1
|
Wanders K, Chen G, Feng S, Székely T, Urrutia AO. Role-reversed polyandry is associated with faster fast-Z in shorebirds. Proc Biol Sci 2024; 291:20240397. [PMID: 38864333 DOI: 10.1098/rspb.2024.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.
Collapse
Affiliation(s)
- Kees Wanders
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Department of Evolutionary Zoology and Human Biology, HUN-REN-DE Reproductive strategies Research Group, University of Debrecen , Debrecen, Hungary
- Natural History Museum of Denmark, University of Copenhagen , Copenhagen, Denmark
| | - Guangji Chen
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
- BGI Research , Wuhan, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Tamás Székely
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Department of Evolutionary Zoology and Human Biology, HUN-REN-DE Reproductive strategies Research Group, University of Debrecen , Debrecen, Hungary
- Debrecen Biodiversity Centre, University of Debrecen , Debrecen, Hungary
| | - Arraxi O Urrutia
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Instituto de Ecologia, UNAM , Mexico City, Mexico
| |
Collapse
|
2
|
Barata C, Snook RR, Ritchie MG, Kosiol C. Selection on the Fly: Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila pseudoobscura. Genome Biol Evol 2023; 15:evad113. [PMID: 37341535 PMCID: PMC10319773 DOI: 10.1093/gbe/evad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Experimental evolution studies are powerful approaches to examine the evolutionary history of lab populations. Such studies have shed light on how selection changes phenotypes and genotypes. Most of these studies have not examined the time course of adaptation under sexual selection manipulation, by resequencing the populations' genomes at multiple time points. Here, we analyze allele frequency trajectories in Drosophila pseudoobscura where we altered their sexual selection regime for 200 generations and sequenced pooled populations at 5 time points. The intensity of sexual selection was either relaxed in monogamous populations (M) or elevated in polyandrous lines (E). We present a comprehensive study of how selection alters population genetics parameters at the chromosome and gene level. We investigate differences in the effective population size-Ne-between the treatments, and perform a genome-wide scan to identify signatures of selection from the time-series data. We found genomic signatures of adaptation to both regimes in D. pseudoobscura. There are more significant variants in E lines as expected from stronger sexual selection. However, we found that the response on the X chromosome was substantial in both treatments, more pronounced in E and restricted to the more recently sex-linked chromosome arm XR in M. In the first generations of experimental evolution, we estimate Ne to be lower on the X in E lines, which might indicate a swift adaptive response at the onset of selection. Additionally, the third chromosome was affected by elevated polyandry whereby its distal end harbors a region showing a strong signal of adaptive evolution especially in E lines.
Collapse
Affiliation(s)
- Carolina Barata
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Carolin Kosiol
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
3
|
Kaufmann P, Wolak ME, Husby A, Immonen E. Rapid evolution of sexual size dimorphism facilitated by Y-linked genetic variance. Nat Ecol Evol 2021; 5:1394-1402. [PMID: 34413504 DOI: 10.1038/s41559-021-01530-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Abstract
Sexual dimorphism is ubiquitous in nature but its evolution is puzzling given that the mostly shared genome constrains independent evolution in the sexes. Sex differences should result from asymmetries between the sexes in selection or genetic variation but studies investigating both simultaneously are lacking. Here, we combine a quantitative genetic analysis of body size variation, partitioned into autosomal and sex chromosome contributions and ten generations of experimental evolution to dissect the evolution of sexual body size dimorphism in seed beetles (Callosobruchus maculatus) subjected to sexually antagonistic or sex-limited selection. Female additive genetic variance (VA) was primarily linked to autosomes, exhibiting a strong intersexual genetic correlation with males ([Formula: see text] = 0.926), while X- and Y-linked genes further contributed to the male VA and X-linked genes contributed to female dominance variance. Consistent with these estimates, sexual body size dimorphism did not evolve in response to female-limited selection but evolved by 30-50% under male-limited and sexually antagonistic selection. Remarkably, Y-linked variance alone could change dimorphism by 30%, despite the C. maculatus Y chromosome being small and heterochromatic. Our results demonstrate how the potential for sexual dimorphism to evolve depends on both its underlying genetic basis and the nature of sex-specific selection.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Matthew E Wolak
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
The Female-Specific W Chromosomes of Birds Have Conserved Gene Contents but Are Not Feminized. Genes (Basel) 2020; 11:genes11101126. [PMID: 32992746 PMCID: PMC7599627 DOI: 10.3390/genes11101126] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex chromosomes are unique genomic regions with sex-specific or sex-biased inherent patterns and are expected to be more frequently subject to sex-specific selection. Substantial knowledge on the evolutionary patterns of sex-linked genes have been gained from the studies on the male heterogametic systems (XY male, XX female), but the understanding of the role of sex-specific selection in the evolution of female-heterogametic sex chromosomes (ZW female, ZZ male) is limited. Here we collect the W-linked genes of 27 birds, covering the three major avian clades: Neoaves (songbirds), Galloanserae (chicken), and Palaeognathae (ratites and tinamous). We find that the avian W chromosomes exhibit very conserved gene content despite their independent evolution of recombination suppression. The retained W-linked genes have higher dosage-sensitive and higher expression level than the lost genes, suggesting the role of purifying selection in their retention. Moreover, they are not enriched in ancestrally female-biased genes, and have not acquired new ovary-biased expression patterns after becoming W-linked. They are broadly expressed across female tissues, and the expression profile of the W-linked genes in females is not deviated from that of the homologous Z-linked genes. Together, our new analyses suggest that female-specific positive selection on the avian W chromosomes is limited, and the gene content of the W chromosomes is mainly shaped by purifying selection.
Collapse
|
5
|
Abbott JK, Chippindale AK, Morrow EH. The microevolutionary response to male-limited X-chromosome evolution in Drosophila melanogaster reflects macroevolutionary patterns. J Evol Biol 2020; 33:738-750. [PMID: 32176391 DOI: 10.1111/jeb.13618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
Due to its hemizygous inheritance and role in sex determination, the X-chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X-chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X-linked loci or trans-regulation of autosomal loci by the X. We found evidence of masculinization via up-regulation of male-benefit sexually antagonistic genes and down-regulation of X-linked female-benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito-nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.
Collapse
Affiliation(s)
- Jessica K Abbott
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | - Edward H Morrow
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
6
|
Ward MJ, Ellsworth SA, Hogan MP, Nystrom GS, Martinez P, Budhdeo A, Zelaya R, Perez A, Powell B, He H, Rokyta DR. Female-biased population divergence in the venom of the Hentz striped scorpion (Centruroides hentzi). Toxicon 2018; 152:137-149. [PMID: 30096334 DOI: 10.1016/j.toxicon.2018.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
Sex-biased genes are expressed at higher levels in one sex and contribute to phenotypic differences between males and females, as well as overall phenotypic variation within and among populations. Venom has evolved primarily for predation and defense, making venom expression a highly variable phenotype as a result of local adaptation. Several scorpion species have shown both intraspecific and intersexual venom variation, and males have been observed using venom in courtship and mating, suggesting the existence of venom-specific, sex-biased genes that may contribute to population divergence. We used reversed-phase high-performance liquid chromatography (RP-HPLC), Agilent protein bioanalyzer chips, nano-liquid chromatography mass spectrometry (nLC/MS/MS), and median lethal dose (LD50) assays in fruit flies (Drosophila melanogaster) and banded crickets (Gryllodes sigillatus) to investigate proteomic and functional venom variation within and among three Florida populations of the Hentz striped scorpion (Centruroides hentzi). We found significant venom variation among populations, with females, not males, being responsible for this divergence. We also found significant variation in venom expression within populations, with males contributing more to within population variation than females. Our results provide evidence that male and female scorpions experience different natural and sexual selective pressures that have led to the expression of sex-biased venom genes and that these genes may be consequential in population divergence.
