1
|
Manenti T, Kjærsgaard A, Schou TM, Pertoldi C, Moghadam NN, Loeschcke V. Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches. INSECTS 2021; 12:insects12100925. [PMID: 34680694 PMCID: PMC8540664 DOI: 10.3390/insects12100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Temperature has profound effects on biochemical processes as suggested by the extensive variation in performance of organisms across temperatures. Nonetheless, the use of fluctuating temperature (FT) regimes in laboratory experiments compared to constant temperature (CT) regimes is still mainly applied in studies of model organisms. We investigated how two amplitudes of developmental temperature fluctuation (22.5/27.5 °C and 20/30 °C, 12/12 h) affected several fitness-related traits in five Drosophila species with markedly different thermal resistance. Egg-to-adult viability did not change much with temperature except in the cold-adapted D. immigrans. Developmental time increased with FT among all species compared to the same mean CT. The impact of FT on wing size was quite diverse among species. Whereas wing size decreased quasi-linearly with CT in all species, there were large qualitative differences with FT. Changes in wing aspect ratio due to FT were large compared to the other traits and presumably a consequence of thermal stress. These results demonstrate that species of the same genus but with different thermal resistance can show substantial differences in responses to fluctuating developmental temperatures not predictable by constant developmental temperatures. Testing multiple traits facilitated the interpretation of responses to FT in a broader context.
Collapse
Affiliation(s)
- Tommaso Manenti
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark; (A.K.); (T.M.S.); (V.L.)
- Laboratori Biokyma srl, Loc.Mocaia 44b, 52031 Anghiari, AR, Italy
- Correspondence: or
| | - Anders Kjærsgaard
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark; (A.K.); (T.M.S.); (V.L.)
| | - Toke Munk Schou
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark; (A.K.); (T.M.S.); (V.L.)
| | - Cino Pertoldi
- Section of Biology and Environmental Science, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark; (C.P.); (N.N.M.)
- Aalborg Zoo, Mølleparkvej 63, DK-9000 Aalborg, Denmark
| | - Neda N. Moghadam
- Section of Biology and Environmental Science, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark; (C.P.); (N.N.M.)
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Volker Loeschcke
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark; (A.K.); (T.M.S.); (V.L.)
| |
Collapse
|
2
|
Genotype and Trait Specific Responses to Rapamycin Intake in Drosophila melanogaster. INSECTS 2021; 12:insects12050474. [PMID: 34065203 PMCID: PMC8161023 DOI: 10.3390/insects12050474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary Rapamycin is commonly used as an immunosuppressant, but also as an anti-aging medicine. Despite its widespread use, results suggest that there is large variability in drug efficiency among patients, and limited knowledge exists about potential side-effects. In the present study, we investigated the effects of rapamycin using the common fruit fly as model organism. Six genetically distinct lines were exposed to rapamycin, and the phenotypic consequence on fecundity, longevity and heat stress tolerance was quantified. Flies exposed to rapamycin had increased longevity and heat stress tolerance, however a side effect in the form of decreased fecundity was also observed. Our data clearly show that the costs and benefits of rapamycin treatment is strongly genotype dependent. These observations are important as they imply that a ‘one size fits all’ approach when it comes to rapamycin treatment is not advisable. Future studies should address the underlying genetic component that drive the drug response variability. Abstract Rapamycin is a powerful inhibitor of the TOR (Target of Rapamycin) pathway, which is an evolutionarily conserved protein kinase, that plays a central role in plants and animals. Rapamycin is used globally as an immunosuppressant and as an anti-aging medicine. Despite widespread use, treatment efficiency varies considerably across patients, and little is known about potential side effects. Here we seek to investigate the effects of rapamycin by using Drosophila melanogaster as model system. Six isogenic D. melanogaster lines were assessed for their fecundity, male longevity and male heat stress tolerance with or without rapamycin treatment. The results showed increased longevity and heat stress tolerance for male flies treated with rapamycin. Conversely, the fecundity of rapamycin-exposed individuals was lower than for flies from the non-treated group, suggesting unwanted side effects of the drug in D. melanogaster. We found strong evidence for genotype-by-treatment interactions suggesting that a ‘one size fits all’ approach when it comes to treatment with rapamycin is not recommendable. The beneficial responses to rapamycin exposure for stress tolerance and longevity are in agreement with previous findings, however, the unexpected effects on reproduction are worrying and need further investigation and question common believes that rapamycin constitutes a harmless drug.
