1
|
Kwakye A, Reid K, Wund MA, Heins DC, Bell MA, Veeramah KR. Rare "Jackpot" Individuals Drive Rapid Adaptation in Threespine Stickleback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.642177. [PMID: 40196559 PMCID: PMC11974937 DOI: 10.1101/2025.03.25.642177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Recombination has long been considered the primary mechanism to bring beneficial alleles together, which can increase the speed of adaptation from standing genetic variation. Recombination is fundamental to the transporter hypothesis proposed to explain precise parallel adaptation in Threespine Stickleback. We studied an instance of freshwater adaptation in the Threespine Stickleback system using whole genomic data from an evolutionary time series to observe the genomic dynamics underlying rapid parallel adaptation. Our experiment showed that rapid adaptation to a freshwater environment depended on a few individuals with large haploblocks of freshwater-adaptive alleles (jackpot carriers) present among the anadromous (i.e., sea-run) founders at low frequencies. Biological kinship analyses indicate that mating among jackpot carriers and between jackpot carriers and non-jackpot individuals led to a rapid increase in freshwater-adaptive alleles within the first few generations. This process allowed the population to overcome a substantial bottleneck likely caused by the low fitness of first-generation stickleback with a few freshwater-adaptive alleles born in the lake. Additionally, we found evidence that the genetic load that emerged from population growth after the bottleneck may have been reduced through an increase in homozygosity by inbreeding, ultimately purging deleterious alleles. Recombination likely played a limited role in this case of very rapid adaptation.
Collapse
Affiliation(s)
- Alexander Kwakye
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kerry Reid
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Matthew A. Wund
- Department of Biology, The College of New Jersey, Ewing, NJ 08628, USA
| | - David C. Heins
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Michael A. Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Bado-Nilles A, Tebby C, Pinet A, Turiès C, Lignot JH, Porcher JM. How short-term change in temperature or salinity affect cellular immune parameters of three-spined stickleback, Gasterosteus aculeatus? MARINE ENVIRONMENTAL RESEARCH 2025; 204:106972. [PMID: 39870017 DOI: 10.1016/j.marenvres.2025.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Reference values for the non-specific immune response of stickleback have been developed to better understand the natural variability of the immunomarkers and to increase their relevance for the detection of environmental perturbations. However, under field conditions, temperature and salinity can vary from station to station and their influence on the reference ranges of the immunomarkers should therefore be quantified. To this end, adult sticklebacks were exposed either to different temperatures (from 12 to 18 °C) or to different salinities (from 0 to 30 g/L) for 21 days after 10 days of acclimatization. The results were then projected onto reference ranges to better determine the effect of temperature and salinity on the innate immune response. With the exception of leucocyte necrosis at higher temperature and respiratory burst at lower temperature, previously established reference ranges for immunomarkers of sticklebacks were suitable when variations in temperature and salinity were tested. Finally, this study argues for the possibility of using stickleback and its immune reference range in the field regardless of temperature and salinity, due to its relatively temperature and salinity independent innate immune response. Reference ranges for immunomarkers in stickleback could be a real added value to water quality diagnosis in biomonitoring programs in variable seasonal and geographical environmental contexts. Furthermore, these results confirm the rapid adaptability of sticklebacks to different variations in temperature and salinity without affecting their immunological parameters.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- Institut national de l'environnement industriel et des risques, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France.
| | - Cleo Tebby
- INERIS, Unit Experimental Toxicology and Modelling (TEAM), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Alexandrine Pinet
- Institut national de l'environnement industriel et des risques, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France
| | - Cyril Turiès
- Institut national de l'environnement industriel et des risques, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France
| | - Jehan-Hervé Lignot
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, 34000, Montpellier, France
| | - Jean-Marc Porcher
- Institut national de l'environnement industriel et des risques, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France
| |
Collapse
|
3
|
Hamann E, Groen SC, Dunivant TS, Ćalić I, Cochran C, Konshok R, Purugganan MD, Franks SJ. Selection on genome-wide gene expression plasticity of rice in wet and dry field environments. Mol Ecol 2024:e17522. [PMID: 39215462 DOI: 10.1111/mec.17522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
- Department of Biology, Institute of Plant Ecology and Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Taryn S Dunivant
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Irina Ćalić
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Colleen Cochran
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Rachel Konshok
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| |
Collapse
|
4
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
5
|
Oto Y, Kuroki M, Iida M, Ito R, Nomura S, Watanabe K. A key evolutionary step determining osmoregulatory ability for freshwater colonisation in early life stages of fish. J Exp Biol 2023; 226:jeb246110. [PMID: 37767765 DOI: 10.1242/jeb.246110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Colonisation of freshwater habitats by marine animals is a remarkable evolutionary event that has enriched biodiversity in freshwater ecosystems. The acquisition of tolerance to hypotonic stress during early life stages is presumed to be essential for their successful freshwater colonisation, but very little empirical evidence has been obtained to support this idea. This study aimed to comprehend the evolutionary changes in osmoregulatory mechanisms that enhance larval freshwater tolerance in amphidromous fishes, which typically spend their larval period in marine (ancestral) habitats and the rest of their life history stages in freshwater (derived) habitats. We compared the life history patterns and changes in larval survivorship and gene expression depending on salinity among three congeneric marine-originated amphidromous goby species (Gymnogobius), which had been suggested to differ in their larval dependence on freshwater habitats. An otolith microchemical analysis and laboratory-rearing experiment confirmed the presence of freshwater residents only in G. urotaenia and higher larval survivorship of this species in the freshwater condition than in the obligate amphidromous G. petschiliensis and G. opperiens. Larval whole-body transcriptome analysis revealed that G. urotaenia from both amphidromous and freshwater-resident populations exhibited the greatest differences in expression levels of several osmoregulatory genes, including aqp3, which is critical for water discharge from their body during early fish development. The present results consistently support the importance of enhanced freshwater tolerance and osmoregulatory plasticity in larval fish to establish freshwater forms, and further identified key candidate genes for larval freshwater adaptation and colonisation in the goby group.
Collapse
Affiliation(s)
- Yumeki Oto
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Mari Kuroki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo Metropolitan 113-8657, Japan
| | - Midori Iida
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado City, Niigata Prefecture 952-2135, Japan
| | - Ryosuke Ito
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Shota Nomura
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Katsutoshi Watanabe
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| |
Collapse
|
6
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
7
|
Szukala A, Bertel C, Frajman B, Schönswetter P, Paun O. Parallel adaptation to lower altitudes is associated with enhanced plasticity in Heliosperma pusillum (Caryophyllaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1619-1632. [PMID: 37277969 PMCID: PMC10952512 DOI: 10.1111/tpj.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
High levels of phenotypic plasticity are thought to be inherently costly in stable or extreme environments, but enhanced plasticity may evolve as a response to new environments and foster novel phenotypes. Heliosperma pusillum forms glabrous alpine and pubescent montane ecotypes that diverged recurrently and polytopically (parallel evolution) and can serve as evolutionary replicates. The specific alpine and montane localities are characterized by distinct temperature conditions, available moisture, and light. Noteworthy, the ecotypes show a home-site fitness advantage in reciprocal transplantations. To disentangle the relative contribution of constitutive versus plastic gene expression to altitudinal divergence, we analyze the transcriptomic profiles of two parallely evolved ecotype pairs, grown in reciprocal transplantations at native altitudinal sites. In this incipient stage of divergence, only a minor proportion of genes appear constitutively differentially expressed between the ecotypes in both pairs, regardless of the growing environment. Both derived, montane populations bear comparatively higher plasticity of gene expression than the alpine populations. Genes that change expression plastically or constitutively underlie similar ecologically relevant pathways, related to response to drought and trichome formation. Other relevant processes, such as photosynthesis, rely mainly on plastic changes. The enhanced plasticity consistently observed in the montane ecotype likely evolved as a response to the newly colonized, drier, and warmer niche. We report a striking parallelism of directional changes in gene expression plasticity. Thus, plasticity appears to be a key mechanism shaping the initial stages of phenotypic evolution, likely fostering adaptation to novel environments.