Collapse
Affiliation(s)
- Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Paul Martinez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Amisha Budhdeo
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Roxana Zelaya
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Alexander Perez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Barclay Powell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics and College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
7
|
Zemp N, Widmer A, Charlesworth D. Has adaptation occurred in males and females since separate sexes evolved in the plant Silene latifolia? Proc Biol Sci 2018; 285:rspb.2017.2824. [PMID: 30051860 DOI: 10.1098/rspb.2017.2824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/03/2018] [Indexed: 11/12/2022] Open
Abstract
The evolution of separate sexes may involve changed expression of many genes, as each sex adapts to its new state. Evidence is accumulating for sex differences in expression even in organisms that have recently evolved separate sexes from hermaphrodite or monoecious (cosexual) ancestors, such as some dioecious flowering plants. We describe evidence that a dioecious plant species with recently evolved dioecy, Silene latifolia, has undergone adaptive changes that improve functioning in females, in addition to changes that are probably pleiotropic effects of male sterility. The results suggest pervasive adaptations as soon as males and females evolve from their cosexual ancestor.
Collapse
Affiliation(s)
- Niklaus Zemp
- Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland.,Genetic Diversity Centre (GDC), ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Midlothian, Scotland
| |
Collapse
|
8
|
Mongue AJ, Walters JR. The Z chromosome is enriched for sperm proteins in two divergent species of Lepidoptera. Genome 2017; 61:248-253. [PMID: 28961403 DOI: 10.1139/gen-2017-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genes that promote sexual conflict, such as those with a sex-limited fitness benefit, are expected to accumulate differentially on sex chromosomes relative to autosomes. Few tests of this hypothesis exist for male homogametic (ZZ) taxa, however, and most use RNA expression data to identify such genes. Here, we employ a different identification method by using proteomic analysis of sperm cells to identify genes with a sex-limited benefit. We tested for a bias in genomic location of sperm protein genes in two species of Lepidoptera. An excess of sperm protein genes was identified on the Z chromosomes of both the Carolina sphinx moth (Manduca sexta) and the monarch butterfly (Danaus plexippus). Taking into consideration a Z-autosome fusion in monarchs, we discover that the ancestrally sex-linked portion of the genome is the source of this enrichment, while the newly sex-linked portion still appears similar to autosomes in relative abundance of sperm protein genes. Together, these results point to an enrichment of male-beneficial genes on the Z chromosome and demonstrate the usefulness of proteomic datasets in sexual conflict research.
Collapse
Affiliation(s)
- Andrew J Mongue
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - James R Walters
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
9
|
The transcriptional architecture of phenotypic dimorphism. Nat Ecol Evol 2017; 1:6. [PMID: 28812569 DOI: 10.1038/s41559-016-0006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
The profound differences in gene expression between the sexes are increasingly used to study the molecular basis of sexual dimorphism, sexual selection and sexual conflict. Studies of transcriptional architecture, based on comparisons of gene expression, have also been implemented for a wide variety of other intra-specific polymorphisms. These efforts are based on key assumptions regarding the relationship between transcriptional architecture, phenotypic variation and the target of selection. Some of these assumptions are better supported by available evidence than others. In all cases, the evidence is largely circumstantial, leaving considerable gaps in our understanding of the relationship between transcriptional and phenotypic dimorphism.
Collapse
|
10
|
Abstract
Diploid organisms manipulate the extent to which their haploid gametes experience selection. Animals typically produce sperm with a diploid complement of most proteins and RNA, limiting selection on the haploid genotype. Plants, however, exhibit extensive expression in pollen, with actively transcribed haploid genomes. Here we analyze models that track the evolution of genes that modify the strength of haploid selection to predict when evolution intensifies and when it dampens the "selective arena" within which male gametes compete for fertilization. Considering deleterious mutations, evolution leads diploid mothers to strengthen selection among haploid sperm/pollen, because this reduces the mutation load inherited by their diploid offspring. If, however, selection acts in opposite directions in haploids and diploids ("ploidally antagonistic selection"), mothers evolve to reduce haploid selection to avoid selectively amplifying alleles harmful to their offspring. Consequently, with maternal control, selection in the haploid phase either is maximized or reaches an intermediate state, depending on the deleterious mutation rate relative to the extent of ploidally antagonistic selection. By contrast, evolution generally leads diploid fathers to mask mutations in their gametes to the maximum extent possible, whenever masking (e.g., through transcript sharing) increases the average fitness of a father's gametes. We discuss the implications of this maternal-paternal conflict over the extent of haploid selection and describe empirical studies needed to refine our understanding of haploid selection among seemingly diploid organisms.
Collapse
|
11
|
Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH, Pointer MA, Mank JE. Sexual selection drives evolution and rapid turnover of male gene expression. Proc Natl Acad Sci U S A 2015; 112:4393-8. [PMID: 25831521 PMCID: PMC4394296 DOI: 10.1073/pnas.1501339112] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The profound and pervasive differences in gene expression observed between males and females, and the unique evolutionary properties of these genes in many species, have led to the widespread assumption that they are the product of sexual selection and sexual conflict. However, we still lack a clear understanding of the connection between sexual selection and transcriptional dimorphism, often termed sex-biased gene expression. Moreover, the relative contribution of sexual selection vs. drift in shaping broad patterns of expression, divergence, and polymorphism remains unknown. To assess the role of sexual selection in shaping these patterns, we assembled transcriptomes from an avian clade representing the full range of sexual dimorphism and sexual selection. We use these species to test the links between sexual selection and sex-biased gene expression evolution in a comparative framework. Through ancestral reconstruction of sex bias, we demonstrate a rapid turnover of sex bias across this clade driven by sexual selection and show it to be primarily the result of expression changes in males. We use phylogenetically controlled comparative methods to demonstrate that phenotypic measures of sexual selection predict the proportion of male-biased but not female-biased gene expression. Although male-biased genes show elevated rates of coding sequence evolution, consistent with previous reports in a range of taxa, there is no association between sexual selection and rates of coding sequence evolution, suggesting that expression changes may be more important than coding sequence in sexual selection. Taken together, our results highlight the power of sexual selection to act on gene expression differences and shape genome evolution.
Collapse
Affiliation(s)
- Peter W Harrison
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Alison E Wright
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Fabian Zimmer
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Stephen H Montgomery
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Marie A Pointer
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Roulin A, Jensen H. Sex-linked inheritance, genetic correlations and sexual dimorphism in three melanin-based colour traits in the barn owl. J Evol Biol 2015; 28:655-66. [PMID: 25656218 DOI: 10.1111/jeb.12596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 02/03/2023]
Abstract
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.
