-two non-sexually mature common elands were used for the present study. Horn size, body mass, testes mass, and gonadosomatic index were assessed. Spermatogenic activity was determined by cytological and histological analyses. Sperm concentration, morphology, morphometry, and intramale variation in sperm size were evaluated on epididymal sperm samples. Cluster analysis was performed to explore the influence of age on relationships between horn size and reproductive function. Results: We found that bigger horns are associated with increased Sertoli cell efficiency and reduced intramale variation in sperm size. Both parameters were not related to one another while they have shown to be associated with enhanced sperm quality in ungulates. Moreover, horn size was positively linked to the testis mass, sperm concentration, and testicular investment in the seminiferous epithelium. Spiral length and basal circumference were the horn traits most strongly correlated with spermatogenic and sperm parameters as well as those responsible for the sexual dimorphism in this species. Cluster analysis rendered two groups: the first one including males ≤30 months old, while the second one those >30 months old. Horn development and reproductive function were still correlated within age groups, with the strongest relationship found between horn size and sperm size homogeneity in males >30 months old. Conclusion: Taken together, our results indicate that horn size can be regarded as a good index of male reproductive potential during sexual development and provide insights into the role of secondary sexual characters in sexual selection dynamics.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Radim Kotrba
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
5
|
Santhosh S, Ebert D, Janicke T. Sperm competition favours intermediate sperm size in a hermaphrodite1. J Evol Biol 2024; 37:829-838. [PMID: 38738700 DOI: 10.1093/jeb/voae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Sperm competition is a potent mechanism of postcopulatory sexual selection that has been found to shape reproductive morphologies and behaviours in promiscuous animals. Especially sperm size has been argued to evolve in response to sperm competition through its effect on sperm longevity, sperm motility, the ability to displace competing sperm, and ultimately fertilization success. Additionally, sperm size has been observed to co-evolve with female reproductive morphology. Theoretical work predicts that sperm competition may select for longer sperm but may also favour shorter sperm if sperm size trades-off with number. In this study, we studied the relationship between sperm size and postmating success in the free-living flatworm, Macrostomum lignano. Specifically, we used inbred isolines of M. lignano that varied in sperm size to investigate how sperm size translated into the ability of worms to transfer and deposit sperm in a mating partner. Our results revealed a hump-shaped relationship with individuals producing sperm of intermediate size having the highest sperm competitiveness. This finding broadens our understanding of the evolution of sperm morphology by providing empirical support for stabilizing selection on sperm size under sperm competition.
Collapse
Affiliation(s)
- Santhosh Santhosh
- Department of Environmental Sciences, Zoology, University of Basel, CH-4 4051 Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, CH-4 4051 Basel, Switzerland
| | - Tim Janicke
- Centre d'Ecologie Fonctionelle et Evolutive, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier Cedex 05, France
| |
Collapse
|
6
|
Jia YL, Wu YB, Yu L, Zheng Y, Yang TT, Wang YY, Zhou B, Zhang L, Li FP. Normal sperm head morphometric reference values in fertile Asian males. Asian J Androl 2024; 26:315-320. [PMID: 38048168 PMCID: PMC11156450 DOI: 10.4103/aja202356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/21/2023] [Indexed: 12/06/2023] Open
Abstract
Sperm head morphology is crucial for male factor infertility diagnosis and assessment of male reproductive potential. Several criteria are available to analyze sperm head morphology, but they are limited by poor methodology comparability and population applicability. This study aimed to explore comprehensive and new normal morphometric reference values for spermatozoa heads in fertile Asian males. An automated sperm morphology analysis system captured 23 152 stained spermatozoa from confirmed fertile males. Of these samples, 1856 sperm head images were annotated by three experienced laboratory technicians as "normal". We employed 14 novel morphometric features to describe sperm head size (head length, head width, length/width ratio, and girth), shape (ellipse intersection over union, girth intersection over union, short-axis symmetry, and long-axis symmetry), area (head, acrosome, postacrosomal areas, and acrosome area ratio), and degrees of acrosome and nuclear uniformity. This straight-forward method for the morphometric analysis of sperm by accurate visual measurements is clinically applicable. The measured parameters present valuable information to establish morphometric reference intervals for normal sperm heads in fertile Asian males. The presented detailed measurement data will be valuable for interlaboratory comparisons and technician training. In vitro fertilization and andrology laboratory technicians can use these parameters to perform objective morphology evaluation when assessing male fertilization potential.
Collapse
Affiliation(s)
- Ye-Lin Jia
- Laboratory of Andrology, West China Second University Hospital Human Sperm Bank, Chengdu 610000, China
| | - Ying-Bi Wu
- Laboratory of Andrology, West China Second University Hospital Human Sperm Bank, Chengdu 610000, China
| | - Lin Yu
- Laboratory of Andrology, West China Second University Hospital Human Sperm Bank, Chengdu 610000, China
| | - Yan Zheng
- Laboratory of Andrology, West China Second University Hospital Human Sperm Bank, Chengdu 610000, China
| | - Ting-Ting Yang
- Laboratory of Andrology, West China Second University Hospital Human Sperm Bank, Chengdu 610000, China
| | - Yan-Yun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Chengdu 610061, China
| | - Bin Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610061, China
| | - Lin Zhang
- NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Fu-Ping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610061, China
| |
Collapse
|
7
|
de Souza AR, Santos EF, Baptista CF, Dias G, Nascimento FS, Lino-Neto J. Sperm length variation is linked to sexual ornamentation in male paper wasps. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- André R. de Souza
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | - Eduardo F. Santos
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, Brasil
| | - Camila F. Baptista
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brasil
| | - Glenda Dias
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brasil
| | - Fábio S. Nascimento
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brasil
| | - José Lino-Neto
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brasil
| |
Collapse
|
8
|
McDiarmid CS, Hurley LL, Le Mesurier M, Blunsden AC, Griffith SC. The impact of diet quality on sperm velocity, morphology and normality in the zebra finch Taeniopygia guttata. J Exp Biol 2022; 225:275326. [PMID: 35403680 PMCID: PMC9163447 DOI: 10.1242/jeb.243715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Sperm traits can influence fertilisation success, but there is still much we do not understand about sperm condition dependence, that is, how much sperm traits depend on the male's energy acquisition and allocation. This is especially pronounced in avian taxa, despite extensive observational studies and sampling in wild populations. In this study we collected sperm samples before and after experimentally reducing diet quality of wild-derived captive zebra finches in small mixed-sex groups, which we compared to individuals on a control diet. We measured the length of sperm components (head, midpiece, flagellum and total sperm length), the proportion of sperm with normal morphology, the proportion of sperm that were progressively motile, and swimming velocity (curvilinear velocity; VCL). The only sperm trait we found to be impacted by reduced diet quality was a significant decrease in sperm midpiece length. This is consistent with emerging evidence in other non-model systems, as well the fact that diet can alter mitochondrial density and structure in other tissue types. There was also a significant decrease in sperm velocity and the proportion of motile sperm over the course of the experiment for both experimental groups (i.e. unrelated to diet). That in the control group experienced this decrease in sperm velocity was marked by no change in any sperm morphological measure highlights the existence of other important determinants of sperm velocity in passerine birds, likely including variation in other components of the seminal fluid.
Collapse
Affiliation(s)
- Callum S. McDiarmid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laura L. Hurley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Madiline Le Mesurier
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew C. Blunsden
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Simon C. Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Carreira JT, Lesobre L, Boullenger S, Chalah T, Lacroix F, Hingrat Y. Assisted Reproduction Techniques to Improve Reproduction in a Non-Model Species: The Case of the Arabian Bustard ( Ardeotis arabs) Conservation Breeding Program. Animals (Basel) 2022; 12:851. [PMID: 35405840 PMCID: PMC8996889 DOI: 10.3390/ani12070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Artificial reproductive technologies are highly valuable for ex situ conservation. While Arabian bustard populations are declining and extinct in some parts of the range, the International Fund for Houbara Conservation in the United Arab Emirates implemented a conservation breeding program. Since 2012, a total of 1253 eggs were laid through natural reproduction, 1090 were incubated and 379 of these were fertile (fertility rate of 34.8%), leading to the production of 251 chicks. To improve fertility and acquire crucial knowledge for other endangered large birds, artificial reproduction was implemented in 2018 using fresh, refrigerated, and frozen sperm. A total of 720 ejaculates were collected from 12 birds. We analysed these samples for concentration, volume, motility score (0 to 5), viability (eosin/nigrosine), length, and morphology. The first age at collection was 35.7 ± 18.8 months, mean volume was 89.2 ± 65.3 µL, mean concentration was 928 ± 731 sptz/mL and mean motility score was 2.61 ± 0.95. Morphology analyses revealed a bimodal distribution of sperm length. Five hundred and thirty-five ejaculates were cryopreserved and the initial motility score was 3.4 ± 0.7 and 2.0 ± 0.6 after thawing, while the percentage of normal and intact membrane sperm cells decreased from 88.8 ± 7.5% to 52.9 ± 1%. Sixty-five artificial inseminations were performed, leading to a global fertility rate of 84.3%-more precisely, 85.2% and 83.3%, respectively, for fresh and cryopreserved semen. All methods successfully produced fertile eggs, indicating that artificial insemination is an efficient tool for the conservation and genetic management of the species.