Collapse
Affiliation(s)
- Aglaia Szukala
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
- Austrian Federal Research Centre for Forests (BFW)Unit of Ecological GeneticsSeckendorff‐Gudent‐Weg 8A‐1131ViennaAustria
| | - Clara Bertel
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Božo Frajman
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| |
Collapse
|
8
|
Taugbøl A, Solbakken MH, Jakobsen KS, Vøllestad LA. Salinity-induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt 6-hour exposure. Ecol Evol 2022; 12:e9395. [PMID: 36311407 PMCID: PMC9596333 DOI: 10.1002/ece3.9395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Saltwater and freshwater environments have opposing physiological challenges, yet, there are fish species that are able to enter both habitats during short time spans, and as individuals they must therefore adjust quickly to osmoregulatory contrasts. In this study, we conducted an experiment to test for plastic responses to abrupt salinity changes in two populations of threespine stickleback, Gasterosteus aculeatus, representing two ecotypes (freshwater and ancestral saltwater). We exposed both ecotypes to abrupt native (control treatment) and non-native salinities (0‰ and 30‰) and sampled gill tissue for transcriptomic analyses after 6 h of exposure. To investigate genomic responses to salinity, we analyzed four different comparisons; one for each ecotype (in their control and exposure salinity; (1) and (2), one between ecotypes in their control salinity (3), and the fourth comparison included all transcripts identified in (3) that did not show any expressional changes within ecotype in either the control or the exposed salinity (4)). Abrupt salinity transfer affected the expression of 10 and 1530 transcripts for the saltwater and freshwater ecotype, respectively, and 1314 were differentially expressed between the controls, including 502 that were not affected by salinity within ecotype (fixed expression). In total, these results indicate that factors other than genomic expressional plasticity are important for osmoregulation in stickleback, due to the need for opposite physiological pathways to survive the abrupt change in salinity.
Collapse
Affiliation(s)
- Annette Taugbøl
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
- Norwegian Institute for Nature Research (NINA)LillehammerNorway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Kjetill S. Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Leif Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| |
Collapse
|
9
|
Fortuna MA. The phenotypic plasticity of an evolving digital organism. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220852. [PMID: 36117864 PMCID: PMC9470259 DOI: 10.1098/rsos.220852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change will fundamentally reshape life on Earth in the coming decades. Therefore, understanding the extent to which species will cope with rising temperatures is of paramount importance. Phenotypic plasticity is the ability of an organism to change the morphological and functional traits encoded by its genome in response to the environment. I show here that plasticity pervades not only natural but also artificial systems that mimic the developmental process of biological organisms, such as self-replicating and evolving computer programs-digital organisms. Specifically, the environment can modify the sequence of instructions executed from a digital organism's genome (i.e. its transcriptome), which results in changes in its phenotype (i.e. the ability of the digital organism to perform Boolean logic operations). This genetic-based pathway for plasticity comes at a fitness cost to an organism's viability and generation time: the longer the transcriptome (higher fitness cost), the more chances for the environment to modify the genetic execution flow control, and the higher the likelihood for the genome to encode novel phenotypes. By studying to what extent a digital organism's phenotype is influenced by both its genome and the environment, I make a parallelism between natural and artificial evolving systems on how natural selection might slide trait regulation anywhere along a continuum from total environmental control to total genomic control, which harbours lessons not only for designing evolvable artificial systems, but also for synthetic biology.
Collapse
Affiliation(s)
- Miguel A. Fortuna
- Computational Biology Lab, Estación Biológica de Doñana (EBD), Spanish National Research Council (CSIC), Seville, Spain
| |
Collapse
|
10
|
Norstog JL, McCormick SD, Kelly JT. Metabolic costs associated with seawater acclimation in a euryhaline teleost, the fourspine stickleback (Apeltes quadracus). Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110780. [PMID: 35863659 DOI: 10.1016/j.cbpb.2022.110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
The cost of osmoregulation in teleosts has been debated for decades, with estimates ranging from one to 30 % of routine metabolic rate. The variation in the energy budget appears to be greater for euryhaline fish due to their ability to withstand dynamic salinity levels. In this study, a time course of metabolic and physiological responses of the euryhaline fourspine stickleback (Apeltes quadracus) acclimated to freshwater (FW) and then exposed to seawater (SW) was examined. There was 18% mortality in the first 3 days following exposure to SW, with no mortalities in the FW control group. Gill Na+/K+-ATPase (NKA) activity, an index of osmoregulatory capacity, increased 2.6-fold in SW fish peaking on days 7 and 14. Gill citrate synthase activity, an index of aerobic capacity, was 50-62% greater in SW than FW fish and peaked on day 7. Tissue water content was significantly lower in the SW fish on day 1 only, returning to FW levels by day 3. Routine metabolic rate was decreased within 24 h of SW exposure and was maintained slightly (8-22%) but significantly lower in SW compared to FW water controls throughout the 2-week experiment. These results indicate that elevated salinity resulted in increased SW osmoregulatory and aerobic capacity in the gill, but with a reduced whole animal metabolic rate to this euryhaline species.
Collapse
Affiliation(s)
- Jessica L Norstog
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA.
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, 1 Migratory Way, Turners Falls, MA 01376, USA; Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - John T Kelly
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| |
Collapse
|
11
|
Drown MK, Crawford DL, Oleksiak MF. Transcriptomic analysis provides insights into molecular mechanisms of thermal physiology. BMC Genomics 2022; 23:421. [PMID: 35659182 PMCID: PMC9167525 DOI: 10.1186/s12864-022-08653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Physiological trait variation underlies health, responses to global climate change, and ecological performance. Yet, most physiological traits are complex, and we have little understanding of the genes and genomic architectures that define their variation. To provide insight into the genetic architecture of physiological processes, we related physiological traits to heart and brain mRNA expression using a weighted gene co-expression network analysis. mRNA expression was used to explain variation in six physiological traits (whole animal metabolism (WAM), critical thermal maximum (CTmax), and four substrate specific cardiac metabolic rates (CaM)) under 12 °C and 28 °C acclimation conditions. Notably, the physiological trait variations among the three geographically close (within 15 km) and genetically similar F. heteroclitus populations are similar to those found among 77 aquatic species spanning 15–20° of latitude (~ 2,000 km). These large physiological trait variations among genetically similar individuals provide a powerful approach to determine the relationship between mRNA expression and heritable fitness related traits unconfounded by interspecific differences. Expression patterns explained up to 82% of metabolic trait variation and were enriched for multiple signaling pathways known to impact metabolic and thermal tolerance (e.g., AMPK, PPAR, mTOR, FoxO, and MAPK) but also contained several unexpected pathways (e.g., apoptosis, cellular senescence), suggesting that physiological trait variation is affected by many diverse genes.