Collapse
Affiliation(s)
- A Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
13
|
Dean R, Mank JE. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J Evol Biol 2015; 27:1443-53. [PMID: 25105198 DOI: 10.1111/jeb.12345] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to initial sex determination, genes on the sex chromosomes are theorized to play a particularly important role in phenotypic differences between males and females. Sex chromosomes in many species display molecular signatures consistent with these theoretical predictions, particularly through sex-specific gene expression. However, the phenotypic implications of this molecular signature are unresolved, and the role of the sex chromosomes in quantitative genetic studies of phenotypic sex differences is largely equivocal. In this article, we examine molecular and phenotypic data in the light of theoretical predictions about masculinization and feminization of the sex chromosomes. Additionally, we discuss the role of genetic and regulatory complexities in the genome–phenotype relationship, and ultimately how these affect the overall role of the sex chromosomes in sex differences.
Collapse
|
14
|
Mokkonen M, Crespi BJ. Genomic conflicts and sexual antagonism in human health: insights from oxytocin and testosterone. Evol Appl 2015; 8:307-25. [PMID: 25926877 PMCID: PMC4408143 DOI: 10.1111/eva.12244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022] Open
Abstract
We review the hypothesized and observed effects of two of the major forms of genomic conflicts, genomic imprinting and sexual antagonism, on human health. We focus on phenotypes mediated by peptide and steroid hormones (especially oxytocin and testosterone) because such hormones centrally mediate patterns of physical and behavioral resource allocation that underlie both forms of conflict. In early development, a suite of imprinted genes modulates the human oxytocinergic system as predicted from theory, with paternally inherited gene expression associated with higher oxytocin production, and increased solicitation to mothers by infants. This system is predicted to impact health through the incompatibility of paternal-gene and maternal-gene optima and increased vulnerability of imprinted gene systems to genetic and epigenetic changes. Early alterations to oxytocinergic systems have long-term negative impacts on human psychological health, especially through their effects on attachment and social behavior. In contrast to genomic imprinting, which generates maladaptation along an axis of mother–infant attachment, sexual antagonism is predicted from theory to generate maladaptation along an axis of sexual dimorphism, modulated by steroid and peptide hormones. We describe evidence of sexual antagonism from studies of humans and other animals, demonstrating that sexually antagonistic effects on sex-dimorphic phenotypes, including aspects of immunity, life history, psychology, and behavior, are commonly observed and lead to forms of maladaptation that are demonstrated, or expected, to impact human health. Recent epidemiological and psychiatric studies of schizophrenia in particular indicate that it is mediated, in part, by sexually antagonistic alleles. The primary implication of this review is that data collection focused on (i) effects of imprinted genes that modulate the oxytocin system, and (ii) effects of sexually antagonistic alleles on sex-dimorphic, disease-related phenotypes will lead to novel insights into both human health and the evolutionary dynamics of genomic conflicts.
Collapse
Affiliation(s)
- Mikael Mokkonen
- Department of Biological Sciences, Simon Fraser University Burnaby, BC, Canada ; Department of Biological and Environmental Science, University of Jyväskylä Jyväskylä, Finland
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
15
|
Larsen CT, Holand AM, Jensen H, Steinsland I, Roulin A. On estimation and identifiability issues of sex-linked inheritance with a case study of pigmentation in Swiss barn owl (Tyto alba). Ecol Evol 2014; 4:1555-66. [PMID: 24967075 PMCID: PMC4063458 DOI: 10.1002/ece3.1032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 11/25/2022] Open
Abstract
Genetic evaluation using animal models or pedigree-based models generally assume only autosomal inheritance. Bayesian animal models provide a flexible framework for genetic evaluation, and we show how the model readily can accommodate situations where the trait of interest is influenced by both autosomal and sex-linked inheritance. This allows for simultaneous calculation of autosomal and sex-chromosomal additive genetic effects. Inferences were performed using integrated nested Laplace approximations (INLA), a nonsampling-based Bayesian inference methodology. We provide a detailed description of how to calculate the inverse of the X- or Z-chromosomal additive genetic relationship matrix, needed for inference. The case study of eumelanic spot diameter in a Swiss barn owl (Tyto alba) population shows that this trait is substantially influenced by variation in genes on the Z-chromosome ( and ). Further, a simulation study for this study system shows that the animal model accounting for both autosomal and sex-chromosome-linked inheritance is identifiable, that is, the two effects can be distinguished, and provides accurate inference on the variance components.
Collapse
Affiliation(s)
- Camilla T Larsen
- Department of Mathematical Sciences, NTNU NO-7491, Trondheim, Norway
| | - Anna M Holand
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics, NTNU NO-7491, Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, NTNU NO-7491, Trondheim, Norway
| | - Ingelin Steinsland
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics, NTNU NO-7491, Trondheim, Norway
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne 1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat Commun 2014; 5:3482. [PMID: 24637641 DOI: 10.1038/ncomms4482] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/20/2014] [Indexed: 12/16/2022] Open
Abstract
Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.
Collapse
|
17
|
|
18
|
Charlesworth B, Jordan CY, Charlesworth D. The evolutionary dynamics of sexually antagonistic mutations in pseudoautosomal regions of sex chromosomes. Evolution 2014; 68:1339-50. [PMID: 24476564 PMCID: PMC4289941 DOI: 10.1111/evo.12364] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Abstract
Sex chromosomes can evolve gene contents that differ from the rest of the genome, as well as larger sex differences in gene expression compared with autosomes. This probably occurs because fully sex-linked beneficial mutations substitute at different rates from autosomal ones, especially when fitness effects are sexually antagonistic (SA). The evolutionary properties of genes located in the recombining pseudoautosomal region (PAR) of a sex chromosome have not previously been modeled in detail. Such PAR genes differ from classical sex-linked genes by having two alleles at a locus in both sexes; in contrast to autosomal genes, however, variants can become associated with gender. The evolutionary fates of PAR genes may therefore differ from those of either autosomal or fully sex-linked genes. Here, we model their evolutionary dynamics by deriving expressions for the selective advantages of PAR gene mutations under different conditions. We show that, unless selection is very strong, the probability of invasion of a population by an SA mutation is usually similar to that of an autosomal mutation, unless there is close linkage to the sex-determining region. Most PAR genes should thus evolve similarly to autosomal rather than sex-linked genes, unless recombination is very rare in the PAR.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, Ashworth Laboratory, School of Biological Sciences, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | |
Collapse
|
19
|
Tarka M, Akesson M, Hasselquist D, Hansson B. Intralocus sexual conflict over wing length in a wild migratory bird. Am Nat 2013; 183:62-73. [PMID: 24334736 DOI: 10.1086/674072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Intralocus sexual conflict (ISC) occurs when males and females have different adaptive peaks but are constrained from evolving sexual dimorphism because of shared genes. Implications of this conflict on evolutionary dynamics in wild populations have not been investigated in detail. In comprehensive analyses of selection, heritability, and genetic correlations, we found evidence for an ISC over wing length, a key trait for flight performance and migration, in a long-term study of wild great reed warblers (Acrocephalus arundinaceus). We found moderate sexual dimorphism, high heritability, moderate sexually antagonistic selection, and strong positive cross-sex genetic correlation in wing length, together supporting the presence of ISC. A negative genetic correlation between male wing length and female fitness indicated that females inheriting alleles for longer wings from their male relatives also inherited lower fitness. Moreover, cross-sex genetic correlations imposed constraint on the predicted microevolutionary trajectory of wing length (based on selection gradients), especially in females where the predicted response was reversed. The degree of sexual dimorphism in wing length did not change over time, suggesting no sign of conflict resolution. Our study provides novel insight into how an ISC over a fitness trait can affect microevolution in a wild population under natural selection.