Collapse
|
10
|
Sperm Numbers as a Paternity Guard in a Wild Bird. Cells 2022; 11:cells11020231. [PMID: 35053349 PMCID: PMC8773506 DOI: 10.3390/cells11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/02/2022] Open
Abstract
Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male’s ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.
Collapse
|
11
|
Yang W, Wang S, Yang Y, Shen Y, Zhang Y. Improvement of sperm traits related to the high level of extra-pair fertilization in tree sparrow population under long-term environmental heavy metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148109. [PMID: 34102439 DOI: 10.1016/j.scitotenv.2021.148109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Environmental stress can affect sperm traits whose changes have been reported to be associated with extra-pair fertilization (EPF) level in natural animal populations. However, little is known regarding how exposure to environmental heavy metals influences sperm traits and EPF level in free-living bird populations. In a previous study, we found that a tree sparrow (Passer montanus) population that has been exposed to heavy metal pollution over 60 years (Baiyin, BY) exhibits increased sperm quality compared with a population from a relatively unpolluted area (Liujiaxia, LJX). The high sperm quality could be related to extra-pair mating rates. Therefore, the present study investigated EPF level (the ratio of extra-pair offspring) in tree sparrow populations from BY and LJX, and analyzed the relationship between sperm traits (morphology, velocity and quantity) and EPF success. EPF success of tree sparrows was significantly correlated with their sperm velocity (p = 0.048) and total sperm length (p = 0.045), indicating that these sperm traits were important for EPF success. Tree sparrows from the BY population produced longer sperm with lower head/flagellum ratio and faster swimming sperm and showed a significantly higher EPF level than conspecifics from LJX. Thus, adaptive variation of sperm characteristics was related to the high EPF level in tree sparrows under long-term environmental heavy metal pollution. The findings are of scientific significance for exploring the evolution of mating tactics in wild bird populations under environmental stress.
Collapse
Affiliation(s)
- Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Lamar SK, Nelson NJ, Moore JA, Taylor HR, Keall SN, Ormsby DK. Initial collection, characterization, and storage of tuatara (Sphenodon punctatus) sperm offers insight into their unique reproductive system. PLoS One 2021; 16:e0253628. [PMID: 34237077 PMCID: PMC8266091 DOI: 10.1371/journal.pone.0253628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Successful reproduction is critical to the persistence of at-risk species; however, reproductive characteristics are understudied in many wild species. New Zealand’s endemic tuatara (Sphenodon punctatus), the sole surviving member of the reptile order Rhynchocephalia, is restricted to 10% of its historic range. To complement ongoing conservation efforts, we collected and characterized mature sperm from male tuatara for the first time. Semen collected both during mating and from urine after courting contained motile sperm and had the potential for a very high percentage of viable sperm cells (98%). Scanning electron microscopy revealed a filiform sperm cell with distinct divisions: head, midpiece, tail, and reduced end piece. Finally, our initial curvilinear velocity estimates for tuatara sperm are 2–4 times faster than any previously studied reptile. Further work is needed to examine these trends at a larger scale; however, this research provides valuable information regarding reproduction in this basal reptile.
Collapse
Affiliation(s)
- Sarah K. Lamar
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| | - Nicola J. Nelson
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jennifer A. Moore
- Biology Department, Grand Valley State University, Allendale, Michigan, United States of America
| | - Helen R. Taylor
- Royal Zoological Society of Scotland, Edinburgh, United Kingdom
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Susan N. Keall
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Diane K. Ormsby
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
13
|
Cramer ERA, Grønstøl G, Maxwell L, Kovach AI, Lifjeld JT. Sperm length divergence as a potential prezygotic barrier in a passerine hybrid zone. Ecol Evol 2021; 11:9489-9497. [PMID: 34306637 PMCID: PMC8293778 DOI: 10.1002/ece3.7768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The saltmarsh sparrow Ammospiza caudacuta and Nelson's sparrow A. nelsoni differ in ecological niche, mating behavior, and plumage, but they hybridize where their breeding distributions overlap. In this advanced hybrid zone, past interbreeding and current backcrossing result in substantial genomic introgression in both directions, although few hybrids are currently produced in most locations. However, because both species are nonterritorial and have only brief male-female interactions, it is difficult to determine to what extent assortative mating explains the low frequency of hybrid offspring. Since females often copulate with multiple males, a role of sperm as a postcopulatory prezygotic barrier appears plausible. Here, we show that sperm length differs between the two species in the hybrid zone, with low among-male variation consistent with strong postcopulatory sexual selection on sperm cells. We hypothesize that divergence in sperm length may constitute a reproductive barrier between species, as sperm length co-evolves with the size of specialized female sperm storage tubules. Sperm does not appear to act as a postzygotic barrier, as sperm from hybrids was unexceptional.
Collapse
Affiliation(s)
| | | | - Logan Maxwell
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Adrienne I. Kovach
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | | |
Collapse
|
14
|
Fragueira R, Helfenstein F, Fischer K, Beaulieu M. Birds of different morphs use slightly different strategies to achieve similar reproductive performance following heatwave exposure. J Anim Ecol 2021; 90:2594-2608. [PMID: 34191276 DOI: 10.1111/1365-2656.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
Responses to extreme climatic events may differ between individuals of distinct morphs which differ in life-history strategies, resulting in climate change 'winners' and 'losers' within species. We examined the reproductive performance and carry-over effects on offspring of black- and red-headed Gouldian finches Erythrura gouldiae after exposure to simulated heatwaves of moderate or severe intensity. We expected black-headed pairs' reproductive performance to decline after the severe heatwave because only the condition of black-headed females deteriorates during such a heatwave. Supporting the fact that Gouldian finches of different morphs use alternative reproductive strategies, we found that black-headed females initiated egg-laying a month earlier than red-headed females after experiencing a severe heatwave. We also found that this severe heatwave resulted in shorter spermatozoa in males irrespective of their morph. Despite these effects associated with heatwave intensity, the overall reproductive performance of both morphs was not affected by this factor, which was possibly due to an increased nestling provisioning rate by parents after exposure to the severe heatwave. However, offspring still bore the cost of parental exposure to the severe heatwave, as they showed a reduced condition (lower plasma antioxidant capacity and transient lower breathing rate) and higher oxidative damage (at least in fledglings with black-headed parents). These results suggest that inter-morph phenotypic variability in the Gouldian finch does not result in clear differences in reproductive performance following heatwave exposure, despite basal phenotypic differences between morphs. Whether animals using alternative reproductive strategies are, in the end, differently affected by climate changes will likely depend on the capacity of their offspring to recover from altered developmental conditions.
Collapse
Affiliation(s)
- Rita Fragueira
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Klaus Fischer
- Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,German Oceanographic Museum, Stralsund, Germany
| |
Collapse
|
15
|
Cramer ERA, Garcia-del-Rey E, Johannessen LE, Laskemoen T, Marthinsen G, Johnsen A, Lifjeld JT. Longer Sperm Swim More Slowly in the Canary Islands Chiffchaff. Cells 2021; 10:cells10061358. [PMID: 34073133 PMCID: PMC8228216 DOI: 10.3390/cells10061358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022] Open
Abstract
Sperm swimming performance affects male fertilization success, particularly in species with high sperm competition. Understanding how sperm morphology impacts swimming performance is therefore important. Sperm swimming speed is hypothesized to increase with total sperm length, relative flagellum length (with the flagellum generating forward thrust), and relative midpiece length (as the midpiece contains the mitochondria). We tested these hypotheses and tested for divergence in sperm traits in five island populations of Canary Islands chiffchaff (Phylloscopus canariensis). We confirmed incipient mitochondrial DNA differentiation between Gran Canaria and the other islands. Sperm swimming speed correlated negatively with total sperm length, did not correlate with relative flagellum length, and correlated negatively with relative midpiece length (for Gran Canaria only). The proportion of motile cells increased with relative flagellum length on Gran Canaria only. Sperm morphology was similar across islands. We thus add to a growing number of studies on passerine birds that do not support sperm morphology-swimming speed hypotheses. We suggest that the swimming mechanics of passerine sperm are sufficiently different from mammalian sperm that predictions from mammalian hydrodynamic models should no longer be applied for this taxon. While both sperm morphology and sperm swimming speed are likely under selection in passerines, the relationship between them requires further elucidation.