Collapse
|
12
|
Chen Z, Huang X, Fu R, Zhan A. Neighbours matter: Effects of genomic organization on gene expression plasticity in response to environmental stresses during biological invasions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100992. [PMID: 35504120 DOI: 10.1016/j.cbd.2022.100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gene expression regulation has been widely recognized as an important molecular mechanism underlying phenotypic plasticity in environmental adaptation. However, it remains largely unexplored on the effects of genomic organization on gene expression plasticity under environmental stresses during biological invasions. Here, we use an invasive model ascidian, Ciona robusta, to investigate how genomic organization affects gene expression in response to salinity stresses during range expansions. Our study showed that neighboring genes were co-expressed and approximately 30% of stress responsive genes were physically clustered on chromosomes. Such coordinated expression was substantially affected by the physical distance and orientation of genes. Interestingly, the overall expression correlation of neighboring genes was significantly decreased under high salinity stresses, illustrating that the co-expression regulation could be disrupted by salinity challenges. Furthermore, the clustering of genes was associated with their function constraints and expression patterns - operon genes enriched in gene expression machinery had the highest transcriptional activity and expression stability. Notably, our analyses showed that the tail-to-tail genes, mainly involved in biological functions related to phosphorylation, homeostatic process, and ion transport, exhibited higher intrinsic expression variability and greater response to salinity challenges. Altogether, the results obtained here provide new insights into the effects of gene organization on gene expression plasticity under environmental challenges, hence improving our knowledge on mechanisms of rapid environmental adaptation during biological invasions.
Collapse
Affiliation(s)
- Zaohuang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
13
|
Brennan RS, deMayo JA, Dam HG, Finiguerra MB, Baumann H, Pespeni MH. Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod. Nat Commun 2022; 13:1147. [PMID: 35241657 PMCID: PMC8894427 DOI: 10.1038/s41467-022-28742-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod, Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments. Rapid adaptation will facilitate species resilience under global climate change, but its effects on plasticity are less commonly investigated. This study shows that 20 generations of experimental adaptation in a marine copepod drives a rapid loss of plasticity that carries costs and might have impacts on future resilience to environmental change.
Collapse
Affiliation(s)
- Reid S Brennan
- Department of Biology, University of Vermont, Burlington, VT, USA. .,Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - James A deMayo
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.,Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Michael B Finiguerra
- Department of Ecology and Evolutionary Biology, University of Connecticut, Groton, CT, USA
| | - Hannes Baumann
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | | |
Collapse
|
14
|
Garcia-Elfring A, Paccard A, Thurman TJ, Wasserman BA, Palkovacs EP, Hendry AP, Barrett RDH. Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highly-variable estuaries. Mol Ecol 2021; 30:2054-2064. [PMID: 33713378 DOI: 10.1111/mec.15879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Parallel evolution is considered strong evidence for natural selection. However, few studies have investigated the process of parallel selection as it plays out in real time. The common approach is to study historical signatures of selection in populations already well adapted to different environments. Here, to document selection under natural conditions, we study six populations of threespine stickleback (Gasterosteus aculeatus) inhabiting bar-built estuaries that undergo seasonal cycles of environmental changes. Estuaries are periodically isolated from the ocean due to sandbar formation during dry summer months, with concurrent environmental shifts that resemble the long-term changes associated with postglacial colonization of freshwater habitats by marine populations. We used pooled whole-genome sequencing to track seasonal allele frequency changes in six of these populations and search for signatures of natural selection. We found consistent changes in allele frequency across estuaries, suggesting a potential role for parallel selection. Functional enrichment among candidate genes included transmembrane ion transport and calcium binding, which are important for osmoregulation and ion balance. The genomic changes that occur in threespine stickleback from bar-built estuaries could provide a glimpse into the early stages of adaptation that have occurred in many historical marine to freshwater transitions.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Antoine Paccard
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada.,McGill University Genome Center, McGill University, Montreal, QC, Canada
| | - Timothy J Thurman
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Ben A Wasserman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Morris MRJ, Wuitchik SJS, Rosebush J, Rogers SM. Mitochondrial volume density and evidence for its role in adaptive divergence in response to thermal tolerance in threespine stickleback. J Comp Physiol B 2021; 191:657-668. [PMID: 33788018 DOI: 10.1007/s00360-021-01366-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Phenotypic plasticity is predicted to permit persistence in new environments, and may subsequently evolve to enhance fitness. Colonizing environments with lower winter temperatures can lead to the evolution of lower critical thermal minima; the corresponding physiological traits associated with temperature tolerance are predicted to involve mitochondrial function. Threespine stickleback (Gasterosteus aculeatus) have colonized freshwater lakes along the Pacific Northwest. These freshwater populations are known to exhibit cold-induced increases in mitochondrial volume density in pectoral muscle, but whether such plasticity evolved before or after colonization is uncertain. Here, we measure critical thermal minima (CTmin) in one marine and one freshwater population of threespine stickleback, and mitochondrial volume density in pectoral and cardiac tissue of both populations acclimated to different temperature treatments (6.2, 14.5 and 20.6 ℃). Mitochondrial volume density increased with cold acclimation in pectoral muscle; cardiac muscle was non-plastic but had elevated mitochondrial volume densities compared to pectoral muscle across all temperature treatments. There were no differences in the levels of plasticity between marine and freshwater stickleback, but neither were there differences in CTmin. Importantly, marine stickleback exhibited plasticity under low-salinity conditions, suggesting that marine stickleback had at least one necessary phenotype for persistence in freshwater environments before colonization occurred.
Collapse
Affiliation(s)
- Matthew R J Morris
- Department of Biology, Ambrose University, Calgary, AB, Canada. .,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Sara J S Wuitchik
- Informatics Group, Harvard University, Cambridge, MA, USA.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Department of Biology, Boston University, Boston, MA, USA
| | | | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Hu J, Wuitchik SJS, Barry TN, Jamniczky HA, Rogers SM, Barrett RDH. Heritability of DNA methylation in threespine stickleback (Gasterosteus aculeatus). Genetics 2021; 217:1-15. [PMID: 33683369 PMCID: PMC8045681 DOI: 10.1093/genetics/iyab001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.