Collapse
Affiliation(s)
- Maja Tarka
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
20
|
Masculinization of gene expression is associated with exaggeration of male sexual dimorphism. PLoS Genet 2013; 9:e1003697. [PMID: 23966876 PMCID: PMC3744414 DOI: 10.1371/journal.pgen.1003697] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/19/2013] [Indexed: 01/24/2023] Open
Abstract
Gene expression differences between the sexes account for the majority of sexually dimorphic phenotypes, and the study of sex-biased gene expression is important for understanding the genetic basis of complex sexual dimorphisms. However, it has been difficult to test the nature of this relationship due to the fact that sexual dimorphism has traditionally been conceptualized as a dichotomy between males and females, rather than an axis with individuals distributed at intermediate points. The wild turkey (Meleagris gallopavo) exhibits just this sort of continuum, with dominant and subordinate males forming a gradient in male secondary sexual characteristics. This makes it possible for the first time to test the correlation between sex-biased gene expression and sexually dimorphic phenotypes, a relationship crucial to molecular studies of sexual selection and sexual conflict. Here, we show that subordinate male transcriptomes show striking multiple concordances with their relative phenotypic sexual dimorphism. Subordinate males were clearly male rather than intersex, and when compared to dominant males, their transcriptomes were simultaneously demasculinized for male-biased genes and feminized for female-biased genes across the majority of the transcriptome. These results provide the first evidence linking sexually dimorphic transcription and sexually dimorphic phenotypes. More importantly, they indicate that evolutionary changes in sexual dimorphism can be achieved by varying the magnitude of sex-bias in expression across a large proportion of the coding content of a genome. Males and females exhibit many differences in morphology, behavior and physiology, yet they share the vast majority of their genomes. Most differences between the sexes are therefore thought to be the product of gene expression differences between females and males. Studies of sex differences in expression assume that genes expressed more in males encode male traits, and genes expressed more in females encode female traits, and this assumption is a key foundation to genetic studies of sexual dimorphism and sexual conflict. Despite this key assumption, this relationship has yet to be empirically tested, as the main model organisms for studies of sex-biased gene expression lack multiple male and female morphs. Here, we use the two male morphs in the wild turkey to show that the magnitude of male-biased gene expression correlates with the manifestation of sexually dimorphic traits. Males with less manifestation of sexual dimorphism in phenotype were both demasculinized for male-biased genes, as well as feminized for female-biased genes. This pattern encompassed the majority of expressed loci, suggesting that evolutionary changes in the magnitude of sexual dimorphism may be achieved by small changes in the magnitude of sex-biased transcription across thousands of genes.
Collapse
|
21
|
Jaquiéry J, Rispe C, Roze D, Legeai F, Le Trionnaire G, Stoeckel S, Mieuzet L, Da Silva C, Poulain J, Prunier-Leterme N, Ségurens B, Tagu D, Simon JC. Masculinization of the x chromosome in the pea aphid. PLoS Genet 2013; 9:e1003690. [PMID: 23950732 PMCID: PMC3738461 DOI: 10.1371/journal.pgen.1003690] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.
Collapse
Affiliation(s)
- Julie Jaquiéry
- INRA, UMR 1349, Institute of Genetics, Environment and Plant Protection, Domaine de la Motte, Le Rheu, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bergero R, Qiu S, Forrest A, Borthwick H, Charlesworth D. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 2013; 194:673-86. [PMID: 23733786 PMCID: PMC3697972 DOI: 10.1534/genetics.113.150755] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
There are two very interesting aspects to the evolution of sex chromosomes: what happens after recombination between these chromosome pairs stops and why suppressed recombination evolves. The former question has been intensively studied in a diversity of organisms, but the latter has been studied largely theoretically. To obtain empirical data, we used codominant genic markers in genetic mapping of the dioecious plant Silene latifolia, together with comparative mapping of S. latifolia sex-linked genes in S. vulgaris (a related hermaphrodite species without sex chromosomes). We mapped 29 S. latifolia fully sex-linked genes (including 21 newly discovered from transcriptome sequencing), plus 6 genes in a recombining pseudo-autosomal region (PAR) whose genetic map length is ∼25 cM in both male and female meiosis, suggesting that the PAR may contain many genes. Our comparative mapping shows that most fully sex-linked genes in S. latifolia are located on a single S. vulgaris linkage group and were probably inherited from a single autosome of an ancestor. However, unexpectedly, our maps suggest that the S. latifolia PAR region expanded through translocation events. Some genes in these regions still recombine in S. latifolia, but some genes from both addition events are now fully sex-linked. Recombination suppression is therefore still ongoing in S. latifolia, and multiple recombination suppression events have occurred in a timescale of few million years, much shorter than the timescale of formation of the most recent evolutionary strata of mammal and bird sex chromosomes.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | - Suo Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | | | - Helen Borthwick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
23
|
Testing for the footprint of sexually antagonistic polymorphisms in the pseudoautosomal region of a plant sex chromosome pair. Genetics 2013; 194:663-72. [PMID: 23733787 DOI: 10.1534/genetics.113.152397] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The existence of sexually antagonistic (SA) polymorphism is widely considered the most likely explanation for the evolution of suppressed recombination of sex chromosome pairs. This explanation is largely untested empirically, and no such polymorphisms have been identified, other than in fish, where no evidence directly implicates these genes in events causing loss of recombination. We tested for the presence of loci with SA polymorphism in the plant Silene latifolia, which is dioecious (with separate male and female individuals) and has a pair of highly heteromorphic sex chromosomes, with XY males. Suppressed recombination between much of the Y and X sex chromosomes evolved in several steps, and the results in Bergero et al. (2013) show that it is still ongoing in the recombining or pseudoautosomal, regions (PARs) of these chromosomes. We used molecular evolutionary approaches to test for the footprints of SA polymorphisms, based on sequence diversity levels in S. latifolia PAR genes identified by genetic mapping. Nucleotide diversity is high for at least four of six PAR genes identified, and our data suggest the existence of polymorphisms maintained by balancing selection in this genome region, since molecular evolutionary (HKA) tests exclude an elevated mutation rate, and other tests also suggest balancing selection. The presence of sexually antagonistic alleles at a locus or loci in the PAR is suggested by the very different X and Y chromosome allele frequencies for at least one PAR gene.