Collapse
Affiliation(s)
- Emily R. A. Cramer
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
- Correspondence:
| | - Eduardo Garcia-del-Rey
- Macaronesian Institute of Field Ornithology, 38001 Santa Cruz de Tenerife, Canary Islands, Spain;
| | - Lars Erik Johannessen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Terje Laskemoen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Gunnhild Marthinsen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Arild Johnsen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Jan T. Lifjeld
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| |
Collapse
|
16
|
Mccarthy E, Mcdiarmid CS, Hurley LL, Rowe M, Griffith SC. Highly variable sperm morphology in the masked finch ( Poephila personata) and other estrildid finches. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Spermatozoa exhibit remarkable levels of morphological diversification among and within species. Among the passerine birds, the zebra finch (Taeniopygia guttata) has become a model system for studies of sperm biology, yet studies of closely related Estrildidae finches remain scarce. Here, we examine sperm morphology in the masked finch (Poephila personata) and place the data into the broader context of passerine sperm morphology using data for an additional 189 species. The masked finch exhibited high levels of within- and among-male variation in total sperm length and in specific sperm components. Furthermore, among-male variance in sperm length was significantly greater in estrildid (N = 12) compared with non-estrildid species (N = 178). We suggest that the high variation in sperm morphology in the masked finch and other estrildid species is likely to be linked to low levels of sperm competition, hence relaxed or weak selection on sperm length, in the clade. Our findings highlight that the highly variable sperm of the masked finch and widely studied zebra finch are ‘typical’ for estrildid species and stress the relevance of studying groups of closely related species. Finally, we suggest that further studies of Estrildidae will enhance our understanding of sperm diversity and avian diversity more generally.
Collapse
Affiliation(s)
- Elise Mccarthy
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Callum S Mcdiarmid
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laura L Hurley
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), AB, Wageningen, The Netherlands
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Reuland C, Simmons LW, Lüpold S, Fitzpatrick JL. Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells 2021; 10:cells10051062. [PMID: 33947050 PMCID: PMC8145498 DOI: 10.3390/cells10051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
In polyandrous species, males face reproductive competition both before and after mating. Sexual selection thus shapes the evolution of both pre- and postcopulatory traits, creating competing demands on resource allocation to different reproductive episodes. Traits subject to strong selection exhibit accelerated rates of phenotypic divergence, and examining evolutionary rates may inform us about the relative importance and potential fitness consequences of investing in traits under either pre- or postcopulatory sexual selection. Here, we used a comparative approach to assess evolutionary rates of key competitive traits in two artiodactyl families, bovids (family Bovidae) and cervids (family Cervidae), where male–male competition can occur before and after mating. We quantified and compared evolutionary rates of male weaponry (horns and antlers), body size/mass, testes mass, and sperm morphometrics. We found that weapons evolve faster than sperm dimensions. In contrast, testes and body mass evolve at similar rates. These results suggest strong, but differential, selection on both pre- and postcopulatory traits in bovids and cervids. Furthermore, we documented distinct evolutionary rates among different sperm components, with sperm head and midpiece evolving faster than the flagellum. Finally, we demonstrate that, despite considerable differences in weapon development between bovids and cervids, the overall evolutionary patterns between these families were broadly consistent.
Collapse
Affiliation(s)
- Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - John L. Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
18
|
Measuring Pre- and Post-Copulatory Sexual Selection and Their Interaction in Socially Monogamous Species with Extra-Pair Paternity. Cells 2021; 10:cells10030620. [PMID: 33799610 PMCID: PMC7999480 DOI: 10.3390/cells10030620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
When females copulate with multiple males, pre- and post-copulatory sexual selection may interact synergistically or in opposition. Studying this interaction in wild populations is complex and potentially biased, because copulation and fertilization success are often inferred from offspring parentage rather than being directly measured. Here, I simulated 15 species of socially monogamous birds with varying levels of extra-pair paternity, where I could independently cause a male secondary sexual trait to improve copulation success, and a sperm trait to improve fertilization success. By varying the degree of correlation between the male and sperm traits, I show that several common statistical approaches, including univariate selection gradients and paired t-tests comparing extra-pair males to the within-pair males they cuckolded, can give highly biased results for sperm traits. These tests should therefore be avoided for sperm traits in socially monogamous species with extra-pair paternity, unless the sperm trait is known to be uncorrelated with male trait(s) impacting copulation success. In contrast, multivariate selection analysis and a regression of the proportion of extra-pair brood(s) sired on the sperm trait of the extra-pair male (including only broods where the male sired ≥1 extra-pair offspring) were unbiased, and appear likely to be unbiased under a broad range of conditions for this mating system. In addition, I investigated whether the occurrence of pre-copulatory selection impacted the strength of post-copulatory selection, and vice versa. I found no evidence of an interaction under the conditions simulated, where the male trait impacted only copulation success and the sperm trait impacted only fertilization success. Instead, direct selection on each trait was independent of whether the other trait was under selection. Although pre- and post-copulatory selection strength was independent, selection on the two traits was positively correlated across species because selection on both traits increased with the frequency of extra-pair copulations in these socially monogamous species.
Collapse
|
19
|
Lüpold S, de Boer RA, Evans JP, Tomkins JL, Fitzpatrick JL. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200064. [PMID: 33070733 DOI: 10.1098/rstb.2020.0064] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Females of many species mate with multiple males, thereby inciting competition among ejaculates from rival males for fertilization. In response to increasing sperm competition, males are predicted to enhance their investment in sperm production. This prediction is so widespread that testes size (correcting for body size) is commonly used as a proxy of sperm competition, even in the absence of any other information about a species' reproductive behaviour. By contrast, a debate about whether sperm competition selects for smaller or larger sperm has persisted for nearly three decades, with empirical studies demonstrating every possible response. Here, we synthesize nearly 40 years of sperm competition research in a meta-analytical framework to determine how the evolution of sperm number (i.e. testes size) and sperm size (i.e. sperm head, midpiece, flagellum and total length) is influenced by varying levels of sperm competition across species. Our findings support the long-held assumption that higher levels of sperm competition are associated with relatively larger testes. We also find clear evidence that sperm competition is associated with increases in all components of sperm length. We discuss these results in the context of different theoretical predictions and general patterns in the breeding biology and selective environment of sperm. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Raïssa A de Boer
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 10691, Sweden
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John L Fitzpatrick
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 10691, Sweden
| |
Collapse
|
20
|
Blengini CS, Juri GL, Chiaraviglio M, Uñates DR, Naretto S. Sperm Parameters in Pristidactylus achalensis (Squamata: Leiosauridae), a Lizard Endemic to the Highest Mountain Areas in Central Argentina. COPEIA 2020. [DOI: 10.1643/ch-19-310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Cecilia Soledad Blengini
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Biología del Comportamiento, Córdoba, Argentina; (CSB) ; (GLJ) ; (MC) ; (
| | - Guadalupe López Juri
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Biología del Comportamiento, Córdoba, Argentina; (CSB) ; (GLJ) ; (MC) ; (
| | - Margarita Chiaraviglio
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Biología del Comportamiento, Córdoba, Argentina; (CSB) ; (GLJ) ; (MC) ; (
| | - Diego Rafael Uñates
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Biología del Comportamiento, Córdoba, Argentina; (CSB) ; (GLJ) ; (MC) ; (
| | - Sergio Naretto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Biología del Comportamiento, Córdoba, Argentina; (CSB) ; (GLJ) ; (MC) ; (
| |
Collapse
|
21
|
Carballo L, Delhey K, Valcu M, Kempenaers B. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J Evol Biol 2020; 33:1543-1557. [PMID: 32797649 DOI: 10.1111/jeb.13690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 01/14/2023]
Abstract
Psittaciformes (parrots, cockatoos and lorikeets) comprise one of the most colourful clades of birds. Their unique pigments and safe cavity nesting habits are two potential explanations for their colourful character. However, plumage colour varies substantially between parrot species and sometimes also between males and females of the same species. Here, we use comparative analyses to evaluate what factors correlate with colour elaboration, colour diversity and sexual dichromatism. Specifically, we test the association between different aspects of parrot colouration and (a) the intensity of sexual selection and social interactions, (b) variation along the slow-fast life-history continuum and (c) climatic variation. We show that larger species and species that live in warm environments display more elaborated colours, yet smaller species have higher levels of sexual dichromatism. Larger parrots tend to have darker and more blue and red colours. Parrots that live in wetter environments are darker and redder, whereas species inhabiting warm regions have more blue plumage colours. In general, each of the variables we considered explain small to moderate amounts of variation in parrot colouration (up to 15%). Our data suggest that sexual selection may be acting more strongly on males in small, short-lived parrots leading to sexual dichromatism. More elaborate colouration in both males and females of the larger, long-lived species with slow tropical life histories suggests that mutual mate choice, social selection and reduced selection for crypsis may be important in these species, as has been shown for passerines.