Collapse
Affiliation(s)
- Juntao Hu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| | - Sara J S Wuitchik
- Informatics Group, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tegan N Barry
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| |
Collapse
|
17
|
Kelly PW, Pfennig DW, Pfennig KS. Adaptive Plasticity as a Fitness Benefit of Mate Choice. Trends Ecol Evol 2021; 36:294-307. [PMID: 33546877 DOI: 10.1016/j.tree.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity and sexual selection can each promote adaptation in variable environments, but their combined influence on adaptive evolution is not well understood. We propose that sexual selection can facilitate adaptation in variable environments when individuals prefer mates that produce adaptively plastic offspring. We develop this hypothesis and review existing studies showing that diverse groups display both sexual selection and plasticity in nonsexual traits. Thus, plasticity could be a widespread but unappreciated benefit of mate choice. We describe methods and opportunities to test this hypothesis and describe how sexual selection might foster the evolution of phenotypic plasticity. Understanding this interplay between sexual selection and phenotypic plasticity might help predict which species will adapt to a rapidly changing world.
Collapse
Affiliation(s)
- Patrick W Kelly
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - David W Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Karin S Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
18
|
Quintela M, Richter‐Boix À, Bekkevold D, Kvamme C, Berg F, Jansson E, Dahle G, Besnier F, Nash RDM, Glover KA. Genetic response to human-induced habitat changes in the marine environment: A century of evolution of European sprat in Landvikvannet, Norway. Ecol Evol 2021; 11:1691-1718. [PMID: 33613998 PMCID: PMC7882954 DOI: 10.1002/ece3.7160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Habitat changes represent one of the five most pervasive threats to biodiversity. However, anthropogenic activities also have the capacity to create novel niche spaces to which species respond differently. In 1880, one such habitat alterations occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, which became brackish after being artificially connected to the sea. This lake is now home to the European sprat, a pelagic marine fish that managed to develop a self-recruiting population in barely few decades. Landvikvannet sprat proved to be genetically isolated from the three main populations described for this species; that is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and Skagerrak. This distinctness was depicted by an accuracy self-assignment of 89% and a highly significant F ST between the lake sprat and each of the remaining samples (average of ≈0.105). The correlation between genetic and environmental variation indicated that salinity could be an important environmental driver of selection (3.3% of the 91 SNPs showed strong associations). Likewise, Isolation by Environment was detected for salinity, although not for temperature, in samples not adhering to an Isolation by Distance pattern. Neighbor-joining tree analysis suggested that the source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea despite a similar salinity profile. Strongly drifted allele frequencies and lower genetic diversity in Landvikvannet compared with the Norwegian fjords concur with a founder effect potentially associated with local adaptation to low salinity. Genetic differentiation (F ST) between marine and brackish sprat is larger in the comparison Norway-Landvikvannet than in Norway-Baltic, which suggests that the observed divergence was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than gradually over thousands of years (the age of the Baltic Sea), thus highlighting the pace at which human-driven evolution can happen.
Collapse
Affiliation(s)
| | - Àlex Richter‐Boix
- CREAFCampus de BellaterraAutonomous University of BarcelonaBarcelonaSpain
| | - Dorte Bekkevold
- DTU‐Aqua National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | | | - Geir Dahle
- Institute of Marine ResearchBergenNorway
| | | | - Richard D. M. Nash
- Centre for EnvironmentFisheries and Aquaculture Science (Cefas)LowestoftUK
| | - Kevin A. Glover
- Institute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
19
|
Le TDH, Schreiner VC, Kattwinkel M, Schäfer RB. Invertebrate turnover along gradients of anthropogenic salinisation in rivers of two German regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141986. [PMID: 32911168 DOI: 10.1016/j.scitotenv.2020.141986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rising salinity in freshwater ecosystems can affect community composition. Previous studies mainly focused on changes in freshwater communities along gradients of absolute levels of electrical conductivity (EC). However, both geogenic and anthropogenic drivers contribute to the EC level and taxa may regionally be adapted to geogenic EC levels. Therefore, we examined the turnover in freshwater invertebrates along gradients of anthropogenic EC change in two regions of Germany. The anthropogenic change of EC was estimated as the difference between the measured EC and the modeled background EC driven by geochemical and climate variables. Turnover in freshwater invertebrates (β-diversity) was estimated using the Jaccard index (JI). We found that invertebrate turnover between EC gradient categories is generally greater than 47%, with a maximum of approximately 70% in sites with a more than 0.4 mS cm-1 change compared to the baseline (i.e. no difference between predicted and measured EC). The invertebrates Amphinemura sp., Anomalopterygella chauviniana and Leuctra sp. were reliable indicators of low EC change, whereas Potamopyrgus antipodarum indicated sites with the highest EC change. Variability within categories of EC change was slightly lower than within categories of absolute EC. Elevated nutrient concentrations that are often linked to land use may have contributed to the observed change of the invertebrate richness and can exacerbate effects of EC on communities in water. Overall, our study suggests that the change in EC, quantified as the difference between measured EC and modeled background EC, can be used to examine the response of invertebrate communities to increasing anthropogenic salinity concentrations in rivers. However, due to the strong correlation between EC change and observed EC in our study regions, the response to these two variables was very similar. Further studies in areas where EC change and observed EC are less correlated are required. In addition, such studies should consider the change in specific ions.
Collapse
Affiliation(s)
- Trong Dieu Hien Le
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany; Faculty of Resources & Environment, University of Thu Dau Mot, 06 Tran Van On street, Thu Dau Mot City, Binh Duong, Viet Nam.
| | - Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Mira Kattwinkel
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|
20
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
21
|
Komoroske LM, Jeffries KM, Whitehead A, Roach JL, Britton M, Connon RE, Verhille C, Brander SM, Fangue NA. Transcriptional flexibility during thermal challenge corresponds with expanded thermal tolerance in an invasive compared to native fish. Evol Appl 2020. [DOI: 10.1111/eva.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lisa M. Komoroske
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
- Department of Wildlife, Fish & Conservation Biology University of California, Davis Davis CA USA
| | - Ken M. Jeffries
- Department of Biological Sciences University of Manitoba Winnipeg MB Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology University of California, Davis Davis CA USA
| | - Jennifer L. Roach
- Department of Environmental Toxicology University of California, Davis Davis CA USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center University of California, Davis Davis CA USA
| | - Richard E. Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine University of California, Davis Davis CA USA
| | | | - Susanne M. Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station Oregon State University Corvallis OR USA
| | - Nann A. Fangue
- Department of Wildlife, Fish & Conservation Biology University of California, Davis Davis CA USA
| |
Collapse
|
22
|
Rajkov J, El Taher A, Böhne A, Salzburger W, Egger B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol Ecol 2020; 30:274-296. [PMID: 33107988 DOI: 10.1111/mec.15709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild-caught individuals. Here, we investigated the contribution of habitat-specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake-river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake-like pond set-up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set-up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set-up were based on a plastic response. Finally, gene expression and bacterial communities of wild-caught individuals and individuals acclimatized to lake-like pond conditions showed shifts underlying adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Athimed El Taher
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Hamann E, Pauli CS, Joly-Lopez Z, Groen SC, Rest JS, Kane NC, Purugganan MD, Franks SJ. Rapid evolutionary changes in gene expression in response to climate fluctuations. Mol Ecol 2020; 30:193-206. [PMID: 32761923 PMCID: PMC7818422 DOI: 10.1111/mec.15583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
There is now abundant evidence of rapid evolution in natural populations, but the genetic mechanisms of these changes remain unclear. One possible route to rapid evolution is through changes in the expression of genes that influence traits under selection. We examined contemporary evolutionary gene expression changes in plant populations responding to environmental fluctuations. We compared genome‐wide gene expression, using RNA‐seq, in two populations of Brassica rapa collected over four time points between 1997 and 2014, during which precipitation in southern California fluctuated dramatically and phenotypic and genotypic changes occurred. By combining transcriptome profiling with the resurrection approach, we directly examined evolutionary changes in gene expression over time. For both populations, we found a substantial number of differentially expressed genes between generations, indicating rapid evolution in the expression of many genes. Using existing gene annotations, we found that many changes occurred in genes involved in regulating stress responses and flowering time. These appeared related to the fluctuations in precipitation and were potentially adaptive. However, the evolutionary changes in gene expression differed across generations within and between populations, indicating largely independent evolutionary trajectories across populations and over time. Our study provides strong evidence for rapid evolution in gene expression, and indicates that changes in gene expression can be one mechanism of rapid evolutionary responses to selection episodes. This study also illustrates that combining resurrection studies with transcriptomics is a powerful approach for investigating evolutionary changes at the gene regulatory level, and will provide new insights into the genetic basis of contemporary evolution. see also the Perspective by Emily B. Josephs.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.,Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Christopher S Pauli
- Department of Ecology and Evolution, The University of Colorado at Boulder, Boulder, CO, USA
| | - Zoé Joly-Lopez
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | - Joshua S Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Nolan C Kane
- Department of Ecology and Evolution, The University of Colorado at Boulder, Boulder, CO, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
24
|
Koch EL, Guillaume F. Restoring ancestral phenotypes is a general pattern in gene expression evolution during adaptation to new environments in Tribolium castaneum. Mol Ecol 2020; 29:3938-3953. [PMID: 32844494 DOI: 10.1111/mec.15607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Plasticity and evolution are two processes allowing populations to respond to environmental changes, but how both are related and impact each other remains controversial. We studied plastic and evolutionary responses in gene expression of Tribolium castaneum after exposure of the beetles to new environments that differed from ancestral conditions in temperature, humidity or both. Using experimental evolution with 10 replicated lines per condition, we were able to demonstrate adaptation after 20 generations. We measured whole-transcriptome gene expression with RNA-sequencing to infer evolutionary and plastic changes. We found more evidence for changes in mean expression (shift in the intercept of reaction norms) in adapted lines than for changes in plasticity (shifts in slopes). Plasticity was mainly preserved in selected lines and was responsible for a large part of the phenotypic divergence in expression between ancestral and new conditions. However, we found that genes with the largest evolutionary changes in expression also evolved reduced plasticity and often showed expression levels closer to the ancestral stage. Results obtained in the three different conditions were similar, suggesting that restoration of ancestral expression levels during adaptation is a general evolutionary pattern. With a larger sample in the most stressful condition, we were able to detect a positive correlation between the proportion of genes with reversion of the ancestral plastic response and mean fitness per selection line.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Sandoval-Castillo J, Gates K, Brauer CJ, Smith S, Bernatchez L, Beheregaray LB. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc Natl Acad Sci U S A 2020; 117:17112-17121. [PMID: 32647058 PMCID: PMC7382230 DOI: 10.1073/pnas.1921124117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Resilience to environmental stressors due to climate warming is influenced by local adaptations, including plastic responses. The recent literature has focused on genomic signatures of climatic adaptation, but little is known about how plastic capacity may be influenced by biogeographic and evolutionary processes. We investigate phenotypic plasticity as a target of climatic selection, hypothesizing that lineages that evolved in warmer climates will exhibit greater plastic adaptive resilience to upper thermal stress. This was experimentally tested by comparing transcriptomic responses within and among temperate, subtropical, and desert ecotypes of Australian rainbowfish subjected to contemporary and projected summer temperatures. Critical thermal maxima were estimated, and ecological niches delineated using bioclimatic modeling. A comparative phylogenetic expression variance and evolution model was used to assess plastic and evolved changes in gene expression. Although 82% of all expressed genes were found in the three ecotypes, they shared expression patterns in only 5 out of 236 genes that responded to the climate change experiment. A total of 532 genes showed signals of adaptive (i.e., genetic-based) plasticity due to ecotype-specific directional selection, and 23 of those responded to projected summer temperatures. Network analyses demonstrated centrality of these genes in thermal response pathways. The greatest adaptive resilience to upper thermal stress was shown by the subtropical ecotype, followed by the desert and temperate ecotypes. Our findings indicate that vulnerability to climate change will be highly influenced by biogeographic factors, emphasizing the value of integrative assessments of climatic adaptive traits for accurate estimation of population and ecosystem responses.
Collapse
Affiliation(s)
| | - Katie Gates
- Molecular Ecology Lab, Flinders University, Bedford Park, SA 5042, Australia
| | - Chris J Brauer
- Molecular Ecology Lab, Flinders University, Bedford Park, SA 5042, Australia
| | - Steve Smith
- Molecular Ecology Lab, Flinders University, Bedford Park, SA 5042, Australia
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | | |
Collapse
|
26
|
Stanford BC, Clake DJ, Morris MR, Rogers SM. The power and limitations of gene expression pathway analyses toward predicting population response to environmental stressors. Evol Appl 2020; 13:1166-1182. [PMID: 32684953 PMCID: PMC7359838 DOI: 10.1111/eva.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid environmental changes impact the global distribution and abundance of species, highlighting the urgency to understand and predict how populations will respond. The analysis of differentially expressed genes has elucidated areas of the genome involved in adaptive divergence to past and present environmental change. Such studies however have been hampered by large numbers of differentially expressed genes and limited knowledge of how these genes work in conjunction with each other. Recent methods (broadly termed "pathway analyses") have emerged that aim to group genes that behave in a coordinated fashion to a factor of interest. These methods aid in functional annotation and uncovering biological pathways, thereby collapsing complex datasets into more manageable units, providing more nuanced understandings of both the organism-level effects of modified gene expression, and the targets of adaptive divergence. Here, we reanalyze a dataset that investigated temperature-induced changes in gene expression in marine-adapted and freshwater-adapted threespine stickleback (Gasterosteus aculeatus), using Weighted Gene Co-expression Network Analysis (WGCNA) with PANTHER Gene Ontology (GO)-Slim overrepresentation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Six modules exhibited a conserved response and six a divergent response between marine and freshwater stickleback when acclimated to 7°C or 22°C. One divergent module showed freshwater-specific response to temperature, and the remaining divergent modules showed differences in height of reaction norms. PPARAa, a transcription factor that regulates fatty acid metabolism and has been implicated in adaptive divergence, was located in a module that had higher expression at 7°C and in freshwater stickleback. This updated methodology revealed patterns that were not found in the original publication. Although such methods hold promise toward predicting population response to environmental stressors, many limitations remain, particularly with regard to module expression representation, database resources, and cross-database integration.