Collapse
|
24
|
Martins MJF, Mota CF, Pearson GA. Sex-biased gene expression in the brown alga Fucus vesiculosus. BMC Genomics 2013; 14:294. [PMID: 23634783 PMCID: PMC3652789 DOI: 10.1186/1471-2164-14-294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/25/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The fucoid brown algae (Heterokontophyta, Phaeophyceae) are increasingly the focus of ecological genetics, biodiversity, biogeography and speciation research. The molecular genetics underlying mating system variation, where repeated dioecious - hermaphrodite switches during evolution are recognized, and the molecular evolution of sex-related genes are key questions currently hampered by a lack of genomic information. We therefore undertook a comparative analysis of male and female reproductive tissue transcriptomes against a vegetative background during natural reproductive cycles in Fucus vesiculosus. RESULTS Over 300 k reads were assembled and annotated against public protein databases including a brown alga. Compared with the vegetative tissue, photosynthetic and carbohydrate metabolism pathways were under-expressed, particularly in male tissue, while several pathways involved in genetic information processing and replication were over-expressed. Estimates of sex-biased gene (SBG) expression were higher for male (14% of annotated orthologues) than female tissue (9%) relative to the vegetative background. Mean expression levels and variance were also greater in male- than female-biased genes. Major female-biased genes were carbohydrate-modifying enzymes with likely roles in zygote cell wall biogenesis and/or modification. Male-biased genes reflected distinct sperm development and function, and orthologues for signal perception (a phototropin), transduction (several kinases), and putatively flagella-localized proteins (including candidate gamete-recognition proteins) were uniquely expressed in males. Overall, the results suggest constraint on female-biased genes (possible pleiotropy), and less constrained male-biased genes, mostly associated with sperm-specific functions. CONCLUSIONS Our results support the growing contention that males possess a large array of genes regulating male fitness, broadly supporting findings in evolutionarily distant heterogametic animal models. This work identifies an annotated set of F. vesiculosus gene products that potentially regulate sexual reproduction and may contribute to prezygotic isolation, one essential step towards developing tools for a functional understanding of species isolation and differentiation.
Collapse
Affiliation(s)
- Maria João F Martins
- CCMAR,CIMAR-Laboratório Associado, Universidade do Algarve, Gambelas, Faro 8005-139, Portugal
| | - Catarina F Mota
- CCMAR,CIMAR-Laboratório Associado, Universidade do Algarve, Gambelas, Faro 8005-139, Portugal
| | - Gareth A Pearson
- CCMAR,CIMAR-Laboratório Associado, Universidade do Algarve, Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
25
|
Mank JE, Wedell N, Hosken DJ. Polyandry and sex-specific gene expression. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120047. [PMID: 23339238 DOI: 10.1098/rstb.2012.0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, The Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
26
|
Frings O, Mank JE, Alexeyenko A, Sonnhammer ELL. Network analysis of functional genomics data: application to avian sex-biased gene expression. ScientificWorldJournal 2012; 2012:130491. [PMID: 23319882 PMCID: PMC3540752 DOI: 10.1100/2012/130491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/25/2012] [Indexed: 12/03/2022] Open
Abstract
Gene expression analysis is often used to investigate the molecular and functional underpinnings of a phenotype. However, differential expression of individual genes is limited in that it does not consider how the genes interact with each other in networks. To address this shortcoming we propose a number of network-based analyses that give additional functional insights into the studied process. These were applied to a dataset of sex-specific gene expression in the chicken gonad and brain at different developmental stages. We first constructed a global chicken interaction network. Combining the network with the expression data showed that most sex-biased genes tend to have lower network connectivity, that is, act within local network environments, although some interesting exceptions were found. Genes of the same sex bias were generally more strongly connected with each other than expected. We further studied the fates of duplicated sex-biased genes and found that there is a significant trend to keep the same pattern of sex bias after duplication. We also identified sex-biased modules in the network, which reveal pathways or complexes involved in sex-specific processes. Altogether, this work integrates evolutionary genomics with systems biology in a novel way, offering new insights into the modular nature of sex-biased genes.
Collapse
Affiliation(s)
- Oliver Frings
- Stockholm Bioinformatics Centre, Science for Life Laboratory, Box 1031, SE-171 21 Solna, Sweden
| | | | | | | |
Collapse
|
27
|
Wright AE, Moghadam HK, Mank JE. Trade-off between selection for dosage compensation and masculinization on the avian Z chromosome. Genetics 2012; 192:1433-45. [PMID: 22997237 PMCID: PMC3512148 DOI: 10.1534/genetics.112.145102] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/12/2012] [Indexed: 01/27/2023] Open
Abstract
Following the suppression of recombination, gene expression levels decline on the sex-limited chromosome, and this can lead to selection for dosage compensation in the heterogametic sex to rebalance average expression from the X or Z chromosome with average autosomal expression. At the same time, due to their unequal pattern of inheritance in males and females, the sex chromosomes are subject to unbalanced sex-specific selection, which contributes to a nonrandom distribution of sex-biased genes compared to the remainder of the genome. These two forces act against each other, and the relative importance of each is currently unclear. The Gallus gallus Z chromosome provides a useful opportunity to study the importance and trade-offs between sex-specific selection and dosage compensation in shaping the evolution of the genome as it shows incomplete dosage compensation and is also present twice as often in males than females, and therefore predicted to be enriched for male-biased genes. Here, we refine our understanding of the evolution of the avian Z chromosome, and show that multiple strata formed across the chromosome over ∼130 million years. We then use this evolutionary history to examine the relative strength of selection for sex chromosome dosage compensation vs. the cumulative effects of masculinizing selection on gene expression. We find that male-biased expression increases over time, indicating that selection for dosage compensation is relatively less important than masculinizing selection in shaping Z chromosome gene expression.
Collapse
Affiliation(s)
- Alison E Wright
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
28
|
Husby A, Schielzeth H, Forstmeier W, Gustafsson L, Qvarnström A. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits. Evolution 2012; 67:609-19. [PMID: 23461313 DOI: 10.1111/j.1558-5646.2012.01806.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Arild Husby
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Blaser O, Grossen C, Neuenschwander S, Perrin N. SEX-CHROMOSOME TURNOVERS INDUCED BY DELETERIOUS MUTATION LOAD. Evolution 2012; 67:635-45. [DOI: 10.1111/j.1558-5646.2012.01810.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Naurin S, Hasselquist D, Bensch S, Hansson B. Sex-biased gene expression on the avian Z chromosome: highly expressed genes show higher male-biased expression. PLoS One 2012; 7:e46854. [PMID: 23056488 PMCID: PMC3463555 DOI: 10.1371/journal.pone.0046854] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
Abstract
Dosage compensation, the process whereby expression of sex-linked genes remains similar between sexes (despite heterogamety) and balanced with autosomal expression, was long believed to be essential. However, recent research has shown that several lineages, including birds, butterflies, monotremes and sticklebacks, lack chromosome-wide dosage compensation mechanisms and do not completely balance the expression of sex-linked and autosomal genes. To obtain further understanding of avian sex-biased gene expression, we studied Z-linked gene expression in the brain of two songbirds of different genera (zebra finch, Taeniopygia guttata, and common whitethroat, Sylvia communis) using microarray technology. In both species, the male-bias in gene expression was significantly higher for Z than for autosomes, although the ratio of Z-linked to autosomal expression (Z:A) was relatively close to one in both sexes (range: 0.89-1.01). Interestingly, the Z-linked male-bias in gene expression increased with expression level, and genes with low expression showed the lowest degree of sex-bias. These results support the view that the heterogametic females have up-regulated their single Z-linked homologues to a high extent when the W-chromosome degraded and thereby managed to largely balance their Z:A expression with the exception of highly expressed genes. The male-bias in highly expressed genes points towards male-driven selection on Z-linked loci, and this and other possible hypotheses are discussed.