Collapse
Affiliation(s)
- Luisana Carballo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Kaspar Delhey
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
22
|
Dawson SK, Jönsson M. Just how big is intraspecific trait variation in basidiomycete wood fungal fruit bodies? FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Sperm Morphology and Male Age in Black-Throated Blue Warblers, an Ecological Model System. Animals (Basel) 2020; 10:ani10071175. [PMID: 32664407 PMCID: PMC7401543 DOI: 10.3390/ani10071175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Extra-pair paternity may drive selection on spermatozoa and ejaculate characteristics through sperm competition and cryptic female choice. Here, we examine sperm morphology in the black-throated blue warbler (Setophaga caerulescens), an ecological model species where extra-pair paternity is frequent and is linked with male age. We test whether sperm morphology relates to several aspects of male phenotype known or suspected to affect extra-pair paternity success. Sperm morphology did not correlate with the size of the white wing spot, a social status signal, nor with the volume of the cloacal protuberance. However, older males tended to have longer sperm cells. Although the sample size was limited, this pattern is intriguing, as longer cells may be advantageous in post-copulatory sexual selection and older males have larger testes and higher extra-pair paternity success in this species. Changes in sperm morphology with age are not observed in other birds, though they have been observed in insects and fishes. More research on sperm morphology is needed to clarify its role in extra-pair fertilizations in this well-studied species.
Collapse
|
24
|
Omotoriogun TC, Albrecht T, Gohli J, Hořák D, Johannessen LE, Johnsen A, Kreisinger J, Marki PZ, Ottosson U, Rowe M, Sedláček O, Lifjeld JT. Sperm length variation among Afrotropical songbirds reflects phylogeny rather than adaptations to the tropical environment. ZOOLOGY 2020; 140:125770. [DOI: 10.1016/j.zool.2020.125770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
|
25
|
Calhim S, Pruett-Jones S, Webster MS, Rowe M. Asymmetries in reproductive anatomy: insights from promiscuous songbirds. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Directional asymmetry in gonad size is commonly observed in vertebrates and is particularly pronounced in birds, where the left testis is frequently larger than the right. The adaptive significance of directional asymmetry in testis size is poorly understood, and whether it extends beyond the testes (i.e. side-correspondent asymmetry along the reproductive tract) has rarely been considered. Using the Maluridae, a songbird family exhibiting variation in levels of sperm competition and directional testis asymmetry, yet similar in ecology and life history, we investigated the relative roles of side-correspondence and sperm competition on male reproductive tract asymmetry at both inter- and intraspecific levels. We found some evidence for side-correspondent asymmetry. Additionally, sperm competition influenced directional asymmetry at each end of the reproductive tract: species experiencing higher levels of sperm competition had a relatively larger right testis and relatively more sperm in the right seminal glomerus. Within red-backed fairy-wrens (Malurus melanocephalus), auxiliary males had relatively more sperm in the left seminal glomerus, in contrast to a right-bias asymmetry throughout the reproductive tract in breeding males. Given that the number of sperm is important for competitive fertilization success, our results suggest that sperm competition shapes reproductive asymmetries beyond testis size, with likely functional consequences for male reproductive success.
Collapse
Affiliation(s)
- Sara Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, FI, Finland
| | | | - Michael S Webster
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA
| | - Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Gimond C, Vielle A, Silva-Soares N, Zdraljevic S, McGrath PT, Andersen EC, Braendle C. Natural Variation and Genetic Determinants of Caenorhabditis elegans Sperm Size. Genetics 2019; 213:615-632. [PMID: 31395653 PMCID: PMC6781899 DOI: 10.1534/genetics.119.302462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/04/2019] [Indexed: 01/28/2023] Open
Abstract
The diversity in sperm shape and size represents a powerful paradigm to understand how selection drives the evolutionary diversification of cell morphology. Experimental work on the sperm biology of the male-hermaphrodite nematode Caenorhabditis elegans has elucidated diverse factors important for sperm fertilization success, including the competitive superiority of larger sperm. Yet despite extensive research, the molecular mechanisms regulating C. elegans sperm size and the genetic basis underlying natural variation in sperm size remain unknown. To address these questions, we quantified male sperm size variation of a worldwide panel of 97 genetically distinct C. elegans strains, allowing us to uncover significant genetic variation in male sperm size. Aiming to characterize the molecular genetic basis of C. elegans male sperm size variation using a genome-wide association study, we did not detect any significant quantitative trait loci. We therefore focused on the genetic analysis of pronounced sperm size differences observed between recently diverged laboratory strains (N2 vs. LSJ1/2). Using mutants and quantitative complementation tests, we demonstrate that variation in the gene nurf-1 underlies the evolution of small sperm in the LSJ lineage. Given the previous discovery that this same nurf-1 variation was central for hermaphrodite laboratory adaptation, the evolution of reduced male sperm size in LSJ strains likely reflects a pleiotropic consequence. Together, our results provide a comprehensive quantification of natural variation in C. elegans sperm size and first insights into the genetic determinants of Caenorhabditis sperm size, pointing at an involvement of the NURF chromatin remodeling complex.
Collapse
Affiliation(s)
- Clotilde Gimond
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice 06100, France
| | - Anne Vielle
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice 06100, France
| | - Nuno Silva-Soares
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice 06100, France
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
27
|
Rowley A, Locatello L, Kahrl A, Rego M, Boussard A, Garza-Gisholt E, Kempster RM, Collin SP, Giacomello E, Follesa MC, Porcu C, Evans JP, Hazin F, Garcia-Gonzalez F, Daly-Engel T, Mazzoldi C, Fitzpatrick JL. Sexual selection and the evolution of sperm morphology in sharks. J Evol Biol 2019; 32:1027-1035. [PMID: 31250483 DOI: 10.1111/jeb.13501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 01/18/2023]
Abstract
Post-copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post-copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter- and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.
Collapse
Affiliation(s)
- Amy Rowley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lisa Locatello
- Department of Biology, University of Padova, Padua, Italy
| | - Ariel Kahrl
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mariana Rego
- Laboratório de Histologia Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Annika Boussard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Eduardo Garza-Gisholt
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ryan M Kempster
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun P Collin
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia.,School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Eva Giacomello
- MARE - Marine and Environmental Sciences Centre, IMAR- Institute of the Sea, OKEANOS Centre- University of the Azores, Horta, Portugal
| | - Maria C Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Porcu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Fabio Hazin
- Laboratório de Histologia Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| | - Toby Daly-Engel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | | | | |
Collapse
|
28
|
Carballo L, Battistotti A, Teltscher K, Lierz M, Bublat A, Valcu M, Kempenaers B. Sperm morphology and evidence for sperm competition among parrots. J Evol Biol 2019; 32:856-867. [PMID: 31245887 PMCID: PMC6852422 DOI: 10.1111/jeb.13487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
Sperm competition is an important component of post‐copulatory sexual selection that has shaped the evolution of sperm morphology. Previous studies have reported that sperm competition has a concurrently directional and stabilizing effect on sperm size. For example, bird species that show higher levels of extrapair paternity and larger testes (proxies for the intensity of sperm competition) have longer sperm and lower coefficients of variation in sperm length, both within and between males. For this reason, these sperm traits have been proposed as indexes to estimate the level of sperm competition in species for which other measures are not available. The relationship between sperm competition and sperm morphology has been explored mostly for bird species that breed in temperate zones, with the main focus on passerine birds. We measured sperm morphology in 62 parrot species that breed mainly in the tropics and related variation in sperm length to life‐history traits potentially indicative of the level of sperm competition. We showed that sperm length negatively correlated with the within‐male coefficient of variation in sperm length and positively with testes mass. We also showed that sperm is longer in sexually dichromatic and in gregarious species. Our results support the general validity of the hypothesis that sperm competition drives variation in sperm morphology. Our analyses suggest that post‐copulatory sexual selection is also important in tropical species, with more intense sperm competition among sexually dichromatic species and among species that breed at higher densities.
