1
|
Tsuboi M, Takahashi T. Sexually divergent selection, allometric constraints, and the evolution of sexual dimorphism in cichlids from Lake Tanganyika. J Evol Biol 2024; 37:1563-1575. [PMID: 39180283 DOI: 10.1093/jeb/voae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/22/2024] [Accepted: 09/03/2024] [Indexed: 08/26/2024]
Abstract
The evolution of sexual dimorphism is widely acknowledged as a manifestation of sex-specific genetic architecture. Although empirical studies suggested that sexual dimorphism evolves as a joint consequence of constraints arising from genetic architecture and sexually divergent selection, it remains unclear whether and how these established microevolutionary processes scale up to the macroevolutionary patterns of sexual dimorphism among taxa. Here, we studied how sexual selection and parental care drive sexual dimorphism in cichlid fishes from Lake Tanganyika. We found that male-male competition, female choice, and maternal mouthbrooding are associated with sexual dimorphism in body length, body colour, and head length, respectively, despite strong allometric relationships between body length and head length. Within-species (static) allometry of head length on body length evolved as sex-specific responses to mouthbrooding, where females evolved higher intercepts while males evolved steeper slopes. Thus, selection to increase mouth size in mouthbrooders may have broken down and reorganized the pattern of allometric constraints that are inherently strong and concordant between sexes. Furthermore, sex-specific responses to mouthbrooding left a remarkably clear signature on the macroevolutionary pattern, resulting in a decoupling of co-evolution in parameters of static allometries between sexes observed exclusively within maternal mouthbrooders. Our study provides multiple lines of evidence that are consistent with the idea that macroevolutionary patterns of sexual dimorphism in Lake Tanganyika cichlids result from sexually divergent selection. Our approach illustrates that an examination of within-population phenotypic variance in the phylogenetic comparative framework may facilitate nuanced understandings of how macroevolutionary patterns are generated by underlying microevolutionary processes.
Collapse
Affiliation(s)
| | - Tetsumi Takahashi
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Japan
| |
Collapse
|
2
|
Melde RH, Abraham JM, Ugolini MR, Castle MP, Fjalstad MM, Blumstein DM, Durski SJ, Sharp NP. Sex-specific viability effects of mutations in Drosophila melanogaster. Evolution 2024; 78:1844-1853. [PMID: 39277542 DOI: 10.1093/evolut/qpae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
In populations with separate sexes, genetic load due to deleterious mutations may be expressed differently in males and females. Evidence from insect models suggests that selection against mutations is stronger in males. This pattern will reduce deleterious allele frequencies at the expense of males, such that female mean fitness is greater than expected, preserving population persistence in the face of high mutation rates. While previous studies focus on reproductive success, mutation load depends on total selection in each sex, including selection for viability. We might expect minimal sex differences in viability effects in fruit flies, since male and female larvae behave similarly, yet many genes show sex-biased expression in larvae. We measured the sex-specific viability effects of nine "marker" mutations and 123 mutagenized chromosomes. We find that both types of mutations generally reduce viability in both sexes. Among marker mutations we detect instances of sex-biased effects in each direction; mutagenized chromosomes show little sex-specific mutational variance, but recessive lethals show a female bias, including in FlyBase records. We conclude that mutations regularly affect viability in a sex-specific manner, but that the strong pattern of male-biased mutational effects observed previously for reproductive success is not apparent at the pre-reproductive stage.
Collapse
Affiliation(s)
- Robert H Melde
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - JoHanna M Abraham
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Maryn R Ugolini
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Madison P Castle
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Molly M Fjalstad
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Daniela M Blumstein
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Sarah J Durski
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| |
Collapse
|
3
|
Wedell N, Kemp DJ. Ultraviolet signaling in a butterfly is preferred by females and conveys male genetic quality. Evolution 2024; 78:1372-1381. [PMID: 38776186 DOI: 10.1093/evolut/qpae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/24/2024]
Abstract
Indicator models of sexual selection posit that females choose males on the basis of traits that reveal male genetic quality and thereby enjoy increased offspring production. Here, we report that females of the butterfly Eurema hecabe receive indirect benefits from choosing males based on their ultraviolet (UV) wing coloration, a heritable and condition-dependent trait in this species. We first used a large laboratory-bred pedigree to demonstrate a per-family association between inbreeding and male UV trait value. Females exerted choice for UV-bright males within this protocol, and the average male UV trait value increased over six consecutive generations, presumably due to such selection and despite an increasing rate of pedigree-wide inbreeding. We then experimentally imposed a standard strength of inbreeding upon lines of divergent male UV trait values. Inbreeding depressed the siring performance of low UV treatment males more severely and resulted in a marginal reduction of their UV brightness, which rebounded sharply following subsequent outcrossing. These findings are consistent with the ornament-based signaling of genetic quality as a function of underlying individual-level mutational load.
Collapse
Affiliation(s)
- Nina Wedell
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Darrell J Kemp
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
4
|
Jarrett BJM, Miller CW. Host Plant Effects on Sexual Selection Dynamics in Phytophagous Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:41-57. [PMID: 37562047 DOI: 10.1146/annurev-ento-022823-020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male-male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Natural Sciences, Bangor University, Bangor, United Kingdom;
- Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| | - Christine W Miller
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
5
|
Helsen J, Sherlock G, Dey G. Experimental evolution for cell biology. Trends Cell Biol 2023; 33:903-912. [PMID: 37188561 PMCID: PMC10592577 DOI: 10.1016/j.tcb.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Evolutionary cell biology explores the origins, principles, and core functions of cellular features and regulatory networks through the lens of evolution. This emerging field relies heavily on comparative experiments and genomic analyses that focus exclusively on extant diversity and historical events, providing limited opportunities for experimental validation. In this opinion article, we explore the potential for experimental laboratory evolution to augment the evolutionary cell biology toolbox, drawing inspiration from recent studies that combine laboratory evolution with cell biological assays. Primarily focusing on approaches for single cells, we provide a generalizable template for adapting experimental evolution protocols to provide fresh insight into long-standing questions in cell biology.