Collapse
Affiliation(s)
| | - Danielle J. Clake
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | - Sean M. Rogers
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
- Bamfield Marine Sciences CentreBamfieldBCCanada
| |
Collapse
|
27
|
Different genetic basis for alcohol dehydrogenase activity and plasticity in a novel alcohol environment for Drosophila melanogaster. Heredity (Edinb) 2020; 125:101-109. [PMID: 32483318 DOI: 10.1038/s41437-020-0323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity is known to enhance population persistence, facilitate adaptive evolution and initiate novel phenotypes in novel environments. How plasticity can contribute or hinder adaptation to different environments hinges on its genetic architecture. Even though plasticity in many traits is genetically controlled, whether and how plasticity's genetic architecture might change in novel environments is still unclear. Because much of gene expression can be environmentally influenced, each environment may trigger different sets of genes that influence a trait. Using a quantitative trait loci (QTL) approach, we investigated the genetic basis of plasticity in a classic functional trait, alcohol dehydrogenase (ADH) activity in D. melanogaster, across both historical and novel alcohol environments. Previous research in D. melanogaster has also demonstrated that ADH activity is plastic in response to alcohol concentration in substrates used by both adult flies and larvae. We found that across all environments tested, ADH activity was largely influenced by a single QTL encompassing the Adh-coding gene and its known regulatory locus, delta-1. After controlling for the allelic variation of the Adh and delta-1 loci, we found additional but different minor QTLs in the 0 and 14% alcohol environments. In contrast, we discovered no major QTL for plasticity itself, including the Adh locus, regardless of the environmental gradients. This suggests that plasticity in ADH activity is likely influenced by many loci with small effects, and that the Adh locus is not environmentally sensitive to dietary alcohol.
Collapse
|
28
|
Koch EL, Guillaume F. Additive and mostly adaptive plastic responses of gene expression to multiple stress in Tribolium castaneum. PLoS Genet 2020; 16:e1008768. [PMID: 32379753 PMCID: PMC7238888 DOI: 10.1371/journal.pgen.1008768] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 05/19/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Gene expression is known to be highly responsive to the environment and important for adjustment of metabolism but there is also growing evidence that differences in gene regulation contribute to species divergence and differences among locally adapted populations. However, most studies so far investigated populations when divergence had already occurred. Selection acting on expression levels at the onset of adaptation to an environmental change has not been characterized. Understanding the mechanisms is further complicated by the fact that environmental change is often multivariate, meaning that organisms are exposed to multiple stressors simultaneously with potentially interactive effects. Here we use a novel approach by combining fitness and whole-transcriptome data in a large-scale experiment to investigate responses to drought, heat and their combination in Tribolium castaneum. We found that fitness was reduced by both stressors and their combined effect was almost additive. Expression data showed that stressor responses were acting independently and did not interfere physiologically. Since we measured expression and fitness within the same individuals, we were able to estimate selection on gene expression levels. We found that variation in fitness can be attributed to gene expression variation and that selection pressures were environment dependent and opposite between control and stress conditions. We could further show that plastic responses of expression were largely adaptive, i.e. in the direction that should increase fitness.
Collapse
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies, University
of Zürich, Zürich, Switzerland
- Department of Animal and Plant Science, University of Sheffield, Western
Bank, Sheffield, United Kingdom
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University
of Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
30
|
Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc Natl Acad Sci U S A 2019; 116:13452-13461. [PMID: 31217289 DOI: 10.1073/pnas.1821066116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Environmentally induced phenotypes have been proposed to initiate and bias adaptive evolutionary change toward particular directions. The potential for this to happen depends in part on how well plastic responses are aligned with the additive genetic variance and covariance in traits. Using meta-analysis, we demonstrate that plastic responses to novel environments tend to occur along phenotype dimensions that harbor substantial amounts of additive genetic variation. This suggests that selection for or against environmentally induced phenotypes typically will be effective. One interpretation of the alignment between the direction of plasticity and the main axis of additive genetic variation is that developmental systems tend to respond to environmental novelty as they do to genetic mutation. This makes it challenging to distinguish if the direction of evolution is biased by plasticity or genetic "constraint." Our results therefore highlight a need for new theoretical and empirical approaches to address the role of plasticity in evolution.
Collapse
|
31
|
Verta JP, Jones FC. Predominance of cis-regulatory changes in parallel expression divergence of sticklebacks. eLife 2019; 8:e43785. [PMID: 31090544 PMCID: PMC6550882 DOI: 10.7554/elife.43785] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Regulation of gene expression is thought to play a major role in adaptation, but the relative importance of cis- and trans- regulatory mechanisms in the early stages of adaptive divergence is unclear. Using RNAseq of threespine stickleback fish gill tissue from four independent marine-freshwater ecotype pairs and their F1 hybrids, we show that cis-acting (allele-specific) regulation consistently predominates gene expression divergence. Genes showing parallel marine-freshwater expression divergence are found near to adaptive genomic regions, show signatures of natural selection around their transcription start sites and are enriched for cis-regulatory control. For genes with parallel increased expression among freshwater fish, the quantitative degree of cis- and trans-regulation is also highly correlated across populations, suggesting a shared genetic basis. Compared to other forms of regulation, cis-regulation tends to show greater additivity and stability across different genetic and environmental contexts, making it a fertile substrate for the early stages of adaptive evolution.