Collapse
Affiliation(s)
- Luisana Carballo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Alessandra Battistotti
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Biology, University of Padua, Padova, Italy
| | - Kim Teltscher
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Giessen, Germany
| | - Andreas Bublat
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Giessen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
29
|
Mongue AJ, Hansen ME, Gu L, Sorenson CE, Walters JR. Nonfertilizing sperm in Lepidoptera show little evidence for recurrent positive selection. Mol Ecol 2019; 28:2517-2530. [PMID: 30972892 PMCID: PMC6584056 DOI: 10.1111/mec.15096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/30/2022]
Abstract
Sperm are among the most variable cells in nature. Some of this variation results from nonadaptive errors in spermatogenesis, but many species consistently produce multiple sperm morphs, the adaptive significance of which remains unknown. Here, we investigate the evolution of dimorphic sperm in Lepidoptera, the butterflies and moths. Males of this order produce both fertilizing sperm and a secondary, nonfertilizing type that lacks DNA. Previous organismal studies suggested a role for nonfertilizing sperm in sperm competition, but this hypothesis has never been evaluated from a molecular framework. We combined published data sets with new sequencing in two species, the monandrous Carolina sphinx moth and the highly polyandrous monarch butterfly. Based on population genetic analyses, we see evidence for increased adaptive evolution in fertilizing sperm, but only in the polyandrous species. This signal comes primarily from a decrease in nonsynonymous polymorphism in sperm proteins compared to the rest of the genome, suggesting stronger purifying selection, consistent with selection via sperm competition. Nonfertilizing sperm proteins, in contrast, do not show an effect of mating system and do not appear to evolve differently from the background genome in either species, arguing against the involvement of nonfertilizing sperm in direct sperm competition. Based on our results and previous work, we suggest that nonfertilizing sperm may be used to delay female remating in these insects and decrease the risk of sperm competition rather than directly affect its outcome.
Collapse
Affiliation(s)
- Andrew J Mongue
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| | - Megan E Hansen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| | - Liuqi Gu
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| | - Clyde E Sorenson
- Department of Entomology, North Carolina State University, Raleigh, North Carolina
| | - James R Walters
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas
| |
Collapse
|
30
|
Støstad HN, Rowe M, Johnsen A, Lifjeld JT. Sperm head abnormalities are more frequent in songbirds with more helical sperm: A possible trade-off in sperm evolution. J Evol Biol 2019; 32:666-674. [PMID: 30945783 DOI: 10.1111/jeb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
Abstract
Sperm morphology varies enormously across the animal kingdom. Whilst knowledge of the factors that drive the evolution of interspecific variation in sperm morphology is accumulating, we currently have little understanding of factors that may constrain evolutionary change in sperm traits. We investigated whether susceptibility to sperm abnormalities could represent such a constraint in songbirds, a group characterized by a distinctive helical sperm head shape. Specifically, using 36 songbird species and data from light and scanning electron microscopy, we examined among-species correlations between the occurrence of sperm head abnormalities and sperm morphology, as well as the correlation between sperm head abnormalities and two indicators of sperm competition. We found that species with more helically shaped sperm heads (i.e., a wider helical membrane and more pronounced cell waveform) had a higher percentage of abnormal sperm heads than species with less helical sperm (i.e., relatively straight sperm) and that sperm head traits were better predictors of head abnormalities than total sperm length. In contrast, there was no correlation between sperm abnormalities and the level of sperm competition. Given that songbird species with more pronounced helical sperm have higher average sperm swimming speed, our results suggest an evolutionary trade-off between sperm performance and the structural integrity of the sperm head. As such, susceptibility to morphological abnormalities may constrain the evolution of helical sperm morphology in songbirds.
Collapse
Affiliation(s)
| | - Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jan T Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Hasegawa M, Arai E, Nakamura M. Small, Variable Sperm in a Barn Swallow Population with Low Extra-Pair Paternity. Zoolog Sci 2019; 36:154-158. [PMID: 31120651 DOI: 10.2108/zs180039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022]
Abstract
Sperm competition can theoretically affect sperm morphology; however, it remains unclear whether and how sperm morphology tracks the intensity of sperm competition in each population. The barn swallow Hirundo rustica is a model species used in the study of sexual selection, and exhibits considerable variation in extra-pair paternity (percentage extra-pair young, ca. 3-30%) among populations. In the Joetsu population of the barn swallow, extra-pair paternity is virtually absent (< 3%), providing a rare opportunity to study sperm morphology under limited sperm competition, and to compare it with those reported in populations with frequent extra-pair paternity (>15%). We found that head, midpiece, and total sperm length were significantly shorter in the Joetsu population than in populations with frequent extra-pair paternity. Moreover, the variability in total sperm length, measured as the coefficient of variation in the Joetsu population, was twice as high as that of populations with frequent extra-pair paternity. These results are consistent with a positive, directional, and stabilizing effect of sperm competition on sperm morphology. Together with previous studies in populations with frequent extra-pair paternity, the current study provides one of few sets of evidence to show a link between the intensity of sperm competition and the mean and variance of sperm morphology within a wild bird species.
Collapse
Affiliation(s)
- Masaru Hasegawa
- Department of Evolutionary Studies of Biosystems, Sokendai (the Graduate University for Advanced Studies), Hayama-machi, Miura-gun, Kanagawa 240-0115, Japan,
| | - Emi Arai
- Department of Evolutionary Studies of Biosystems, Sokendai (the Graduate University for Advanced Studies), Hayama-machi, Miura-gun, Kanagawa 240-0115, Japan
| | - Masahiko Nakamura
- Laboratory of Animal Ecology, Department of Biology, Joetsu University of Education, Joetsu-shi, Niigata 943-8512, Japan
| |
Collapse
|
32
|
Edme A, Zobač P, Korsten P, Albrecht T, Schmoll T, Krist M. Moderate heritability and low evolvability of sperm morphology in a species with high risk of sperm competition, the collared flycatcher Ficedula albicollis. J Evol Biol 2018; 32:205-217. [PMID: 30449037 DOI: 10.1111/jeb.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
Spermatozoa represent the morphologically most diverse type of animal cells and show remarkable variation in size across and also within species. To understand the evolution of this diversity, it is important to reveal to what degree this variation is genetic or environmental in origin and whether this depends on species' life histories. Here we applied quantitative genetic methods to a pedigreed multigenerational data set of the collared flycatcher Ficedula albicollis, a passerine bird with high levels of extra-pair paternity, to partition genetic and environmental sources of phenotypic variation in sperm dimensions for the first time in a natural population. Narrow-sense heritability (h2 ) of total sperm length amounted to 0.44 ± 0.14 SE, whereas the corresponding figure for evolvability (estimated as coefficient of additive genetic variation, CVa ) was 0.02 ± 0.003 SE. We also found an increase in total sperm length within individual males between the arrival and nestling period. This seasonal variation may reflect constraints in the production of fully elongated spermatozoa shortly after arrival at the breeding grounds. There was no evidence of an effect of male age on sperm dimensions. In many previous studies on laboratory populations of several insect, mammal and avian species, heritabilities of sperm morphology were higher, whereas evolvabilities were similar. Explanations for the differences in heritability may include variation in the environment (laboratory vs. wild), intensity of sexual selection via sperm competition (high vs. low) and genetic architecture that involves unusual linkage disequilibrium coupled with overdominance in one of the studied species.
Collapse
Affiliation(s)
- Anaïs Edme
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic
| | - Petr Zobač
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Miloš Krist
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic.,Museum of Natural History, Olomouc, Czech Republic
| |
Collapse
|
33
|
Janoušek V, Fischerová J, Mořkovský L, Reif J, Antczak M, Albrecht T, Reifová R. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity (Edinb) 2018; 122:622-635. [PMID: 30374041 DOI: 10.1038/s41437-018-0161-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Jitka Fischerová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Libor Mořkovský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, 128 01, Czech Republic
| | - Marcin Antczak
- Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic.,Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
34
|
Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: A comparative study of songbirds using electron microscopy. Evolution 2018; 72:1918-1932. [DOI: 10.1111/evo.13555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/24/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Arild Johnsen
- Natural History Museum University of Oslo 0318 Oslo Norway
| | | | - Melissah Rowe
- Natural History Museum University of Oslo 0318 Oslo Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences University of Oslo 0316 Oslo Norway
| |
Collapse
|
35
|
Mendonca T, Birkhead TR, Cadby AJ, Forstmeier W, Hemmings N. A trade-off between thickness and length in the zebra finch sperm mid-piece. Proc Biol Sci 2018; 285:rspb.2018.0865. [PMID: 30051869 PMCID: PMC6083248 DOI: 10.1098/rspb.2018.0865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/29/2018] [Indexed: 01/22/2023] Open
Abstract
The sperm mid-piece has traditionally been considered to be the engine that powers sperm. Larger mid-pieces have therefore been assumed to provide greater energetic capacity. However, in the zebra finch Taeniopygia guttata, a recent study showed a surprising negative relationship between mid-piece length and sperm energy content. Using a multi-dimensional approach to study mid-piece structure, we tested whether this unexpected relationship can be explained by a trade-off between mid-piece length and mid-piece thickness and/or cristae density inside the mitochondrial helix. We used selective plane illumination microscopy to study mid-piece structure from three-dimensional images of zebra finch sperm and used high-resolution transmission electron microscopy to quantify mitochondrial density. Contrary to the assumption that longer mid-pieces are larger and therefore produce or contain a greater amount of energy, our results indicate that the amount of mitochondrial material is consistent across mid-pieces of varying lengths, and longer mid-pieces are simply proportionately ‘thinner’.