Collapse
Affiliation(s)
- Jana Helsen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
6
|
Singh A, Hasan A, Agrawal AF. An investigation of the sex-specific genetic architecture of fitness in Drosophila melanogaster. Evolution 2023; 77:2015-2028. [PMID: 37329263 DOI: 10.1093/evolut/qpad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
In dioecious populations, the sexes employ divergent reproductive strategies to maximize fitness and, as a result, genetic variants can affect fitness differently in males and females. Moreover, recent studies have highlighted an important role of the mating environment in shaping the strength and direction of sex-specific selection. Here, we measure adult fitness for each sex of 357 lines from the Drosophila Synthetic Population Resource in two different mating environments. We analyze the data using three different approaches to gain insight into the sex-specific genetic architecture for fitness: classical quantitative genetics, genomic associations, and a mutational burden approach. The quantitative genetics analysis finds that on average segregating genetic variation in this population has concordant fitness effects both across the sexes and across mating environments. We do not find specific genomic regions with strong associations with either sexually antagonistic (SA) or sexually concordant (SC) fitness effects, yet there is modest evidence of an excess of genomic regions with weak associations, with both SA and SC fitness effects. Our examination of mutational burden indicates stronger selection against indels and loss-of-function variants in females than in males.
Collapse
Affiliation(s)
- Amardeep Singh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Asad Hasan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Fracasso G, Heylen D, Matthysen E. Male mating preference in an ixodid tick. Parasit Vectors 2022; 15:316. [PMID: 36071436 PMCID: PMC9450281 DOI: 10.1186/s13071-022-05419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Mate choice is a fundamental element of sexual selection and has the potential to shape the evolution of traits. Mate choice based on body size has been shown to be a common trait in several arthropod species. In hard ticks, a taxon of medical and veterinary importance, engorgement weight is positively correlated with reproductive output but it is unknown whether adult males show mate choice. Here, we experimentally investigated whether males (i) use chemical cues to choose their mating partner, (ii) consistently choose for the same female individual and (iii) prefer females with highest weight after feeding. Methods We used two experimental setups which allowed chemical communication between ticks: (i) a horizontal tube preventing physical contact with the female and (ii) an arena where tactile cues were allowed. In total, we tested 62 different triads in 124 tests (66 tests in the horizontal tube and 58 in the arena) composed of one male that could choose between two engorged females. Specifically, we tested 42 triads in the tube and 46 in the arena; 24 triads were repeatedly tested in the tube while 38 triads were tested in both setups. Results We found no preference for individual or heavier females in either setup. However, in the horizontal tube setup, males significantly preferred females that were not visited by them in the previous test. Conclusions Our results suggest a lack of male mate choice despite heavier females having higher fecundity. However, future studies should take into account that males may recognize the potential mating partners they previously met. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Gerardo Fracasso
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium. .,Eco-Epidemiology Group, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium.
| | - Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium.,Eco-Epidemiology Group, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, 3590, Diepenbeek, Belgium
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
8
|
Parrett JM, Chmielewski S, Aydogdu E, Łukasiewicz A, Rombauts S, Szubert-Kruszyńska A, Babik W, Konczal M, Radwan J. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat Ecol Evol 2022; 6:1330-1342. [DOI: 10.1038/s41559-022-01816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
|
9
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
10
|
Sharda S, Kawecki TJ, Hollis B. Adaptation to a bacterial pathogen in Drosophila melanogaster is not aided by sexual selection. Ecol Evol 2022; 12:e8543. [PMID: 35169448 PMCID: PMC8840902 DOI: 10.1002/ece3.8543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Theory predicts that sexual selection should aid adaptation to novel environments, but empirical support for this idea is limited. Pathogens are a major driver of host evolution and, unlike abiotic selection pressures, undergo epidemiological and co-evolutionary cycles with the host involving adaptation and counteradaptation. Because of this, populations harbor ample genetic variation underlying immunity and the opportunity for sexual selection based on condition-dependent "good genes" is expected to be large. In this study, we evolved populations of Drosophila melanogaster in a 2-way factorial design manipulating sexual selection and pathogen presence, using a gram-negative insect pathogen Pseudomonas entomophila, for 14 generations. We then examined how the presence of sexual selection and the pathogen, as well as any potential interaction, affected the evolution of pathogen resistance. We found increased resistance to P. entomophila in populations that evolved under pathogen pressure, driven primarily by increased female survival after infection despite selection for resistance acting only on males over the course of experimental evolution. This result suggests that the genetic basis of resistance is in part shared between the sexes. We did not find any evidence of sexual selection aiding adaptation to pathogen, however, a finding contrary to the predictions of "good genes" theory. Our results therefore provide no support for a role for sexual selection in the evolution of immunity in this experimental system.
Collapse
Affiliation(s)
- Sakshi Sharda
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Brian Hollis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
11
|
Lewis JA, Morran LT. Advantages of laboratory natural selection in the applied sciences. J Evol Biol 2021; 35:5-22. [PMID: 34826161 DOI: 10.1111/jeb.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
In the past three decades, laboratory natural selection has become a widely used technique in biological research. Most studies which have utilized this technique are in the realm of basic science, often testing hypotheses related to mechanisms of evolutionary change or ecological dynamics. While laboratory natural selection is currently utilized heavily in this setting, there is a significant gap with its usage in applied studies, especially when compared to the other selection experiment methodologies like artificial selection and directed evolution. This is despite avenues of research in the applied sciences which seem well suited to laboratory natural selection. In this review, we place laboratory natural selection in context with other selection experiments, identify the characteristics which make it well suited for particular kinds of applied research and briefly cover key examples of the usefulness of selection experiments within applied science. Finally, we identify three promising areas of inquiry for laboratory natural selection in the applied sciences: bioremediation technology, identifying mechanisms of drug resistance and optimizing biofuel production. Although laboratory natural selection is currently less utilized in applied science when compared to basic research, the method has immense promise in the field moving forward.
Collapse
Affiliation(s)
- Jordan A Lewis
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Levi T Morran
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, Georgia, USA.,Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Rowe L, Rundle HD. The Alignment of Natural and Sexual Selection. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-033324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection has the potential to decrease mean fitness in a population through an array of costs to nonsexual fitness. These costs may be offset when sexual selection favors individuals with high nonsexual fitness, causing the alignment of sexual and natural selection. We review the many laboratory experiments that have manipulated mating systems aimed at quantifying the net effects of sexual selection on mean fitness. These must be interpreted in light of population history and the diversity of ways manipulations have altered sexual interactions, sexual conflict, and sexual and natural selection. Theory and data suggest a net benefit is more likely when sexually concordant genetic variation is enhanced and that ecological context can mediate the relative importance of these different effects. Comparative studies have independently examined the consequences of sexual selection for population/species persistence. These provide little indication of a benefit, and interpreting these higher-level responses is challenging.
Collapse
Affiliation(s)
- Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Howard D. Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
13
|
Grieshop K, Maurizio PL, Arnqvist G, Berger D. Selection in males purges the mutation load on female fitness. Evol Lett 2021; 5:328-343. [PMID: 34367659 PMCID: PMC8327962 DOI: 10.1002/evl3.239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental "selfs," and we estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.