Collapse
Affiliation(s)
- Sara Naurin
- Department of Biology, Lund University, Lund, Sweden
| | | | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Abstract
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Edward Grey Institute, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
32
|
Toups MA, Pease JB, Hahn MW. No excess gene movement is detected off the avian or lepidopteran Z chromosome. Genome Biol Evol 2011; 3:1381-90. [PMID: 22024813 PMCID: PMC3242482 DOI: 10.1093/gbe/evr109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most of our knowledge of sex-chromosome evolution comes from male heterogametic (XX/XY) taxa. With the genome sequencing of multiple female heterogametic (ZZ/ZW) taxa, we can now ask whether there are patterns of evolution common to both sex chromosome systems. In all XX/XY systems examined to date, there is an excess of testis-biased retrogenes moving from the X chromosome to the autosomes, which is hypothesized to result from either sexually antagonistic selection or escape from meiotic sex chromosome inactivation (MSCI). We examined RNA-mediated (retrotransposed) and DNA-mediated gene movement in two independently evolved ZZ/ZW systems, birds (chicken and zebra finch) and lepidopterans (silkworm). Even with sexually antagonistic selection likely operating in both taxa and MSCI having been identified in the chicken, we find no evidence for an excess of genes moving from the Z chromosome to the autosomes in either lineage. We detected no excess for either RNA- or DNA-mediated duplicates, across a range of approaches and methods. We offer some potential explanations for this difference between XX/XY and ZZ/ZW sex chromosome systems, but further work is needed to distinguish among these hypotheses. Regardless of the root causes, we have identified an additional, potentially inherent, difference between XX/XY and ZZ/ZW systems.
Collapse
|
33
|
Delph LF, Andicoechea J, Steven JC, Herlihy CR, Scarpino SV, Bell DL. Environment-dependent intralocus sexual conflict in a dioecious plant. THE NEW PHYTOLOGIST 2011; 192:542-552. [PMID: 21726233 DOI: 10.1111/j.1469-8137.2011.03811.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Intralocus sexual conflict is a form of conflict that does not involve direct interactions between males and females. It arises when selection on a shared trait with a common genetic basis differs between the sexes. Environmental factors, such as resource availability, may influence the expression and evolutionary outcome of such conflict. We quantified the genetic variance-covariance matrix, G, for both sexes of Silene latifolia for floral and leaf traits, as well as the between-sex matrix, B. We also quantified selection on the sexes via survival for 2 yr in four natural populations that varied in water availability. Environment-dependent intralocus sexual conflict exists for specific leaf area, a trait that is genetically correlated between the sexes. Males experienced significant negative selection, but only in populations with relatively limited water availability. Females experienced weakly positive or significant stabilizing selection on the same trait. Specific leaf area is genetically correlated with flower size and number, which are sexually dimorphic in this species. The extent of intralocus sexual conflict varied with the environment. Resolution of such conflict is likely to be confounded, given that specific leaf area is highly genetically integrated with other traits that are also divergent between the sexes.
Collapse
Affiliation(s)
- Lynda F Delph
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Gallach M, Domingues S, Betrán E. Gene duplication and the genome distribution of sex-biased genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:989438. [PMID: 21904687 PMCID: PMC3167187 DOI: 10.4061/2011/989438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/26/2011] [Accepted: 06/05/2011] [Indexed: 12/04/2022]
Abstract
In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019, USA
| | | | | |
Collapse
|
35
|
Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC, Rice W, Valenzuela N. Are all sex chromosomes created equal? Trends Genet 2011; 27:350-7. [DOI: 10.1016/j.tig.2011.05.005] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022]
|
36
|
Ellegren H. Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems. Genome Res 2011; 21:2082-6. [PMID: 21868722 DOI: 10.1101/gr.119065.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been extensive traffic of male-biased genes out of the mammalian and Drosophila X-chromosomes, and there are also reports of an under-representation of male-biased genes on the X. This may reflect an adaptive process driven by natural selection where an autosomal location of male-biased genes is favored since male genes are only exposed to selection one-third of the time when X-linked. However, there are several alternative explanations to "out-of-the-X" gene movement, including mutational bias and a means for X-linked genes to escape meiotic sex chromosome inactivation (MSCI) during spermatogenesis. As a critical test of the hypothesis that genomic relocation of sex-biased genes is an adaptive process, I examined the emergence, and loss, of genes on the chicken Z-chromosome, i.e., a female heterogametic system (males ZZ, females ZW). Here, the analogous prediction would be an emergence of male-biased genes onto, not a loss from, the Z-chromosome because Z is found more often in males than autosomes are. I found that genes expressed in testis but not in ovary are highly over-represented among genes that have emerged on the Z-chromosome during avian evolution. Moreover, genes with male-biased expression are similarly over-represented among new Z-chromosomal genes. Interestingly, genes with female-biased expression have more often moved from than to the Z-chromosome. These observations show that male and female heterogametic organisms display opposing directionalities in the emergence and loss of sex-biased genes on sex chromosomes. This is consistent with theoretical models on the evolution of sexually antagonistic genes in which new mutations are at least partly dominant.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
37
|
Keays MC, Barker D, Wicker-Thomas C, Ritchie MG. Signatures of selection and sex-specific expression variation of a novel duplicate during the evolution of the Drosophila desaturase gene family. Mol Ecol 2011; 20:3617-30. [PMID: 21801259 DOI: 10.1111/j.1365-294x.2011.05208.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tempo and mode of evolution of loci with a large effect on adaptation and reproductive isolation will influence the rate of evolutionary divergence and speciation. Desaturase loci are involved in key biochemical changes in long-chain fatty acids. In insects, these have been shown to influence adaptation to starvation or desiccation resistance and in some cases act as important pheromones. The desaturase gene family of Drosophila is known to have evolved by gene duplication and diversification, and at least one locus shows rapid evolution of sex-specific expression variation. Here, we examine the evolution of the gene family in species representing the Drosophila phylogeny. We find that the family includes more loci than have been previously described. Most are represented as single-copy loci, but we also find additional examples of duplications in loci which influence pheromone blends. Most loci show patterns of variation associated with purifying selection, but there are strong signatures of diversifying selection in new duplicates. In the case of a new duplicate of desat1 in the obscura group species, we show that strong selection on the coding sequence is associated with the evolution of sex-specific expression variation. It seems likely that both sexual selection and ecological adaptation have influenced the evolution of this gene family in Drosophila.