Collapse
Affiliation(s)
- Jukka-Pekka Verta
- Friedrich Miescher Laboratory of the Max Planck SocietyMax-Planck-RingTübingenGermany
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck SocietyMax-Planck-RingTübingenGermany
| |
Collapse
|
32
|
Wang SP, Althoff DM. Phenotypic plasticity facilitates initial colonization of a novel environment. Evolution 2019; 73:303-316. [DOI: 10.1111/evo.13676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Sheng Pei Wang
- Department of Biology Syracuse University Syracuse NY 13244
| | - David M. Althoff
- Department of Biology Syracuse University Syracuse NY 13244
- Archbold Biological Station Venus FL 33960
| |
Collapse
|
33
|
Metzger DCH, Schulte PM. The DNA Methylation Landscape of Stickleback Reveals Patterns of Sex Chromosome Evolution and Effects of Environmental Salinity. Genome Biol Evol 2018; 10:775-785. [PMID: 29420714 PMCID: PMC5841383 DOI: 10.1093/gbe/evy034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation are a key component of dosage compensation on sex chromosomes and have been proposed as an important source of phenotypic variation influencing plasticity and adaptive evolutionary processes, yet little is known about the role of DNA methylation in an ecological or evolutionary context in vertebrates. The threespine stickleback (Gasterosteus aculeatus) is an ecological and evolutionary model system that has been used to study mechanisms involved in the evolution of adaptive phenotypes in novel environments as well as the evolution heteromorphic sex chromosomes and dosage compensation in vertebrates. Using whole genome bisulfite sequencing, we compared genome-wide DNA methylation patterns between threespine stickleback males and females and between stickleback reared at different environmental salinities. Apparent hypermethylation of the younger evolutionary stratum of the stickleback X chromosome in females relative to males suggests a potential role of DNA methylation in the evolution of heteromorphic sex chromosomes. We also demonstrate that rearing salinity has genome-wide effects on DNA methylation levels, which has the potential to lead to the accumulation of epigenetic variation between natural populations in different environments.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Liu S, Ferchaud AL, Grønkjaer P, Nygaard R, Hansen MM. Genomic parallelism and lack thereof in contrasting systems of three-spined sticklebacks. Mol Ecol 2018; 27:4725-4743. [DOI: 10.1111/mec.14782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Shenglin Liu
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - Anne-Laure Ferchaud
- Département de Biologie; Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Peter Grønkjaer
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - Rasmus Nygaard
- Greenland Institute of Natural Resources; Nuuk Greenland
| | | |
Collapse
|
35
|
Bassham S, Catchen J, Lescak E, von Hippel FA, Cresko WA. Repeated Selection of Alternatively Adapted Haplotypes Creates Sweeping Genomic Remodeling in Stickleback. Genetics 2018; 209:921-939. [PMID: 29794240 PMCID: PMC6028257 DOI: 10.1534/genetics.117.300610] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
Heterogeneous genetic divergence can accumulate across the genome when populations adapt to different habitats while still exchanging alleles. How long does diversification take and how much of the genome is affected? When divergence occurs in parallel from standing genetic variation, how often are the same haplotypes involved? We explore these questions using restriction site-associated DNA sequencing genotyping data and show that broad-scale genomic repatterning, fueled by copious standing variation, can emerge in just dozens of generations in replicate natural populations of threespine stickleback fish (Gasterosteus aculeatus). After the catastrophic 1964 Alaskan earthquake, marine stickleback colonized newly created ponds on seismically uplifted islands. We find that freshwater fish in these young ponds differ from their marine ancestors across the same genomic segments previously shown to have diverged in much older lake populations. Outside of these core divergent regions the genome shows no population structure across the ocean-freshwater divide, consistent with strong local selection acting in alternative environments on stickleback populations still connected by significant gene flow. Reinforcing this inference, a majority of divergent haplotypes that are at high frequency in ponds are detectable in the sea, even across great geographic distances. Building upon previous population genomics work in this model species, our data suggest that a long history of divergent selection and gene flow among stickleback populations in oceanic and freshwater habitats has maintained polymorphisms of alternatively adapted DNA sequences that facilitate parallel evolution.
Collapse
Affiliation(s)
- Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Julian Catchen
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Emily Lescak
- Department of Biological Sciences, University of Alaska Anchorage, Alaska 99508
- College of Fisheries and Ocean Science, University of Alaska Fairbanks, Alaska 99775
| | - Frank A von Hippel
- Department of Biological Sciences , Northern Arizona University, Flagstaff, Arizona 86011
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona 86011
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
36
|
Gibbons TC, McBryan TL, Schulte PM. Interactive effects of salinity and temperature acclimation on gill morphology and gene expression in threespine stickleback. Comp Biochem Physiol A Mol Integr Physiol 2018; 221:55-62. [DOI: 10.1016/j.cbpa.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
|
37
|
Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J. Why does the magnitude of genotype-by-environment interaction vary? Ecol Evol 2018; 8:6342-6353. [PMID: 29988442 PMCID: PMC6024136 DOI: 10.1002/ece3.4128] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/27/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Genotype-by-environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide-ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.
Collapse
Affiliation(s)
| | - Alison M. Bell
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Jonathan Flint
- University of California Los AngelesLos AngelesCalifornia
| | | | | | - Jason Keagy
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
38
|
Low temperature and low salinity drive putatively adaptive growth differences in populations of threespine stickleback. Sci Rep 2017; 7:16766. [PMID: 29196675 PMCID: PMC5711929 DOI: 10.1038/s41598-017-16919-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Colonisation can expose organisms to novel combinations of abiotic and biotic factors and drive adaptive divergence. Yet, studies investigating the interactive effects of multiple abiotic factors on the evolution of physiological traits remain rare. Here we examine the effects of low salinity, low temperature, and their interaction on the growth of three North American populations of threespine stickleback (Gasterosteus aculeatus). In north-temperate freshwater habitats, stickleback populations experience a combination of low salinity and low winter temperatures that are not experienced by the ancestral marine and anadromous populations. Here we show that both salinity and temperature, and their interaction, have stronger negative effects on marine and anadromous populations than a freshwater population. Freshwater stickleback showed only a ~20% reduction in specific growth rate when exposed to 4 °C, while marine and anadromous stickleback showed sharp declines (82% and 74% respectively) under these conditions. The modest decreases in growth in freshwater stickleback in fresh water in the cold strongly suggest that this population has the capacity for physiological compensation to offset the negative thermodynamic effects of low temperature on growth. These results are suggestive of adaptive evolution in response to the interactive effects of low salinity and low temperature during freshwater colonisation.
Collapse
|
39
|
Divergence of insulin superfamily ligands, receptors and Igf binding proteins in marine versus freshwater stickleback: Evidence of selection in known and novel genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:53-61. [PMID: 29149730 DOI: 10.1016/j.cbd.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
Abstract
Three-spine stickleback (Gasterosteus aculeatus) is a teleost model for understanding genetic, physiological and morphological changes accompanying freshwater (FW) adaptation. There is growing evidence that the insulin superfamily plays important roles in traits involved in marine and FW adaptation. We performed a candidate gene analysis to look for evidence of selection on 33 insulin superfamily ligand-receptor genes and insulin-like growth factor binding proteins (Igfbp's) in stickleback. Using genotype data from 11 marine and 10 FW populations, we calculated the number of SNPs per site in regulatory and intronic regions, the number of synonymous and nonsynonymous mutations in coding regions, Wright's fixation index (Fst), and performed t-tests to identify SNPs with divergent genotype frequencies between marine/FW versus Atlantic/Pacific populations. Next, we analysed genome-wide transcriptome data from eight tissues to assess differential gene expression. Two Igfbp's (Igfbp2a and Igfbp5a) show evidence of divergent adaptation between life-history types, and a cluster of nonsynonymous mutations in Igfbp5a exhibit high Fst in exons apparently alternatively spliced in gill. We find evidence of selection on the relaxin family ligand-receptor gene pair, Insl3-Rxfp2, known to be involved in male spermatogenesis and bone metabolism, and in the 5' regulatory region of Igf2. We also confirmed the gene and coding sequence of two unannotated relaxin family ligands. These analyses underscore the utility of candidate gene studies and indicate directions for further exploration of the function of insulin superfamily genes in FW adaptation.
Collapse
|
40
|
Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 2017; 26:6384-6399. [PMID: 28926156 DOI: 10.1111/mec.14360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.