Collapse
Affiliation(s)
- Karl Grieshop
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM5S 3B2Canada
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSE‐10691Sweden
| | - Paul L. Maurizio
- Section of Genetic Medicine, Department of MedicineUniversity of ChicagoChicagoIllinois60637
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| | - David Berger
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| |
Collapse
|
14
|
Wilson AE, Siddiqui A, Dworkin I. Spatial heterogeneity in resources alters selective dynamics in Drosophila melanogaster. Evolution 2021; 75:1792-1804. [PMID: 33963761 DOI: 10.1111/evo.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
Environmental features can alter the behaviors and phenotypes of organisms, influencing the dynamics of natural and sexual selection. Experimental environmental manipulation, particularly when conducted in experiments where the dynamics of the purging of deleterious alleles are compared, has demonstrated both direct and indirect effects on the strength and direction of selection. However, many of these studies are conducted with fairly simplistic environments, where it is not always clear how or why particular forms of spatial heterogeneity influence behavior or selection. Using Drosophila melanogaster, we tested three different spatial environments designed to determine if spatial constraint of critical resources influences the efficiency of natural and sexual selection. We conducted two allele purging experiments to (1) assess effects of these spatial treatments on selective dynamics of six recessive mutations, and (2) determine how these dynamics changed when sexual selection was relaxed and spatial area reduced for two of the mutants. Allele purging dynamics depended on spatial environment, however the patterns of purging rates between the environments differed across distinct deleterious mutations. We also tested two of the mutant alleles, and demonstrate sexual selection increased the purging rate.
Collapse
Affiliation(s)
- Audrey E Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ali Siddiqui
- Department of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
MacPherson B, Scott R, Gras R. Sex and recombination purge the genome of deleterious alleles: An Individual Based Modeling Approach. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Gibson Vega A, Kennington WJ, Tomkins JL, Dugand RJ. Experimental evidence for accelerated adaptation to desiccation through sexual selection on males. J Evol Biol 2020; 33:1060-1067. [PMID: 32315476 DOI: 10.1111/jeb.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
The impact of sexual selection on the adaptive process remains unclear. On the one hand, sexual selection might hinder adaptation by favouring costly traits and preferences that reduce nonsexual fitness. On the other hand, condition dependence of success in sexual selection may accelerate adaptation. Here, we used replicate populations of Drosophila melanogaster to artificially select on male desiccation resistance while manipulating the opportunity for precopulatory sexual selection in a factorial design. Following five generations of artificial selection, we measured the desiccation resistance of males and females to test whether the addition of sexual selection accelerated adaptation. We found a significant interaction between the effects of natural selection and sexual selection: desiccation resistance was highest in populations where sexual selection was allowed to operate. Despite only selecting on males, we also found a correlated response in females. These results provide empirical support for the idea that sexual selection can accelerate the rate of adaptation.
Collapse
Affiliation(s)
- Aline Gibson Vega
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Robert J Dugand
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
17
|
Schrader M, Keller MK, Lucey GF. Adaptation to monogamy influences parental care but not mating behavior in the burying beetle, Nicrophorus vespilloides. Ecol Evol 2020; 10:6525-6535. [PMID: 32724530 PMCID: PMC7381755 DOI: 10.1002/ece3.6387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023] Open
Abstract
The mating system is expected to have an important influence on the evolution of mating and parenting behaviors. Although many studies have used experimental evolution to examine how mating behaviors evolve under different mating systems, this approach has seldom been used to study the evolution of parental care. We used experimental evolution to test whether adaptation to different mating systems involves changes in mating and parenting behaviors in populations of the burying beetle, Nicrophorus vespilloides. We maintained populations under monogamy or promiscuity for six generations. This manipulation had an immediate impact on reproductive performance and adult survival. Compared to monogamy, promiscuity reduced brood size and adult (particularly male) survival during breeding. After six generations of experimental evolution, there was no divergence between monogamous and promiscuous populations in mating behaviors. Parents from the promiscuous populations (especially males) displayed less care than parents from the monogamous populations. Our results are consistent with the hypothesis that male care will increase with the certainty of paternity. However, it appears that this change is not associated with a concurrent change in mating behaviors.
Collapse
|
18
|
Sexual Selection Does Not Increase the Rate of Compensatory Adaptation to a Mutation Influencing a Secondary Sexual Trait in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:1541-1551. [PMID: 32122961 PMCID: PMC7202011 DOI: 10.1534/g3.119.400934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Theoretical work predicts that sexual selection can enhance natural selection, increasing the rate of adaptation to new environments and helping purge harmful mutations. While some experiments support these predictions, remarkably little work has addressed the role of sexual selection on compensatory adaptation—populations’ ability to compensate for the costs of deleterious alleles that are already present. We tested whether sexual selection, as well as the degree of standing genetic variation, affect the rate of compensatory evolution via phenotypic suppression in experimental populations of Drosophila melanogaster. These populations were fixed for a spontaneous mutation causing mild abnormalities in the male sex comb, a structure important for mating success. We fine-mapped this mutation to an ∼85 kb region on the X chromosome containing three candidate genes, showed that the mutation is deleterious, and that its phenotypic expression and penetrance vary by genetic background. We then performed experimental evolution, including a treatment where opportunity for mate choice was limited by experimentally enforced monogamy. Although evolved populations did show some phenotypic suppression of the morphological abnormalities in the sex comb, the amount of suppression did not depend on the opportunity for sexual selection. Sexual selection, therefore, may not always enhance natural selection; instead, the interaction between these two forces may depend on additional factors.
Collapse
|
19
|
Sexual conflict drives male manipulation of female postmating responses in Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:8437-8444. [PMID: 30962372 PMCID: PMC6486729 DOI: 10.1073/pnas.1821386116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In species with males and females, reproduction requires contributions from both sexes and therefore some degree of cooperation. At the same time, antagonistic interactions can evolve because of the differing goals of males and females. We aligned the interests of the sexes in the naturally promiscuous fruit fly Drosophila melanogaster by enforcing randomized monogamy for more than 150 generations. Males repeatedly evolved to manipulate females less, a pattern visible in both the timing of female reproductive effort and gene expression changes after mating. Male investment in expression of genes encoding seminal fluid proteins, which shape the female postmating response, declined concurrently. Our results confirm the presence of sexually antagonistic selection on postcopulatory interactions that can be reversed by monogamy. In many animals, females respond to mating with changes in physiology and behavior that are triggered by molecules transferred by males during mating. In Drosophila melanogaster, proteins in the seminal fluid are responsible for important female postmating responses, including temporal changes in egg production, elevated feeding rates and activity levels, reduced sexual receptivity, and activation of the immune system. It is unclear to what extent these changes are mutually beneficial to females and males or instead represent male manipulation. Here we use an experimental evolution approach in which females are randomly paired with a single male each generation, eliminating any opportunity for competition for mates or mate choice and thereby aligning the evolutionary interests of the sexes. After >150 generations of evolution, males from monogamous populations elicited a weaker postmating stimulation of egg production and activity than males from control populations that evolved with a polygamous mating system. Males from monogamous populations did not differ from males from polygamous populations in their ability to induce refractoriness to remating in females, but they were inferior to polygamous males in sperm competition. Mating-responsive genes in both the female abdomen and head showed a dampened response to mating with males from monogamous populations. Males from monogamous populations also exhibited lower expression of genes encoding seminal fluid proteins, which mediate the female response to mating. Together, these results demonstrate that the female postmating response, and the male molecules involved in eliciting this response, are shaped by ongoing sexual conflict.