Collapse
Affiliation(s)
- Maria C Keays
- Centre for Evolution, Genes and Genomics, School of Biology, University of St. Andrews, St. Andrews, Fife, UK
| | | | | | | |
Collapse
|
38
|
Mank JE, Hosken DJ, Wedell N. Some inconvenient truths about sex chromosome dosage compensation and the potential role of sexual conflict. Evolution 2011; 65:2133-44. [PMID: 21790564 DOI: 10.1111/j.1558-5646.2011.01316.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sex chromosome dosage compensation was once thought to be required to balance gene expression levels between sex-linked and autosomal genes in the heterogametic sex. Recent evidence from a range of animals has indicated that although sex chromosome dosage compensation exists in some clades, it is far from a necessary companion to sex chromosome evolution, and is in fact rather rare in animals. This raises questions about why complex dosage compensation mechanisms arise in some clades when they are not strictly needed, and suggests that the role of sex-specific selection in sex chromosome gene regulation should be reassessed. We show there exists a tremendous diversity in the mechanisms that regulate gene dosage and argue that sexual conflict may be an overlooked agent responsible for some of the variation seen in sex chromosome gene dose regulation.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, UK.
| | | | | |
Collapse
|
39
|
Gallach M, Betrán E. Intralocus sexual conflict resolved through gene duplication. Trends Ecol Evol 2011; 26:222-8. [PMID: 21397976 DOI: 10.1016/j.tree.2011.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/27/2022]
Abstract
Gene duplication is mainly recognized by its primary role in the origin of new genes and functions. However, the idea that gene duplication can be a central player in resolving sexual genetic conflicts through its potential to generate sex-biased and sex-specifically expressed genes, has been almost entirely overlooked. We review recent data and theory that support gene duplication as a theoretically predicted and experimentally supported means of resolving intralocus sexual antagonism. We believe that this role is probably the consequence of sexual conflict for housekeeping genes that are required in males and females, and which are expressed in sexually dimorphic tissues (i.e. where sexually antagonistic selection is exerted). We think that these genes cannot evolve tissue-specific expression unless they duplicate.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Arlington, TX, USA
| | | |
Collapse
|
40
|
Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet 2011; 12:157-66. [PMID: 21301475 DOI: 10.1038/nrg2948] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is now clear that sex chromosomes differ from autosomes in many aspects of genome biology, such as organization, gene content and gene expression. Moreover, sex linkage has numerous evolutionary genetic implications. Here, I provide a coherent overview of sex-chromosome evolution and function based on recent data. Heteromorphic sex chromosomes are almost as widespread across the animal and plant kingdoms as sexual reproduction itself and an accumulating body of genetic data reveals interesting similarities, as well as dissimilarities, between organisms with XY or ZW sex-determination systems. Therefore, I discuss how patterns and processes associated with sex linkage in male- and female-heterogametic systems offer a useful contrast in the study of sex-chromosome evolution.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvgen 18D, SE752 36 Uppsala, Sweden.
| |
Collapse
|
41
|
Naurin S, Hansson B, Hasselquist D, Kim YH, Bensch S. The sex-biased brain: sexual dimorphism in gene expression in two species of songbirds. BMC Genomics 2011; 12:37. [PMID: 21235773 PMCID: PMC3036617 DOI: 10.1186/1471-2164-12-37] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/14/2011] [Indexed: 11/18/2022] Open
Abstract
Background Despite virtually identical DNA sequences between the sexes, sexual dimorphism is a widespread phenomenon in nature. To a large extent the systematic differences between the sexes must therefore arise from processes involving gene regulation. In accordance, sexual dimorphism in gene expression is common and extensive. Genes with sexually dimorphic regulation are known to evolve rapidly, both in DNA sequence and in gene expression profile. Studies of gene expression in related species can shed light on the flexibility, or degree of conservation, of the gene expression profiles underlying sexual dimorphism. Results We have studied the extent of sexual dimorphism in gene expression in the brain of two species of songbirds, the zebra finch (Taeniopygia guttata) and the common whitethroat (Sylvia communis), using large-scale microarray technology. Sexual dimorphism in gene expression was extensive in both species, and predominantly sex-linked: most genes identified were male-biased and Z-linked. Interestingly, approximately 50% of the male-biased Z-linked genes were sex-biased only in one of the study species. Conclusion Our results corroborate the results of recent studies in chicken and zebra finch which have been interpreted as caused by a low degree of dosage compensation in female birds (i.e. the heterogametic sex). Moreover, they suggest that zebra finches and common whitethroats dosage compensate partly different sets of genes on the Z chromosome. It is possible that this pattern reflects differences in either the essentiality or the level of sexual antagonism of these genes in the respective species. Such differences might correspond to genes with different rates of evolution related to sexual dimorphism in the avian brain, and might therefore be correlated with differences between the species in sex-specific behaviours.
Collapse
Affiliation(s)
- Sara Naurin
- Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Disruptive selection between males and females can generate sexual antagonism, where alleles improving fitness in one sex reduce fitness in the other. This type of genetic conflict arises because males and females carry nearly identical sets of genes: opposing selection, followed by genetic mixing during reproduction, generates a population genetic "tug-of-war" that constrains adaptation in either sex. Recent verbal models suggest that gene duplication and sex-specific cooption of paralogs might resolve sexual antagonism and facilitate evolutionary divergence between the sexes. However, this intuitive proximal solution for sexual dimorphism potentially belies a complex interaction between mutation, genetic drift, and positive selection during duplicate fixation and sex-specific paralog differentiation. The interaction of these processes--within the explicit context of duplication and sexual antagonism--has yet to be formally described by population genetics theory. Here, we develop and analyze models of gene duplication and sex-specific differentiation between paralogs. We show that sexual antagonism can favor the fixation and maintenance of gene duplicates, eventually leading to the evolution of sexually dimorphic genetic architectures for male and female traits. The timescale for these evolutionary transitions is sensitive to a suite of genetic and demographic variables, including allelic dominance, recombination, sex linkage, and population size. Interestingly, we find that female-beneficial duplicates preferentially accumulate on the X chromosome, whereas male-beneficial duplicates are biased toward autosomes, independent of the dominance parameters of sexually antagonistic alleles. Although this result differs from previous models of sexual antagonism, it is consistent with several findings from the empirical genomics literature.
Collapse
|
43
|
Connallon T, Clark AG. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression. Evolution 2010; 64:3417-42. [PMID: 20874735 PMCID: PMC2998557 DOI: 10.1111/j.1558-5646.2010.01136.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York 14853-2703, USA.
| | | |
Collapse
|
44
|
Heritability and genetic correlation between the sexes in a songbird sexual ornament. Heredity (Edinb) 2010; 106:945-54. [PMID: 21081966 DOI: 10.1038/hdy.2010.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic correlation between the sexes in the expression of secondary sex traits in wild vertebrate populations has attracted very few previous empirical efforts of field researchers. In southern European populations of pied flycatchers, a sexually selected male ornament is also expressed by a proportion of females. Additive genetic variances in ornament size and expression, transmission mechanisms (autosomal vs Z-linkage) and maternal effects are examined by looking at patterns of familial resemblance across three generations. Size of the secondary sex trait has a genetic basis common to both sexes, with estimated heritability being 0.5 under an autosomal model of inheritance. Significant additive genetic variance in males was also confirmed through a cross-fostering experiment. Heritability analyses were only partially consistent with previous molecular genetics evidence, as only two out of the three predictions supported Z-linkage and lack of significant mother-daughter resemblance could be due to small sample sizes caused by limited female trait expression. Therefore, the evidence was mixed as to the contribution of the Z chromosome and autosomal genes to trait size. The threshold heritability of trait expression in females was lower, around 0.3, supporting autosomal-based trait expression in females. Environmental (birth date) and parental effects on ornament size mediated by the mother's condition after accounting for maternal and paternal genetic influences are also highlighted. The genetic correlation between the sexes did not differ from one, indicating that selection on the character on either sex entails a correlated response in the opposite sex.