Collapse
Affiliation(s)
- Tania Mendonca
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK .,Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tim R Birkhead
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ashley J Cadby
- Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Nicola Hemmings
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
36
|
Sætre CLC, Johnsen A, Stensrud E, Cramer ERA. Sperm morphology, sperm motility and paternity success in the bluethroat (Luscinia svecica). PLoS One 2018; 13:e0192644. [PMID: 29509773 PMCID: PMC5839561 DOI: 10.1371/journal.pone.0192644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Abstract
Postcopulatory sexual selection may select for male primary sexual characteristics like sperm morphology and sperm motility, through sperm competition or cryptic female choice. However, how such characteristics influence male fertilization success remains poorly understood. In this study, we investigate possible correlations between sperm characteristics and paternity success in the socially monogamous bluethroat (Luscinia svecica svecica), predicting that sperm length and sperm swimming speed is positively correlated with paternity success. In total, 25% (15/61) of broods contained extra-pair offspring and 10% (33/315) of the offspring were sired by extra-pair males. Paternity success did not correlate significantly with sperm morphology or any aspects of sperm motility. Furthermore, sperm morphology and sperm motility did not correlate significantly with male morphological characters that previously have been shown to be associated with paternity success. Thus, the sperm characteristics investigated here do not appear to be strong predictors of paternity success in bluethroats.
Collapse
Affiliation(s)
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Even Stensrud
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
37
|
Losdat S, Germain RR, Nietlisbach P, Arcese P, Reid JM. No evidence of inbreeding depression in sperm performance traits in wild song sparrows. Ecol Evol 2018; 8:1842-1852. [PMID: 29435258 PMCID: PMC5792576 DOI: 10.1002/ece3.3721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 11/14/2022] Open
Abstract
Inbreeding is widely hypothesized to shape mating systems and population persistence, but such effects will depend on which traits show inbreeding depression. Population and evolutionary consequences could be substantial if inbreeding decreases sperm performance and hence decreases male fertilization success and female fertility. However, the magnitude of inbreeding depression in sperm performance traits has rarely been estimated in wild populations experiencing natural variation in inbreeding. Further, the hypothesis that inbreeding could increase within-ejaculate variation in sperm traits and thereby further affect male fertilization success has not been explicitly tested. We used a wild pedigreed song sparrow (Melospiza melodia) population, where frequent extrapair copulations likely create strong postcopulatory competition for fertilization success, to quantify effects of male coefficient of inbreeding (f) on key sperm performance traits. We found no evidence of inbreeding depression in sperm motility, longevity, or velocity, and the within-ejaculate variance in sperm velocity did not increase with male f. Contrary to inferences from highly inbred captive and experimental populations, our results imply that moderate inbreeding will not necessarily constrain sperm performance in wild populations. Consequently, the widely observed individual-level and population-level inbreeding depression in male and female fitness may not stem from reduced sperm performance in inbred males.
Collapse
Affiliation(s)
- Sylvain Losdat
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenScotland
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Ryan R. Germain
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenScotland
| | - Pirmin Nietlisbach
- Institute of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Peter Arcese
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Jane M. Reid
- Institute of Biological and Environmental SciencesSchool of Biological SciencesUniversity of AberdeenAberdeenScotland
| |
Collapse
|
38
|
Girndt A, Cockburn G, Sánchez-Tójar A, Løvlie H, Schroeder J. Method matters: Experimental evidence for shorter avian sperm in faecal compared to abdominal massage samples. PLoS One 2017; 12:e0182853. [PMID: 28813481 PMCID: PMC5559096 DOI: 10.1371/journal.pone.0182853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022] Open
Abstract
Birds are model organisms in sperm biology. Previous work in zebra finches, suggested that sperm sampled from males' faeces and ejaculates do not differ in size. Here, we tested this assumption in a captive population of house sparrows, Passer domesticus. We compared sperm length in samples from three collection techniques: female dummy, faecal and abdominal massage samples. We found that sperm were significantly shorter in faecal than abdominal massage samples, which was explained by shorter heads and midpieces, but not flagella. This result might indicate that faecal sampled sperm could be less mature than sperm collected by abdominal massage. The female dummy method resulted in an insufficient number of experimental ejaculates because most males ignored it. In light of these results, we recommend using abdominal massage as a preferred method for avian sperm sampling. Where avian sperm cannot be collected by abdominal massage alone, we advise controlling for sperm sampling protocol statistically.
Collapse
Affiliation(s)
- Antje Girndt
- Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, United Kingdom
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Glenn Cockburn
- Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Alfredo Sánchez-Tójar
- Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, United Kingdom
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Hanne Løvlie
- IFM Biology, Linköping University, Linköping, Sweden
| | - Julia Schroeder
- Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, United Kingdom
| |
Collapse
|
39
|
Lawrence M, Mastromonaco G, Goodrowe K, Santymire R, Waddell W, Schulte-Hostedde A. The effects of inbreeding on sperm morphometry of captive-bred endangered mammals. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Captive breeding is used for the conservation of endangered species, but inbreeding can result when a small number of founders are used to establish populations. Inbreeding can reduce the proportion of normal sperm in an ejaculate, but may also have effects on sperm size and shape (morphometry). We investigated the effects of inbreeding on sperm morphometry of black-footed ferrets (Mustela nigripes (Audubon and Bachman, 1851)) and red wolves (Canis rufus Audubon and Bachman, 1851) from captive breeding programs to determine if more inbred males produced sperm of poor quality (bulky head, small midpiece, short tail). We measured sperm head length, head width, midpiece length, midpiece width, and tail length on 10 sperm from each male of both species. A negative relationship between variation in sperm tail length and inbreeding coefficient (f) was found in black-footed ferret, suggesting that more inbred individuals will have reduced genetic and phenotypic variation. Analyses indicated a negative relationship between sperm head width and f and a positive relationship between sperm tail length and f in red wolf, suggesting that more inbred male red wolves could have faster sperm. These results indicate that inbreeding affects functionally important aspects of sperm morphometry, but that these effects may not be entirely negative.
Collapse
Affiliation(s)
- M. Lawrence
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - G. Mastromonaco
- Reproductive Physiology, Toronto Zoo, Scarborough, ON M1B 5K7, Canada
| | - K. Goodrowe
- Point Defiance Zoo and Aquarium, Tacoma, WA 98407, USA
| | - R.M. Santymire
- Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, Chicago, IL 60614, USA
| | - W. Waddell
- Point Defiance Zoo and Aquarium, Tacoma, WA 98407, USA
| | - A.I. Schulte-Hostedde
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
40
|
A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat Ecol Evol 2017; 1:1177-1184. [PMID: 29046576 DOI: 10.1038/s41559-017-0236-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/06/2017] [Indexed: 01/23/2023]
Abstract
Male reproductive success depends on the competitive ability of sperm to fertilize the ova, which should lead to strong selection on sperm characteristics. This raises the question of how heritable variation in sperm traits is maintained. Here we show that in zebra finches (Taeniopygia guttata) nearly half of the variance in sperm morphology is explained by an inversion on the Z chromosome with a 40% allele frequency in the wild. The sperm of males that are heterozygous for the inversion had the longest midpieces and the highest velocity. Furthermore, such males achieved the highest fertility and the highest siring success, both within-pair and extra-pair. Males homozygous for the derived allele show detrimental sperm characteristics and the lowest siring success. Our results suggest heterozygote advantage as the mechanism that maintains the inversion polymorphism and hence variance in sperm design and in fitness.