Collapse
|
20
|
Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180174. [PMID: 30966962 PMCID: PMC6365870 DOI: 10.1098/rstb.2018.0174] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental change. The process of adaptation to novel environmental conditions can occur via two mechanisms: (1) the expression of phenotypic plasticity (the ability of one genotype to express varying phenotypes when exposed to different environmental conditions), and (2) evolution via selection for particular phenotypes, resulting in the modification of genetic variation in the population. Plasticity, because it acts at the level of the individual, is often hailed as a rapid-response mechanism that will enable organisms to adapt and survive in our rapidly changing world. But plasticity can also retard adaptation by shifting the distribution of phenotypes in the population, shielding it from natural selection. In addition to which, not all plastic responses are adaptive-now well-documented in cases of ecological traps. In this theme issue, we aim to present a considered view of plasticity and the role it could play in facilitating or hindering adaption to environmental change. This introduction provides a re-examination of our current understanding of the role of phenotypic plasticity in adaptation and sets the theme issue's contributions in their broader context. Four key themes emerge: the need to measure plasticity across both space and time; the importance of the past in predicting the future; the importance of the link between plasticity and sexual selection; and the need to understand more about the nature of selection on plasticity itself. We conclude by advocating the need for cross-disciplinary collaborations to settle the question of whether plasticity will promote or retard species' rates of adaptation to ever-more stressful environmental conditions. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Rebecca J. Fox
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| | - Celia Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan D. Gaitán-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
21
|
Malek HL, Long TAF. Spatial environmental complexity mediates sexual conflict and sexual selection in Drosophila melanogaster. Ecol Evol 2019; 9:2651-2663. [PMID: 30891206 PMCID: PMC6405486 DOI: 10.1002/ece3.4932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023] Open
Abstract
Sexual selection is an important agent of evolutionary change, but the strength and direction of selection often vary over space and time. One potential source of heterogeneity may lie in the opportunity for male-male and/or male-female interactions imposed by the spatial environment. It has been suggested that increased spatial complexity permits sexual selection to act in a complementary fashion with natural selection (hastening the loss of deleterious alleles and/or promoting the spread of beneficial alleles) via two (not mutually exclusive) pathways. In the first scenario, sexual selection potentially acts more strongly on males in complex environments, allowing males of greater genetic "quality" a greater chance of outcompeting rivals, with benefits manifested indirectly in offspring. In the second scenario, increased spatial complexity reduces opportunities for males to antagonistically harm females, allowing females (especially those of greater potential fecundities) to achieve greater reproductive success (direct fitness benefits). Here, using Drosophila melanogaster, we explore the importance of these mechanisms by measuring direct and indirect fitness of females housed in simple vial environments or in vials in which spatial complexity has been increased. We find strong evidence in favor of the female conflict-mediated pathway as individuals in complex environments remated less frequently and produced more offspring than those housed in a simpler spatial environment, but no difference in the fitness of sons or daughters. We discuss these results in the context of other recent studies and what they mean for our understanding of how sexual selection operates.
Collapse
Affiliation(s)
- Heather L. Malek
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | | |
Collapse
|
22
|
Noël E, Fruitet E, Lelaurin D, Bonel N, Ségard A, Sarda V, Jarne P, David P. Sexual selection and inbreeding: Two efficient ways to limit the accumulation of deleterious mutations. Evol Lett 2018; 3:80-92. [PMID: 30788144 PMCID: PMC6369961 DOI: 10.1002/evl3.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Theory and empirical data showed that two processes can boost selection against deleterious mutations, thus facilitating the purging of the mutation load: inbreeding, by exposing recessive deleterious alleles to selection in homozygous form, and sexual selection, by enhancing the relative reproductive success of males with small mutation loads. These processes tend to be mutually exclusive because sexual selection is reduced under mating systems that promote inbreeding, such as self‐fertilization in hermaphrodites. We estimated the relative efficiency of inbreeding and sexual selection at purging the genetic load, using 50 generations of experimental evolution, in a hermaphroditic snail (Physa acuta). To this end, we generated lines that were exposed to various intensities of inbreeding, sexual selection (on the male function), and nonsexual selection (on the female function). We measured how these regimes affected the mutation load, quantified through the survival of outcrossed and selfed juveniles. We found that juvenile survival strongly decreased in outbred lines with reduced male selection, but not when female selection was relaxed, showing that male‐specific sexual selection does purge deleterious mutations. However, in lines exposed to inbreeding, where sexual selection was also relaxed, survival did not decrease, and even increased for self‐fertilized juveniles, showing that purging through inbreeding can compensate for the absence of sexual selection. Our results point to the further question of whether a mixed strategy combining the advantages of both mechanisms of genetic purging could be evolutionary stable.