Collapse
Affiliation(s)
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
41
|
Lohman BK, Stutz WE, Bolnick DI. Gene expression stasis and plasticity following migration into a foreign environment. Mol Ecol 2017; 26:4657-4670. [DOI: 10.1111/mec.14234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Brian K. Lohman
- Department of Integrative Biology; University of Texas at Austin; Austin TX USA
| | - William E. Stutz
- Office of Institutional Research; Western Michigan University; Kalamazoo MI USA
| | - Daniel I. Bolnick
- Department of Integrative Biology; University of Texas at Austin; Austin TX USA
| |
Collapse
|
42
|
Pedersen SH, Ferchaud AL, Bertelsen MS, Bekkevold D, Hansen MM. Low genetic and phenotypic divergence in a contact zone between freshwater and marine sticklebacks: gene flow constrains adaptation. BMC Evol Biol 2017; 17:130. [PMID: 28587593 PMCID: PMC5461706 DOI: 10.1186/s12862-017-0982-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Distinct hybrid zones and phenotypic and genomic divergence is often observed between marine and freshwater threespine sticklebacks (Gasterosteus aculeatus). Nevertheless, cases also exist where marine-freshwater divergence is diffuse despite seemingly similar environmental settings. In order to assess what characterizes these highly different outcomes, we focused on the latter kind of system in the Odder River, Denmark. Here, a previous study based on RAD (Restriction site Associated DNA) sequencing found non-significant genome-wide differentiation between marine and freshwater sticklebacks. In the present study, we analyzed samples on a finer geographical scale. We assessed if the system should be regarded as panmictic, or if fine-scale genetic structure and local selection was present but dominated by strong migration. We also asked if specific population components, that is the two sexes and different lateral plate morphs, contributed disproportionally more to dispersal. RESULTS We assessed variation at 96 SNPs and the Eda gene that affects lateral plate number, conducted molecular sex identification, and analyzed morphological traits. Genetic differentiation estimated by FST was non-significant throughout the system. Nevertheless, spatial autocorrelation analysis suggested fine scale genetic structure with a genetic patch size of 770 m. There was no evidence for sex-biased dispersal, but full-plated individuals showed higher dispersal than low- and partial-plated individuals. The system was dominated by full-plated morphs characteristic of marine sticklebacks, but in the upstream part of the river body shape and frequency of low-plated morphs changed in the direction expected for freshwater sticklebacks. Five markers including Eda were under possible diversifying selection. However, only subtle clinal patterns were observed for traits and markers. CONCLUSIONS We suggest that gene flow from marine sticklebacks overwhelms adaptation to freshwater conditions, but the short genetic patch size means that the effect of gene flow on the most upstream region must be indirect and occurs over generations. The occurrence of both weak unimodal and strong bimodal hybrid zones within the same species is striking. We suggest environmental and demographic factors that could determine these outcomes, but also highlight the possibility that long-term population history and the presence or absence of genomic incompatibilities could be a contributing factor.
Collapse
Affiliation(s)
- Susanne Holst Pedersen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | - Anne-Laure Ferchaud
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark.,Present address: Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Québec City, QC, Canada
| | - Mia S Bertelsen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
43
|
Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P. Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures. Am Nat 2017; 189:463-473. [DOI: 10.1086/691233] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Gibbons TC, Metzger DCH, Healy TM, Schulte PM. Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats. Mol Ecol 2017; 26:2711-2725. [DOI: 10.1111/mec.14065] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor C. Gibbons
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - David C. H. Metzger
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Timothy M. Healy
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Patricia M. Schulte
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
45
|
Velotta JP, Wegrzyn JL, Ginzburg S, Kang L, Czesny S, O'Neill RJ, McCormick SD, Michalak P, Schultz ET. Transcriptomic imprints of adaptation to fresh water: parallel evolution of osmoregulatory gene expression in the Alewife. Mol Ecol 2017; 26:831-848. [DOI: 10.1111/mec.13983] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan P. Velotta
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Samuel Ginzburg
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Lin Kang
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Sergiusz Czesny
- Lake Michigan Biological Station; Illinois Natural History Survey; University of Illinois; Zion IL 60099 USA
| | - Rachel J. O'Neill
- Department of Molecular and Cell Biology; University of Connecticut; Storrs CT 06269-3125 USA
| | - Stephen D. McCormick
- Conte Anadromous Fish Research Center; U.S. Geological Survey; Turners Falls MA 01376 USA
| | - Pawel Michalak
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Eric T. Schultz
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| |
Collapse
|
46
|
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus. G3-GENES GENOMES GENETICS 2017; 7:165-178. [PMID: 27836907 PMCID: PMC5217106 DOI: 10.1534/g3.116.033241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.
Collapse
|
47
|
Hasan MM, DeFaveri J, Kuure S, Dash SN, Lehtonen S, Merilä J, McCairns RJS. Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. J Exp Biol 2017; 220:2175-2186. [DOI: 10.1242/jeb.146027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023]
Abstract
Novel physiological challenges in different environments can promote the evolution of divergent phenotypes, either through plastic or genetic changes. Environmental salinity serves as a key barrier to the distribution of nearly all aquatic organisms, and species diversification is likely to be enabled by adaptation to alternative osmotic environments. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations found both in marine and freshwater environments. It has evolved both highly plastic and locally adapted phenotypes due to salinity-derived selection, but the physiological and genetic basis of adaptation to salinity is not fully understood. We integrated comparative cellular morphology of the kidney, a key organ for osmoregulation, and candidate gene expression to explore the underpinnings of evolved variation in osmotic plasticity within two populations of sticklebacks from distinct salinity zones in the Baltic Sea: the high salinity Kattegat, representative of the ancestral marine habitat, and the low salinity Bay of Bothnia. A common-garden experiment revealed that kidney morphology in the ancestral high salinity population had a highly plastic response to salinity conditions, whereas this plastic response was reduced in the low salinity population. Candidate gene expression in kidney tissue revealed a similar pattern of population-specific differences, with a higher degree of plasticity in the native high salinity population. Together these results suggest that renal cellular morphology has become canalized to low salinity, and that these structural differences may have functional implications for osmoregulation.
Collapse
Affiliation(s)
- M. Mehedi Hasan
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jacquelin DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- Institute of Biotechnology & Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - R. J. Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, 35042 Rennes, France
| |
Collapse
|
48
|
Kefford BJ, Buchwalter D, Cañedo-Argüelles M, Davis J, Duncan RP, Hoffmann A, Thompson R. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biol Lett 2016; 12:20151072. [PMID: 26932680 DOI: 10.1098/rsbl.2015.1072] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments.
Collapse
Affiliation(s)
- Ben J Kefford
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - David Buchwalter
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Miguel Cañedo-Argüelles
- BETA Technology Centre, Aquatic Ecology Group, University of Vic-Central University of Catalonia, Spain Freshwater Ecology and Management (F.E.M.) Research Group, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jenny Davis
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross Thompson
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
49
|
Dennenmoser S, Vamosi SM, Nolte AW, Rogers SM. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq. Mol Ecol 2016; 26:25-42. [DOI: 10.1111/mec.13805] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Dennenmoser
- Max-Planck Institute for Evolutionary Biology; August Thienemann Strasse 2 24306 Plön Germany
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Steven M. Vamosi
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Arne W. Nolte
- Max-Planck Institute for Evolutionary Biology; August Thienemann Strasse 2 24306 Plön Germany
- Institute for Biology; Carl von Ossietzky University Oldenburg; Carl von Ossietzky Str. 9-11 26111 Oldenburg Germany
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| |
Collapse
|
50
|
Evaluating ‘Plasticity-First’ Evolution in Nature: Key Criteria and Empirical Approaches. Trends Ecol Evol 2016; 31:563-574. [DOI: 10.1016/j.tree.2016.03.012] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|