Collapse
|
45
|
Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 2010; 11:239-64. [PMID: 20590429 DOI: 10.1146/annurev-genom-082509-141646] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.
Collapse
Affiliation(s)
- Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
46
|
Zhang YE, Vibranovski MD, Krinsky BH, Long M. Age-dependent chromosomal distribution of male-biased genes in Drosophila. Genome Res 2010; 20:1526-33. [PMID: 20798392 DOI: 10.1101/gr.107334.110] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales.
Collapse
Affiliation(s)
- Yong E Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
47
|
Itoh Y, Replogle K, Kim YH, Wade J, Clayton DF, Arnold AP. Sex bias and dosage compensation in the zebra finch versus chicken genomes: general and specialized patterns among birds. Genome Res 2010; 20:512-8. [PMID: 20357053 PMCID: PMC2847754 DOI: 10.1101/gr.102343.109] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/11/2010] [Indexed: 11/25/2022]
Abstract
We compared global patterns of gene expression between two bird species, the chicken and zebra finch, with regard to sex bias of autosomal versus Z chromosome genes, dosage compensation, and evolution of sex bias. Both species appear to lack a Z chromosome-wide mechanism of dosage compensation, because both have a similar pattern of significantly higher expression of Z genes in males relative to females. Unlike the chicken Z chromosome, which has female-specific expression of the noncoding RNA MHM (male hypermethylated) and acetylation of histone 4 lysine 16 (H4K16) near MHM, the zebra finch Z chromosome appears to lack the MHM sequence and acetylation of H4K16. The zebra finch also does not show the reduced male-to-female (M:F) ratio of gene expression near MHM similar to that found in the chicken. Although the M:F ratios of Z chromosome gene expression are similar across tissues and ages within each species, they differ between the two species. Z genes showing the greatest species difference in M:F ratio were concentrated near the MHM region of the chicken Z chromosome. This study shows that the zebra finch differs from the chicken because it lacks a specialized region of greater dosage compensation along the Z chromosome, and shows other differences in sex bias. These patterns suggest that different avian taxa may have evolved specific compensatory mechanisms.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095-1606, USA
| | - Kirstin Replogle
- Institute for Genomic Biology, University of Illinois, Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Yong-Hwan Kim
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095-1606, USA
| | - Juli Wade
- Departments of Psychology and Zoology, Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - David F. Clayton
- Institute for Genomic Biology, University of Illinois, Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095-1606, USA
| |
Collapse
|
48
|
Roulin A, Altwegg R, Jensen H, Steinsland I, Schaub M. Sex-dependent selection on an autosomal melanic female ornament promotes the evolution of sex ratio bias. Ecol Lett 2010; 13:616-26. [PMID: 20337696 DOI: 10.1111/j.1461-0248.2010.01459.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sex-dependent selection often leads to spectacularly different phenotypes in males and females. In species in which sexual dimorphism is not complete, it is unclear which benefits females and males derive from displaying a trait that is typical of the other sex. In barn owls (Tyto alba), females exhibit on average larger black eumelanic spots than males but members of the two sexes display this trait in the same range of possible values. In a 12-year study, we show that selection exerted on spot size directly or on genetically correlated traits strongly favoured females with large spots and weakly favoured males with small spots. Intense directional selection on females caused an increase in spot diameter in the population over the study period. This increase is due to a change in the autosomal genes underlying the expression of eumelanic spots but not of sex-linked genes. Female-like males produced more daughters than sons, while male-like females produced more sons than daughters when mated to a small-spotted male. These sex ratio biases appear adaptive because sons of male-like females and daughters of female-like males had above-average survival. This demonstrates that selection exerted against individuals displaying a trait that is typical of the other sex promoted the evolution of specific life history strategies that enhance their fitness. This may explain why in many organisms sexual dimorphism is often not complete.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Innocenti P, Morrow EH. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol 2010; 8:e1000335. [PMID: 20305719 PMCID: PMC2838750 DOI: 10.1371/journal.pbio.1000335] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/10/2010] [Indexed: 11/24/2022] Open
Abstract
An association between sex-specific fitness and gene expression in the fruit fly provides an estimate of number, identity and function of sexually antagonistic genes in this species. When selective pressures differ between males and females, the genes experiencing these conflicting evolutionary forces are said to be sexually antagonistic. Although the phenotypic effect of these genes has been documented in both wild and laboratory populations, their identity, number, and location remains unknown. Here, by combining data on sex-specific fitness and genome-wide transcript abundance in a quantitative genetic framework, we identified a group of candidate genes experiencing sexually antagonistic selection in the adult, which correspond to 8% of Drosophila melanogaster genes. As predicted, the X chromosome is enriched for these genes, but surprisingly they represent only a small proportion of the total number of sex-biased transcripts, indicating that the latter is a poor predictor of sexual antagonism. Furthermore, the majority of genes whose expression profiles showed a significant relationship with either male or female adult fitness are also sexually antagonistic. These results provide a first insight into the genetic basis of intralocus sexual conflict and indicate that genetic variation for fitness is dominated and maintained by sexual antagonism, potentially neutralizing any indirect genetic benefits of sexual selection. Males and females of many species are different: many of these differences are thought to have evolved because the sexes often have needs and strategies that do not coincide. For example, in fruit-flies, females may do best by concentrating their efforts in acquiring resources to be able to lay more eggs, while males would benefit most from increasing their mating and fertilization success. Such differences generate a sexual “conflict of interests”, and since as a general rule each behavioural, morphological or physiological characteristic is regulated by the same set of genes in the two sexes, this conflict takes place ultimately at the genetic level. In our study, we combined data on the reproductive success of different lines of fruit-flies with their gene expression profiles. We show that a large proportion of genes that contribute to male fertilization success are detrimental for female fecundity, and vice-versa. These results indicate that an optimal genotype for both sexes does not exist: many genes maintain different variants because they have opposite effects in males and females, perhaps helping to explain how genetic diversity is maintained in the face of selection.
Collapse
Affiliation(s)
- Paolo Innocenti
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
50
|
Moyle LC, Muir CD, Han MV, Hahn MW. The contribution of gene movement to the "two rules of speciation". Evolution 2010; 64:1541-57. [PMID: 20298429 DOI: 10.1111/j.1558-5646.2010.00990.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The two "rules of speciation"--the Large X-effect and Haldane's rule--hold throughout the animal kingdom, but the underlying genetic mechanisms that cause them are still unclear. Two predominant explanations--the "dominance theory" and faster male evolution--both have some empirical support, suggesting that the genetic basis of these rules is likely multifarious. We revisit one historical explanation for these rules, based on dysfunctional genetic interactions involving genes recently moved between chromosomes. We suggest that gene movement specifically off or onto the X chromosome is another mechanism that could contribute to the two rules, especially as X chromosome movements can be subject to unique sex-specific and sex chromosome specific consequences in hybrids. Our hypothesis is supported by patterns emerging from comparative genomic data, including a strong bias in interchromosomal gene movements involving the X and an overrepresentation of male reproductive functions among chromosomally relocated genes. In addition, our model indicates that the contribution of gene movement to the two rules in any specific group will depend upon key developmental and reproductive parameters that are taxon specific. We provide several testable predictions that can be used to assess the importance of gene movement as a contributor to these rules in the future.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|