Collapse
Affiliation(s)
- Elsa Noël
- UMR AGAP (CIRAD-INRA-Montpellier SupAgro) 2 Place Pierre Viala 34060 Montpellier Cedex 1 France.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France
| | - Elise Fruitet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France.,Department of Entomology Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8 Jena 07745 Germany.,IBED University of Amsterdam Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Dennyss Lelaurin
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France
| | - Nicolas Bonel
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France.,Universidad Nacional del Sur B8000ICN Bahía Blanca Argentina
| | - Adeline Ségard
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France
| | - Violette Sarda
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France
| | - Philippe Jarne
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France
| | - Patrice David
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-Université Paul Valéry Montpellier-IRD-EPHE 1919 route de Mende, 34293 Montpellier cedex 5 France
| |
Collapse
|
23
|
Walsh CB, McGuigan K. Do slower movers have lower reproductive success and higher mutation load? Evol Lett 2018; 2:590-598. [PMID: 30564442 PMCID: PMC6292707 DOI: 10.1002/evl3.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/18/2018] [Indexed: 02/01/2023] Open
Abstract
Deleterious mutations occur frequently in eukaryotes, resulting in individuals carrying multiple alleles that decrease their fitness. At a population level, if unchecked, accumulation of this mutation load can ultimately lead to extinction. How selection counters the accumulation of mutation load, limiting declines in population fitness, is not well understood. Here, we use manipulative experiments in zebrafish (Danio rerio) to investigate the opportunities for selection on mutation load. Inducing high mutation load through mutagenesis, we applied one generation of within‐family selection on locomotor performance and characterized both the direct response to this selection and the indirect response of reproductive success. Offspring of slow swimming parents exhibited age‐dependent declines in swimming speed, whereas their cousins, with faster swimming parents, did not. This pattern mimics previously documented differences between high and low mutation load populations of zebrafish, suggesting that slow swimming siblings inherited (and transmitted) more mutations than their faster swimming siblings. Crosses among offspring of slow swimming fish had, on average, <75% of the reproductive success of crosses among offspring of fast swimming parents, or crosses of offspring of slow swimmers with offspring of fast swimmers. This evidence of mutationally correlated swimming speed and reproductive success reveals the potential for concordant selection on mutation load through different fitness components. There was no evidence that crosses within families (where parents potentially shared the same mutations inherited from their common ancestor) had lower reproductive success than crosses among families, suggesting that viability selection was not acting predominantly through lethal recessive homozygotes. Rather, patterns of reproductive success are suggestive of effects of mutation number per se on embryo viability. Overall, our results highlight the potential for early life mortality to remove deleterious mutations, and the need to account for this mortality when investigating the evolutionary dynamics of mutation load.
Collapse
Affiliation(s)
- Carly B Walsh
- School of Biological Sciences The University of Queensland Brisbane 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
24
|
Godwin JL, Spurgin LG, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T, Gage MJG. Lineages evolved under stronger sexual selection show superior ability to invade conspecific competitor populations. Evol Lett 2018; 2:511-523. [PMID: 30283698 PMCID: PMC6145403 DOI: 10.1002/evl3.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Despite limitations on offspring production, almost all multicellular species use sex to reproduce. Sex gives rise to sexual selection, a widespread force operating through competition and choice within reproduction, however, it remains unclear whether sexual selection is beneficial for total lineage fitness, or if it acts as a constraint. Sexual selection could be a positive force because of selection on improved individual condition and purging of mutation load, summing into lineages with superior fitness. On the other hand, sexual selection could negate potential net fitness through the actions of sexual conflict, or because of tensions between investment in sexually selected and naturally selected traits. Here, we explore these ideas using a multigenerational invasion challenge to measure consequences of sexual selection for the overall net fitness of a lineage. After applying experimental evolution under strong versus weak regimes of sexual selection for 77 generations with the flour beetle Tribolium castaneum, we measured the overall ability of introductions from either regime to invade into conspecific competitor populations across eight generations. Results showed that populations from stronger sexual selection backgrounds had superior net fitness, invading more rapidly and completely than counterparts from weak sexual selection backgrounds. Despite comprising only 10% of each population at the start of the invasion experiment, colonizations from strong sexual selection histories eventually achieved near-total introgression, almost completely eliminating the original competitor genotype. Population genetic simulations using the design and parameters of our experiment indicate that this invasion superiority could be explained if strong sexual selection had improved both juvenile and adult fitness, in both sexes. Using a combination of empirical and modeling approaches, our findings therefore reveal positive and wide-reaching impacts of sexual selection for net population fitness when facing the broad challenge of invading competitor populations across multiple generations.
Collapse
Affiliation(s)
- Joanne L. Godwin
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | - Lewis G. Spurgin
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | - Łukasz Michalczyk
- Department of EntomologyInstitute of ZoologyJagiellonian University30–387KrakówPoland
| | - Oliver Y. Martin
- ETH ZurichInstitute of Integrative BiologyD‐USYS8092ZürichSwitzerland
| | - Alyson J. Lumley
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUK
| | | |
Collapse
|
25
|
Yun L, Chen PJ, Singh A, Agrawal AF, Rundle HD. The physical environment mediates male harm and its effect on selection in females. Proc Biol Sci 2018; 284:rspb.2017.0424. [PMID: 28679725 DOI: 10.1098/rspb.2017.0424] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Recent experiments indicate that male preferential harassment of high-quality females reduces the variance in female fitness, thereby weakening natural selection through females and hampering adaptation and purging. We propose that this phenomenon, which results from a combination of male choice and male-induced harm, should be mediated by the physical environment in which intersexual interactions occur. Using Drosophila melanogaster, we examined intersexual interactions in small and simple (standard fly vials) versus slightly more realistic (small cages with spatial structure) environments. We show that in these more realistic environments, sexual interactions are less frequent, are no longer biased towards high-quality females, and that overall male harm is reduced. Next, we examine the selective advantage of high- over low-quality females while manipulating the opportunity for male choice. Male choice weakens the viability advantage of high-quality females in the simple environment, consistent with previous work, but strengthens selection on females in the more realistic environment. Laboratory studies in simple environments have strongly shaped our understanding of sexual conflict but may provide biased insight. Our results suggest that the physical environment plays a key role in the evolutionary consequences of sexual interactions and ultimately the alignment of natural and sexual selection.
Collapse
Affiliation(s)
- Li Yun
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Patrick J Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Amardeep Singh
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Howard D Rundle
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
26
|
Servedio MR, Boughman JW. The Role of Sexual Selection in Local Adaptation and Speciation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022905] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection plays several intricate and complex roles in the related processes of local adaptation and speciation. In some cases sexual selection can promote these processes, but in others it can be inhibitory. We present theoretical and empirical evidence supporting these dual effects of sexual selection during local adaptation, allopatric speciation, and speciation with gene flow. Much of the empirical evidence for sexual selection promoting speciation is suggestive rather than conclusive; we present what would constitute strong evidence for sexual selection driving speciation. We conclude that although there is ample evidence that sexual selection contributes to the speciation process, it is very likely to do so only in concert with natural selection.