Collapse
|
41
|
Godwin JL, Vasudeva R, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T, Gage MJG. Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm. Evol Lett 2017; 1:102-113. [PMID: 30283643 PMCID: PMC6089504 DOI: 10.1002/evl3.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
It is the differences between sperm and eggs that fundamentally underpin the differences between the sexes within reproduction. For males, it is theorized that widespread sperm competition leads to selection for investment in sperm numbers, achieved by minimizing sperm size within limited resources for spermatogenesis in the testis. Here, we empirically examine how sperm competition shapes sperm size, after more than 77 generations of experimental selection of replicate lines under either high or low sperm competition intensities in the promiscuous flour beetle Tribolium castaneum. After this experimental evolution, populations had diverged significantly in their sperm competitiveness, with sperm in ejaculates from males evolving under high sperm competition intensities gaining 20% greater paternity than sperm in ejaculates from males that had evolved under low sperm competition intensity. Males did not change their relative investment into sperm production following this experimental evolution, showing no difference in testis sizes between high and low intensity regimes. However, the more competitive males from high sperm competition intensity regimes had evolved significantly longer sperm and, across six independently selected lines, there was a significant association between the degree of divergence in sperm length and average sperm competitiveness. To determine whether such sperm elongation is costly, we used dietary restriction experiments, and revealed that protein-restricted males produced significantly shorter sperm. Our findings therefore demonstrate that sperm competition intensity can exert positive directional selection on sperm size, despite this being a costly reproductive trait.
Collapse
Affiliation(s)
- Joanne L. Godwin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Ramakrishnan Vasudeva
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | | | | | - Alyson J. Lumley
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Matthew J. G. Gage
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
42
|
Villaverde-Morcillo S, Soler AJ, Esteso MC, Castaño C, Miñano-Berna A, Gonzalez F, Santiago-Moreno J. Immature and mature sperm morphometry in fresh and frozen-thawed falcon ejaculates. Theriogenology 2017; 98:94-100. [PMID: 28601162 DOI: 10.1016/j.theriogenology.2017.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
Abstract
Sperm morphometry is one characteristic which may be useful in prediction of fertility and sperm freezability in a species. Knowledge of the sperm characteristics of the ejaculate and the morphometric descriptors is necessary to effectively develop sperm cryopreservation. The aim of the current study was to provide a general description of the sperm from two falcon species (Peregrine falcon Falco peregrinus peregrinus/brookei and Gyrfalcon Falco rusticolus) including immature sperm, sperm head morphometric descriptors, and the existence of mature sperm subpopulations. Semen samples were collected by massage and voluntary false copulation and diluted with Lake and Ravie medium. Smears were prepared of the diluted samples, stained with Hemacolor®, and subjected to: 1) morphological analysis (bright field optical microscopy), and 2) computerised morphometric analysis; each sperm head was measured for length, width, area and perimeter. In addition, in the Gyrfalcon, pooled semen was frozen in pellets using DMA as a cryoprotectant and the analyses repeated after thawing. The mean percentage of immature sperm (spermatocytes and spermatids) was similarly high in all species/subspecies: Brookei Peregrine falcon (F. p. brookei) 55.5%, European Peregrine falcon (F. p. peregrinus) 65.5% and Gyrfalcon 64.7%. Clustering analyses identified four subpopulations of mature spermatozoa with different morphometric characteristics (P < 0.001). The relative proportions of these subpopulations were similar in all three species. The mean values recorded for the morphometric variables of the four subpopulations were, however, lower (P < 0.001) in the thawed Gyrfalcon samples than in fresh samples. The results support the idea of pleiomorphy as a characteristic of raptor mature sperm. This finding, plus that of the existence of four sperm subpopulations with different morphometric characteristics, may be important in the future development of cryopreservation protocols for falcon sperm.
Collapse
Affiliation(s)
| | - A J Soler
- SaBio IREC (CSIC-UCLM-JCCM), Campus Universitario, Albacete, Spain
| | - M C Esteso
- Department of Animal Reproduction, INIA, Madrid, Spain
| | - C Castaño
- Department of Animal Reproduction, INIA, Madrid, Spain
| | - A Miñano-Berna
- CRFS El Valle, Consejería de Agricultura y Agua, Región de Murcia, Murcia, Spain
| | - F Gonzalez
- Wildlife Rehabilitation Hospital GREFA, Majadahonda, Madrid, Spain
| | | |
Collapse
|
43
|
Rojas Mora A, Meniri M, Ciprietti S, Helfenstein F. Social dominance explains within-ejaculate variation in sperm design in a passerine bird. BMC Evol Biol 2017; 17:66. [PMID: 28259157 PMCID: PMC5336654 DOI: 10.1186/s12862-017-0914-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background Comparative studies suggest that sperm competition exerts stabilizing selection towards an optimal sperm design – e.g., the relative size and covariation of different sperm sections or a quantitative measure of sperm shape - that maximizes male fertility, which results in reduced levels of within-male variation in sperm morphology. Yet, these studies also reveal substantial amounts of unexplained within-ejaculate variance, and the factors presiding to the maintenance of such within-male variation in sperm design at the population level still remain to be identified. Sperm competition models predict that males should progressively invest more resources in their germline as their mating costs increase, i.e., the soma/germline allocation trade-off hypothesis. When access to fertile females is determined by social dominance, the soma/germline allocation trade-off hypothesis predicts that dominant males should invest less in the control of spermatogenesis. Hence, dominance should positively correlate with within-male variance in sperm design. Results In support of this hypothesis, we found that dominant house sparrow males produce ejaculates with higher levels of within-ejaculate variation in sperm design compared to subordinate males. However, after experimentally manipulating male social status, this pattern was not maintained. Conclusions Our results suggest that males might control variation in sperm design according to their social status to some extent. Yet, it seems that such within-ejaculate variation in sperm design cannot be rapidly adjusted to a new status. While variation in sperm design could result from various non-exclusive sources, we discuss how strategic allocation of resources to the somatic vs. the germline functions could be an important process shaping the relationship between within-male variation in sperm design and social status. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0914-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alfonso Rojas Mora
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, Neuchatel, Switzerland
| | - Magali Meniri
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, Neuchatel, Switzerland
| | - Sabrina Ciprietti
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, Neuchatel, Switzerland
| | - Fabrice Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, Neuchatel, Switzerland.
| |
Collapse
|
44
|
SCHREMPF A, MOSER A, DELABIE J, HEINZE J. Sperm traits differ between winged and wingless males of the antCardiocondyla obscurior. Integr Zool 2016; 11:427-432. [DOI: 10.1111/1749-4877.12191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alexandra SCHREMPF
- Zoology/Evolutionary Biology; University of Regensburg; Regensburg Germany
| | - Astrid MOSER
- Zoology/Evolutionary Biology; University of Regensburg; Regensburg Germany
| | - Jacques DELABIE
- Myrmecological Laboratory; Cocoa Research Center CEPLAC; Itabuna Brazil
| | - Jürgen HEINZE
- Zoology/Evolutionary Biology; University of Regensburg; Regensburg Germany
| |
Collapse
|
45
|
Smith RJ, Matzke-Karasz R, Kamiya T. Sperm length variations in five species of cypridoidean non-marine ostracods (Crustacea). Cell Tissue Res 2016; 366:483-497. [PMID: 27449928 DOI: 10.1007/s00441-016-2459-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022]
Abstract
Spermatozoa of the ostracod superfamily Cypridoidea include some of the longest in the animal kingdom, but unlike other so-called giant spermatozoa, they are aflagellate, probably evolved only once, and represent an exceptionally old trait. Sperm length variations within cypridoidean species remain poorly known, a lack that hinders the development of hypotheses to explain their length and variation. For this study, the lengths of 500 spermatozoa from each of five species of freshwater cypridoidean ostracods, Candonopsis tenuis (Brady, 1886), Fabaeformiscandona subacuta (Yang, 1982), Heterocypris rotundata (Bronshtein, 1928), Ilyocypris japonica Okubo, 1990, and Notodromas trulla Smith and Kamiya, 2014, were measured, including the lengths of the posterior and anterior regions. No overall pattern in sperm variation was discernible. Length variations between species, between males of the same species, and within individual males varied from low (Candonopsis tenuis) to extraordinarily large (Notodromas trulla and Fabaeformiscandona subacuta). Sperm competition, cryptic female choice, sperm heteromorphism, and testis size are unlikely to explain all of the variations observed. Age structures of the populations sampled might play a role in explaining some intraspecific variation. The differing amounts of variation in sperm characters revealed in this study suggest that multiple evolutionary trends and pressures shape sperm lengths in this superfamily.