Collapse
Affiliation(s)
- Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
27
|
Singh A, Agrawal AF, Rundle HD. Environmental complexity and the purging of deleterious alleles. Evolution 2017; 71:2714-2720. [DOI: 10.1111/evo.13334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Amardeep Singh
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada M5S 3B2
| | - Aneil F. Agrawal
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada M5S 3B2
| | - Howard D. Rundle
- Department of Biology; University of Ottawa; Ottawa ON Canada K1N 6N5
| |
Collapse
|
28
|
Allen SL, McGuigan K, Connallon T, Blows MW, Chenoweth SF. Sexual selection on spontaneous mutations strengthens the between-sex genetic correlation for fitness. Evolution 2017; 71:2398-2409. [PMID: 28722119 DOI: 10.1111/evo.13310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/08/2017] [Indexed: 11/27/2022]
Abstract
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation-accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between-sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between-sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex-limited, and/or sex-biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual-based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest-to-large fraction of mutations have sex-limited (or highly sex-biased) fitness effects, and (2) the average fitness effect of sex-limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.
Collapse
Affiliation(s)
- Scott L Allen
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Katrina McGuigan
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Mark W Blows
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
29
|
Grieshop K, Berger D, Arnqvist G. Male-benefit sexually antagonistic genotypes show elevated vulnerability to inbreeding. BMC Evol Biol 2017; 17:134. [PMID: 28606137 PMCID: PMC5469140 DOI: 10.1186/s12862-017-0981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Background There is theoretical and empirical evidence for strong sexual selection in males having positive effects on population viability by serving to purify the genome of its mutation load at a low demographic cost. However, there is also theoretical and empirical evidence for negative effects of sexual selection on female fitness, and therefore population viability, known as the gender load. This can take the form of sexually antagonistic (SA) genetic variation where alleles with a selective advantage in males pose a detriment to female fitness, and vice versa. Here, using seed beetles, we shed light on a previously unexplored manifestation of the gender load: the effect of SA genetic variation on tolerance to inbreeding. Results We found that genotypes encoding high male, but low female fitness exhibited significantly greater rates of extinction upon enforced inbreeding relative to genotypes encoding high female but low male fitness. Also, genotypes encoding low fitness in both sexes exhibited greater rates of extinction relative to generally high-fitness genotypes (though marginally non-significant), an expected finding attributable to variation in mutation load across genotypes. Despite follow-up investigations aiming to identify the mechanism(s) underlying these findings, it remains unclear whether the gender load and the mutation load have independent consequences for tolerance to inbreeding, or whether these two types of genetic architecture interact epistatically to render male-benefit genetic variation relatively intolerant to inbreeding. Conclusions Regardless of the underlying mechanism(s), our results show that male-benefit/female-detriment SA genetic variation poses a previously unseen detriment to population viability due to its elevated vulnerability to inbreeding/homozygosity. This suggests that sexual selection in the context of SA genetic variance for fitness may enhance the gender load on population viability more than previously appreciated, due to selecting for male-benefit SA genetic variation that engenders lineages to extinction upon inbreeding. We note that our results imply that SA alleles that are sexually selected for in males may be underrepresented or even lacking in panels of inbred lines. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0981-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karl Grieshop
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
30
|
Savic Veselinovic M, Pavkovic-Lucic S, Kurbalija Novicic Z, Jelic M, Stamenkovic-Radak M, Andjelkovic M. Mating behavior as an indicator of quality of Drosophila subobscura males? INSECT SCIENCE 2017; 24:122-132. [PMID: 26235310 DOI: 10.1111/1744-7917.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations from the populations. Males of good genetic quality should be more successful in mating, compared to the males of lower genetic quality. As mating success is a condition dependent trait, large fractions of the genome may be a target of sexual selection and many behavioral traits are likely to be condition dependent. We manipulated the genetic quality of Drosophila subobscura males by inducing mutations with ionizing radiation and observed the effects of the obtained heterozygous mutations on male mating behavior: courtship occurrence, courtship latency, mating occurrence, latency to mating and duration of mating. We found possible effects of mutations. Females mated more frequently with male progeny of nonirradiated males and that these males courted females faster compared to the male progeny of irradiated males. Our findings indicate a possible important role of sexual selection in purging deleterious mutations.
Collapse
Affiliation(s)
| | | | | | - Mihailo Jelic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Stamenkovic-Radak
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Marko Andjelkovic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
31
|
Vega‐Trejo R, Head ML, Keogh JS, Jennions MD. Experimental evidence for sexual selection against inbred males. J Anim Ecol 2017; 86:394-404. [DOI: 10.1111/1365-2656.12615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/24/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - Megan L. Head
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - Michael D. Jennions
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
- Wissenschaftskolleg zu Berlin Wallotstraße 19 14193 Berlin Germany
| |
Collapse
|
32
|
Jacomb F, Marsh J, Holman L. Sexual selection expedites the evolution of pesticide resistance. Evolution 2016; 70:2746-2751. [PMID: 27677862 DOI: 10.1111/evo.13074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
The evolution of insecticide resistance by crop pests and disease vectors causes serious problems for agriculture and health. Sexual selection can accelerate or hinder adaptation to abiotic challenges in a variety of ways, but the effect of sexual selection on resistance evolution is little studied. Here, we examine this question using experimental evolution in the pest insect Tribolium castaneum. The experimental removal of sexual selection slowed the evolution of resistance in populations treated with pyrethroid pesticide, and also reduced the rate at which resistance was lost from pesticide-free populations. These results suggest that selection arising from variance in mating and fertilization success can augment natural selection on pesticide resistance, meaning that sexual selection should be considered when designing strategies to limit the evolution of pesticide resistance.
Collapse
Affiliation(s)
- Frances Jacomb
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Jason Marsh
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Luke Holman
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
33
|
Abstract
Mutation generates a steady supply of genetic variation that, while occasionally useful for adaptation, is more often deleterious for fitness. Recent research has emphasized that the fitness effects of mutations often differ between the sexes, leading to important evolutionary consequences for the maintenance of genetic variation and long-term population viability. Some forms of sex-specific selection-i.e., stronger purifying selection in males than females-can help purge a population's load of female-harming mutations and promote population growth. Other scenarios-e.g., sexually antagonistic selection, in which mutations that harm females are beneficial for males-inflate genetic loads and potentially dampen population viability. Evolutionary processes of sexual antagonism and purifying selection are likely to impact the evolutionary dynamics of different loci within a genome, yet theory has mostly ignored the potential for interactions between such loci to jointly shape the evolutionary genetic basis of female and male fitness variation. Here, we show that sexually antagonistic selection at a locus tends to elevate the frequencies of deleterious alleles at tightly linked loci that evolve under purifying selection. Moreover, haplotypes that segregate for different sexually antagonistic alleles accumulate different types of deleterious mutations. Haplotypes that carry female-benefit sexually antagonistic alleles preferentially accumulate mutations that are primarily male harming, whereas male-benefit haplotypes accumulate mutations that are primarily female harming. The theory predicts that sexually antagonistic selection should shape the genomic organization of genetic variation that differentially impacts female and male fitness, and contribute to sexual dimorphism in the genetic basis of fitness variation.
Collapse
|
34
|
Grieshop K, Stångberg J, Martinossi-Allibert I, Arnqvist G, Berger D. Strong sexual selection in males against a mutation load that reduces offspring production in seed beetles. J Evol Biol 2016; 29:1201-10. [DOI: 10.1111/jeb.12862] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/15/2023]
Affiliation(s)
- K. Grieshop
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| | - J. Stångberg
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| | | | - G. Arnqvist
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| | - D. Berger
- Department of Ecology and Genetics; Animal Ecology; Uppsala University; Uppsala Sweden
| |
Collapse
|
35
|
Herdegen M, Radwan J. Effect of induced mutations on sexually selected traits in the guppy, Poecilia reticulata. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Collet JM, Blows MW, McGuigan K. Transcriptome-wide effects of sexual selection on the fate of new mutations. Evolution 2015; 69:2905-16. [DOI: 10.1111/evo.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Julie M. Collet
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Mark W. Blows
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| |
Collapse
|
37
|
Chenoweth SF, Appleton NC, Allen SL, Rundle HD. Genomic Evidence that Sexual Selection Impedes Adaptation to a Novel Environment. Curr Biol 2015; 25:1860-6. [PMID: 26119752 DOI: 10.1016/j.cub.2015.05.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/01/2015] [Accepted: 05/15/2015] [Indexed: 01/01/2023]
Abstract
Sexual selection is widely appreciated for generating remarkable phenotypic diversity, but its contribution to adaptation and the purging of deleterious mutations is unresolved. To provide insight into the impact of sexual selection on naturally segregating polymorphisms across the genome, we previously evolved 12 populations of Drosophila serrata in a novel environment employing a factorial manipulation of the opportunities for natural and sexual selection. Here, we genotype more than 1,400 SNPs in the evolved populations and reveal that sexual selection affected many of the same genomic regions as natural selection, aligning with it as often as opposing it. Intriguingly, more than half of the 80 SNPs showing treatment effects revealed an interaction between natural and sexual selection. For these SNPs, while sexual selection alone often caused a change in allele frequency in the same direction as natural selection alone, when natural and sexual selection occurred together, changes in allele frequency were greatly reduced or even reversed. This suggests an antagonism between natural and sexual selection arising from male-induced harm to females. Behavioral experiments showed that males preferentially courted and mated with high-fitness females, and that the harm associated with this increased male attention eliminated the female fitness advantage. During our experiment, females carrying otherwise adaptive alleles may therefore have disproportionally suffered male-induced harm due to their increased sexual attractiveness. These results suggest that a class of otherwise adaptive mutations may not contribute to adaptation when mating systems involve sexual conflict and male mate preferences.
Collapse
Affiliation(s)
- Stephen F Chenoweth
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | - Nicholas C Appleton
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Scott L Allen
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
38
|
Sexual selection protects against extinction. Nature 2015; 522:470-3. [PMID: 25985178 DOI: 10.1038/nature14419] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/18/2015] [Indexed: 01/25/2023]
Abstract
Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorized that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which is contingent to mutation load, then sexually selected filtering through 'genic capture' could offset the costs of sex because it provides genetic benefits to populations. Here we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for 6 to 7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress.
Collapse
|
39
|
Firman RC, Garcia-Gonzalez F, Thyer E, Wheeler S, Yamin Z, Yuan M, Simmons LW. Evolutionary change in testes tissue composition among experimental populations of house mice. Evolution 2015; 69:848-55. [DOI: 10.1111/evo.12603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/29/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
- Estacion Biologica de Doñana-CSIC; Sevilla 41092 Spain
| | - Evan Thyer
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Samantha Wheeler
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Zayaputeri Yamin
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Michael Yuan
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092); University of Western Australia; Nedlands 6009 Australia
| |
Collapse
|
40
|
Cabral LG, Holland B. Courtship song does not increase the rate of adaptation to a thermally stressful environment in a Drosophila melanogaster laboratory population. PLoS One 2014; 9:e111148. [PMID: 25365209 PMCID: PMC4218839 DOI: 10.1371/journal.pone.0111148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Courtship song in D. melanogaster contributes substantially to male mating success through female selection. We used experimental evolution to test whether this display trait is maintained through adaptive female selection because it indicates heritable male quality for thermal stress tolerance. We used non-displaying, outbred populations of D. melanogaster (nub1) mutants and measured their rate of adaptation to a new, thermally stressful environment, relative to wild-type control populations that retained courtship song. This design retains sexually selected conflict in both treatments. Thermal stress should select across genomes for newly beneficial alleles, increasing the available genetic and phenotypic variation and, therefore, the magnitude of female benefit derived from courtship song. Following introduction to the thermally stressful environment, net reproductive rate decreased 50% over four generations, and then increased 19% over the following 16 generations. There were no differences between the treatments. Possible explanations for these results are discussed.
Collapse
Affiliation(s)
- Larry G. Cabral
- Department of Biological Sciences, California State University, Sacramento, California, United States of America
| | - Brett Holland
- Department of Biological Sciences, California State University, Sacramento, California, United States of America
| |
Collapse
|
41
|
Trojan Genes and Transparent Genomes: Sexual Selection, Regulatory Evolution and the Real Hopeful Monsters. Evol Biol 2014. [DOI: 10.1007/s11692-014-9276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat Commun 2014; 5:3482. [PMID: 24637641 DOI: 10.1038/ncomms4482] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/20/2014] [Indexed: 12/16/2022] Open
Abstract
Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.