Collapse
Affiliation(s)
- Robin J Smith
- Lake Biwa Museum, Oroshimo 1091, Kusatsu, Shiga Prefecture, 525-0001, Japan.
| | - Renate Matzke-Karasz
- Department of Earth and Environmental Sciences, Palaeontology, Ludwig-Maximilians-Universität München and GeoBio-Center LMU, 80333, Munich, Germany.
| | - Takahiro Kamiya
- College of Science and Engineering, School of Natural System, University of Kanazawa, Kakuma, Kanazawa, 920-1192, Japan
| |
Collapse
|
46
|
Lifjeld JT, Anmarkrud JA, Calabuig P, Cooper JEJ, Johannessen LE, Johnsen A, Kearns AM, Lachlan RF, Laskemoen T, Marthinsen G, Stensrud E, Garcia-del-Rey E. Species-level divergences in multiple functional traits between the two endemic subspecies of Blue Chaffinches Fringilla teydea in Canary Islands. BMC ZOOL 2016. [DOI: 10.1186/s40850-016-0008-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Supriya K, Rowe M, Laskemoen T, Mohan D, Price TD, Lifjeld JT. Early diversification of sperm size in the evolutionary history of the old world leaf warblers (Phylloscopidae). J Evol Biol 2016; 29:777-89. [PMID: 26781541 DOI: 10.1111/jeb.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Sperm morphological traits are highly variable among species and are commonly thought to evolve by post-copulatory sexual selection. However, little is known about the evolutionary dynamics of sperm morphology, and whether rates of evolutionary change are variable over time and among taxonomic groups. Here, we examine sperm morphology from 21 species of Old World leaf warblers (Phylloscopidae), a group of generally dull, sexually monochromatic birds, which are known to have high levels of extra-pair paternity. We found that sperm length differs markedly across species, spanning about 40% of the range observed across a larger selection of passerine birds. Furthermore, we found strong support for an 'early-burst' model of trait evolution, implying that the majority of divergence in sperm length has occurred early in the evolutionary history of this clade with subsequent evolutionary stasis. This large early divergence matches the early divergence reported in ecological traits (i.e. body size and feeding behaviour). Our findings demonstrate that rates of evolution in sperm morphology can change over time in passerine taxa, and that evolutionary stasis in sperm traits can occur even in species exhibiting characteristics consistent with moderate-to-high levels of sperm competition. It remains a major challenge to identify the selection mechanisms and possible constraints responsible for these variable rates of sperm evolution.
Collapse
Affiliation(s)
- K Supriya
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
| | - M Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - T Laskemoen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - D Mohan
- Wildlife Institute of India, Dehradun, India
| | - T D Price
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - J T Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Stewart KA, Wang R, Montgomerie R. Extensive variation in sperm morphology in a frog with no sperm competition. BMC Evol Biol 2016; 16:29. [PMID: 26832366 PMCID: PMC4735968 DOI: 10.1186/s12862-016-0601-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Background Recent comparative studies of several taxa have found that within-species variation in sperm size decreases with increasing levels of sperm competition, suggesting that male-male gamete competition selects for an optimal sperm phenotype. Previous studies of intraspecific sperm length variation have all involved internal fertilizers where some other factors—e.g., sperm storage and sperm movement along the walls of the female’s reproductive tract—probably also influence and reduce sperm size variation. Thus external fertilizers, where those factors are absent, might be expected to exhibit even more variation when there is little or no sperm competition. To test that idea, we studied the sperm morphology of a North American chorus frog, the spring peeper (Pseudacris crucifer), a species in which males encounter little or no sperm competition. Results As expected, sperm size was highly variable in the spring peeper, largely due to variation in flagellum length within and among individual males, among populations and between mitochondrial lineages in southwestern Ontario. In addition, a large proportion of spermatozoa in all males was abnormal in such a way that the ability of abnormal spermatozoa to fertilize was probably compromised. There were no differences in the frequencies of abnormalities among populations or mitochondrial lineages. Conclusions In the absence of sperm competition, we suggest that genetic drift has probably played a role in the generation of diversity in sperm morphology in this species, potentially resulting in the observed differences among populations. Such interpopulation difference in sperm morphology might be expected to increase the degree of reproductive isolation between populations even before other isolating mechanisms evolve. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0601-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathryn A Stewart
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada. .,College of Environmental Science and Engineering, Tongji University, Shanghai, 1239 Siping Rd, P R China.
| | - Rachel Wang
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Robert Montgomerie
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
49
|
Cramer ERA, Stensrud E, Marthinsen G, Hogner S, Johannessen LE, Laskemoen T, Eybert MC, Slagsvold T, Lifjeld JT, Johnsen A. Sperm performance in conspecific and heterospecific female fluid. Ecol Evol 2016; 6:1363-77. [PMID: 26855769 PMCID: PMC4733106 DOI: 10.1002/ece3.1977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/08/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022] Open
Abstract
Divergent sexual selection within allopatric populations may result in divergent sexual phenotypes, which can act as reproductive barriers between populations upon secondary contact. This hypothesis has been most tested on traits involved in precopulatory sexual selection, with less work focusing on traits that act after copulation and before fertilization (i.e., postcopulatory prezygotic traits), particularly in internally fertilizing vertebrates. However, postcopulatory sexual selection within species can also drive trait divergence, resulting in reduced performance of heterospecific sperm within the female reproductive tract. Such incompatibilities, arising as a by‐product of divergent postcopulatory sexual selection in allopatry, can represent reproductive barriers, analogous to species‐assortative mating preferences. Here, we tested for postcopulatory prezygotic reproductive barriers between three pairs of taxa with diverged sperm phenotypes and moderate‐to‐high opportunity for postcopulatory sexual selection (barn swallows Hirundo rustica versus sand martins Riparia riparia, two subspecies of bluethroats, Luscinia svecica svecica versus L. s. namnetum, and great tits Parus major versus blue tits Cyanistes caeruleus). We tested sperm swimming performance in fluid from the outer reproductive tract of females, because the greatest reduction in sperm number in birds occurs as sperm swim across the vagina. Contrary to our expectations, sperm swam equally well in fluid from conspecific and heterospecific females, suggesting that postcopulatory prezygotic barriers do not act between these taxon pairs, at this stage between copulation and fertilization. We therefore suggest that divergence in sperm phenotypes in allopatry is insufficient to cause widespread postcopulatory prezygotic barriers in the form of impaired sperm swimming performance in passerine birds.
Collapse
Affiliation(s)
- Emily R A Cramer
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Even Stensrud
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Gunnhild Marthinsen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Silje Hogner
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | | | - Terje Laskemoen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | | | - Tore Slagsvold
- Department of Biosciences Center for Ecological and Evolutionary Synthesis (CEES) University of Oslo PO Box 1066 Blindern 0316 Oslo Norway
| | - Jan T Lifjeld
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Arild Johnsen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| |
Collapse
|
50
|
Opatová P, Ihle M, Albrechtová J, Tomášek O, Kempenaers B, Forstmeier W, Albrecht T. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol Evol 2015; 6:295-304. [PMID: 26811793 PMCID: PMC4716522 DOI: 10.1002/ece3.1868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/08/2022] Open
Abstract
Inbreeding depression, or the reduction in fitness due to mating between close relatives, is a key issue in biology today. Inbreeding negatively affects many fitness‐related traits, including survival and reproductive success. Despite this, very few studies have quantified the effects of inbreeding on vertebrate gamete traits under controlled breeding conditions using a full‐sib mating approach. Here, we provide comprehensive evidence for the negative effect of inbreeding on sperm traits in a bird, the zebra finch Taeniopygia guttata. We compared sperm characteristics of both inbred (pedigree F = 0.25) and outbred (pedigree F = 0) individuals from two captive populations, one domesticated and one recently wild‐derived, raised under standardized conditions. As normal spermatozoa morphology did not differ consistently between inbred and outbred individuals, our study confirms the hypothesis that sperm morphology is not particularly susceptible to inbreeding depression. Inbreeding did, however, lead to significantly lower sperm motility and a substantially higher percentage of abnormal spermatozoa in ejaculate. These results were consistent across both study populations, confirming the generality and reliability of our findings.
Collapse
Affiliation(s)
- Pavlína Opatová
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Department of Botany and Zoology Faculty of Science Masaryk University Kotlářská 267/2CZ-61137 Brno Czech Republic
| | - Malika Ihle
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard-Gwinner-Strasse 7 82319 Seewiesen Germany
| | - Jana Albrechtová
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Charles University in Prague Faculty of Sciences Department of Zoology Viničná 7CZ-12844 Prague Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Charles University in Prague Faculty of Sciences Department of Zoology Viničná 7CZ-12844 Prague Czech Republic
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard-Gwinner-Strasse 7 82319 Seewiesen Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard-Gwinner-Strasse 7 82319 Seewiesen Germany
| | - Tomáš Albrecht
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Charles University in Prague Faculty of Sciences Department of Zoology Viničná 7CZ-12844 Prague Czech Republic
| |
Collapse
|