Collapse
|
43
|
Grazer VM, Demont M, Michalczyk Ł, Gage MJG, Martin OY. Environmental quality alters female costs and benefits of evolving under enforced monogamy. BMC Evol Biol 2014; 14:21. [PMID: 24499414 PMCID: PMC3922901 DOI: 10.1186/1471-2148-14-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/30/2014] [Indexed: 01/05/2023] Open
Abstract
Background Currently many habitats suffer from quality loss due to environmental change. As a consequence, evolutionary trajectories might shift due to environmental effects and potentially increase extinction risk of resident populations. Nevertheless, environmental variation has rarely been incorporated in studies of sexual selection and sexual conflict, although local environments and individuals’ condition undoubtedly influence costs and benefits. Here, we utilise polyandrous and monogamous selection lines of flour beetles, which evolved in presence or absence of sexual selection for 39 generations. We specifically investigated effects of low vs. standard food quality (i.e. stressful vs. benign environments) on reproductive success of cross pairs between beetles from the contrasting female and male selection histories to assess gender effects driving fitness. Results We found a clear interaction of food quality, male selection history and female selection history. Monogamous females generally performed more poorly than polyandrous counterparts, but reproductive success was shaped by selection history of their mates and environmental quality. When monogamous females were paired with polyandrous males in the standard benign environment, females seemed to incur costs, possibly due to sexual conflict. In contrast, in the novel stressful environment, monogamous females profited from mating with polyandrous males, indicating benefits of sexual selection outweigh costs. Conclusions Our findings suggest that costs and benefits of sexually selected adaptations in both sexes can be profoundly altered by environmental quality. With regard to understanding possible impacts of environmental change, our results further show that the ecology of mating systems and associated selection pressures should be considered in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Y Martin
- ETH Zürich, Institute of Integrative Biology, D-USYS, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| |
Collapse
|
44
|
Pélabon C, Larsen LK, Bolstad GH, Viken Å, Fleming IA, Rosenqvist G. The effects of sexual selection on life-history traits: an experimental study on guppies. J Evol Biol 2014; 27:404-16. [PMID: 24417444 DOI: 10.1111/jeb.12309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 11/26/2022]
Abstract
Sexual selection is often prevented during captive breeding in order to maximize effective population size and retain genetic diversity. However, enforcing monogamy and thereby preventing sexual selection may affect population fitness either negatively by preventing the purging of deleterious mutations or positively by reducing sexual conflicts. To better understand the effect of sexual selection on the fitness of small populations, we compared components of female fitness and the expression of male secondary sexual characters in 19 experimental populations of guppies (Poecilia reticulata) maintained under polygamous or monogamous mating regimes over nine generations. In order to generate treatments that solely differed by their level of sexual selection, the middle-class neighbourhood breeding design was enforced in the monogamous populations, while in the polygamous populations, all females contributed similarly to the next generation with one male and one female offspring. This experimental design allowed potential sexual conflicts to increase in the polygamous populations because selection could not operate on adult-female traits. Clutch size and offspring survival showed a weak decline from generation to generation but did not differ among treatments. Offspring size, however, declined across generations, but more in monogamous than polygamous populations. By generation eight, orange- and black-spot areas were larger in males from the polygamous treatment, but these differences were not statistically significant. Overall, these results suggest that neither sexual conflict nor the purging of deleterious mutation had important effects on the fitness of our experimental populations. However, only few generations of enforced monogamy in a benign environment were sufficient to negatively affect offspring size, a trait potentially crucial for survival in the wild. Sexual selection may therefore, under certain circumstances, be beneficial over enforced monogamy during captive breeding.
Collapse
Affiliation(s)
- C Pélabon
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
45
|
Arbuthnott D, Rundle HD. Misalignment of natural and sexual selection among divergently adapted Drosophila melanogaster populations. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Klasios J. Cognitive Traits as Sexually Selected Fitness Indicators. REVIEW OF GENERAL PSYCHOLOGY 2013. [DOI: 10.1037/a0034391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Almbro M, Simmons LW. SEXUAL SELECTION CAN REMOVE AN EXPERIMENTALLY INDUCED MUTATION LOAD. Evolution 2013; 68:295-300. [DOI: 10.1111/evo.12238] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/07/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Maria Almbro
- Centre for Evolutionary Biology; School of Animal Biology (M092); The University of Western Australia; Crawley 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology (M092); The University of Western Australia; Crawley 6009 Australia
| |
Collapse
|
48
|
Wong A, Rundle H. Selection on the Drosophila seminal fluid protein Acp62F. Ecol Evol 2013; 3:1942-50. [PMID: 23919141 PMCID: PMC3728936 DOI: 10.1002/ece3.605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022] Open
Abstract
Sperm competition and sexual conflict are thought to underlie the rapid evolution of reproductive proteins in many taxa. While comparative data are generally consistent with these hypotheses, few manipulative tests have been conducted and those that have provided contradictory results in some cases. Here, we use both comparative and experimental techniques to investigate the evolution of the Drosophila melanogaster seminal fluid protein Acp62F, a protease inhibitor for which extensive functional tests have yielded ambiguous results. Using between-species sequence comparisons, we show that Acp62F has been subject to recurrent positive selection. In addition, we experimentally evolved populations polymorphic for an Acp62F null allele over eight generations, manipulating the opportunities for natural and sexual selection. We found that the Acp62F null allele increased in frequency in the presence of natural selection, with no effect of sexual selection.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University Ottawa, Canada ; Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, Canada
| | | |
Collapse
|
49
|
Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet 2013; 29:358-66. [PMID: 23453263 DOI: 10.1016/j.tig.2013.01.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/09/2013] [Accepted: 01/25/2013] [Indexed: 11/23/2022]
Abstract
The premise of genetic analysis is that a causal link exists between phenotypic and allelic variation. However, it has long been documented that mutant phenotypes are not a simple result of a single DNA lesion, but are instead due to interactions of the focal allele with other genes and the environment. Although an experimentally rigorous approach focused on individual mutations and isogenic control strains has facilitated amazing progress within genetics and related fields, a glimpse back suggests that a vast complexity has been omitted from our current understanding of allelic effects. Armed with traditional genetic analyses and the foundational knowledge they have provided, we argue that the time and tools are ripe to return to the underexplored aspects of gene function and embrace the context-dependent nature of genetic effects. We assert that a broad understanding of genetic effects and the evolutionary dynamics of alleles requires identifying how mutational outcomes depend upon the 'wild type' genetic background. Furthermore, we discuss how best to exploit genetic background effects to broaden genetic research programs.
Collapse
|
50
|
Edward DA, Gilburn AS. Male-specific genotype by environment interactions influence viability selection acting on a sexually selected inversion system in the seaweed fly, Coelopa frigida. Evolution 2013; 67:295-302. [PMID: 23289580 DOI: 10.1111/j.1558-5646.2012.01754.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In the seaweed fly, Coelopa frigida, a large chromosomal inversion system is affected by sexual selection and viability selection. However, our understanding of the interaction between these two selective forces is currently limited as research has focused upon a limited range of environments. We allowed C. frigida larvae to develop in two different algae, Fucus and Laminaria, and then measured viability and body size for each inversion genotype. Significant male-specific genotype-by-environment interactions influenced viability and body size. For males developing in Laminaria, the direction of viability selection acts similarly on the inversion system as the direction of sexual selection. In contrast, for males developing in Fucus, viability selection opposes sexual selection. These results demonstrate that through considering viability selection in different environments, the costs and benefits associated with sexual selection can be found to vary.
Collapse
Affiliation(s)
- Dominic A Edward
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| | | |
Collapse
|