Collapse
|
3
|
Kellermann V, Hoffmann AA, Overgaard J, Loeschcke V, Sgrò CM. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc Biol Sci 2019. [PMID: 29540521 DOI: 10.1098/rspb.2018.0048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Comparative analyses of ectotherm susceptibility to climate change often focus on thermal extremes, yet responses to aridity may be equally important. Here we focus on plasticity in desiccation resistance, a key trait shaping distributions of Drosophila species and other small ectotherms. We examined the extent to which 32 Drosophila species, varying in their distribution, could increase their desiccation resistance via phenotypic plasticity involving hardening, linking these responses to environment, phylogeny and basal resistance. We found no evidence to support the seasonality hypothesis; species with higher hardening plasticity did not occupy environments with higher and more seasonal precipitation. As basal resistance increased, the capacity of species to respond via phenotypic plasticity decreased, suggesting plastic responses involving hardening may be constrained by basal resistance. Trade-offs between basal desiccation resistance and plasticity were not universal across the phylogeny and tended to occur within specific clades. Phylogeny, environment and trade-offs all helped to explain variation in plasticity for desiccation resistance but in complex ways. These findings suggest some species have the ability to counter dry periods through plastic responses, whereas others do not; and this ability will depend to some extent on a species' placement within a phylogeny, along with its basal level of resistance.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | - Volker Loeschcke
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Sørensen JG, Kristensen TN, Overgaard J. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? CURRENT OPINION IN INSECT SCIENCE 2016; 17:98-104. [PMID: 27720081 DOI: 10.1016/j.cois.2016.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 05/26/2023]
Abstract
Phenotypic plasticity of temperature tolerance (thermal acclimation) is often highlighted as an important component of the acute and evolutionary adaptation to temperatures in insects. For this reason, it is often suggested that thermal acclimation ability could be important for buffering the consequences of climate change. Based on data from Drosophila we discuss if and how phenotypic plasticity is likely to mitigate the effects of climate change. We conclude that plasticity of upper thermal limits is small in magnitude, evolves slowly and that acclimation ability is weakly correlated with latitude and environmental heterogeneity. Accordingly plasticity in upper thermal limits is unlikely to effectively buffer effects of global warming for species already close to their upper thermal boundaries.
Collapse
Affiliation(s)
- Jesper Givskov Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Section for Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Johannes Overgaard
- Department of Bioscience, Section for Zoophysiology, Aarhus University, C.F. Møllers Alle 3, Building 1131, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Slotsbo S, Sørensen JG, Holmstrup M, Kostal V, Kellermann V, Overgaard J. Tropical to subpolar gradient in phospholipid composition suggests adaptive tuning of biological membrane function in drosophilids. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Stine Slotsbo
- Department of Bioscience Aarhus University Aarhus Denmark
- Department of Bioscience Aarhus University Silkeborg Denmark
| | | | | | - Vladimir Kostal
- Institute of Entomology Biology Centre of the Academy of Science of the Czech Republic České Budějovice Czech Republic
| | | | | |
Collapse
|
6
|
Wit J, Loeschcke V, Kellermann V. Life span variation in 13 Drosophila
species: a comparative study on life span, environmental variables and stress resistance. J Evol Biol 2015. [DOI: 10.1111/jeb.12706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- J. Wit
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Loeschcke
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Kellermann
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
- Department of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
7
|
Swillen I, Vanoverbeke J, De Meester L. Inbreeding and adaptive plasticity: an experimental analysis on predator-induced responses in the water flea Daphnia. Ecol Evol 2015; 5:2712-21. [PMID: 26257883 PMCID: PMC4523366 DOI: 10.1002/ece3.1545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/09/2022] Open
Abstract
Several studies have emphasized that inbreeding depression (ID) is enhanced under stressful conditions. Additionally, one might imagine a loss of adaptively plastic responses which may further contribute to a reduction in fitness under environmental stress. Here, we quantified ID in inbred families of the cyclical parthenogen Daphnia magna in the absence and presence of fish predation risk. We test whether predator stress affects the degree of ID and if inbred families have a reduced capacity to respond to predator stress by adaptive phenotypic plasticity. We obtained two inbred families through clonal selfing within clones isolated from a fish pond. After mild purging under standardized conditions, we compared life history traits and adaptive plasticity between inbred and outbred lineages (directly hatched from the natural dormant egg bank of the same pond). Initial purging of lineages under standardized conditions differed among inbred families and exceeded that in outbreds. The least purged inbred family exhibited strong ID for most life history traits. Predator-induced stress hardly affected the severity of ID, but the degree to which the capacity for adaptive phenotypic plasticity was retained varied strongly among the inbred families. The least purged family overall lacked the capacity for adaptive phenotypic plasticity, whereas the family that suffered only mild purging exhibited a potential for adaptive plasticity that was comparable to the outbred population. We thus found that inbred offspring may retain the capacity to respond to the presence of fish by adaptive phenotypic plasticity, but this strongly depends on the parental clone engaging in selfing.
Collapse
Affiliation(s)
- Ine Swillen
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Joost Vanoverbeke
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Charles Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
8
|
Schou MF, Kristensen TN, Loeschcke V. Trait-specific consequences of inbreeding on adaptive phenotypic plasticity. Ecol Evol 2014; 5:1-6. [PMID: 25628859 PMCID: PMC4298428 DOI: 10.1002/ece3.1339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/06/2023] Open
Abstract
Environmental changes may stress organisms and stimulate an adaptive phenotypic response. Effects of inbreeding often interact with the environment and can decrease fitness of inbred individuals exposed to stress more so than that of outbred individuals. Such an interaction may stem from a reduced ability of inbred individuals to respond plastically to environmental stress; however, this hypothesis has rarely been tested. In this study, we mimicked the genetic constitution of natural inbred populations by rearing replicate Drosophila melanogaster populations for 25 generations at a reduced population size (10 individuals). The replicate inbred populations, as well as control populations reared at a population size of 500, were exposed to a benign developmental temperature and two developmental temperatures at the lower and upper margins of their viable range. Flies developed at the three temperatures were assessed for traits known to vary across temperatures, namely abdominal pigmentation, wing size, and wing shape. We found no significant difference in phenotypic plasticity in pigmentation or in wing size between inbred and control populations, but a significantly higher plasticity in wing shape across temperatures in inbred compared to control populations. Given that the norms of reaction for the noninbred control populations are adaptive, we conclude that a reduced ability to induce an adaptive phenotypic response to temperature changes is not a general consequence of inbreeding and thus not a general explanation of inbreeding–environment interaction effects on fitness components.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Bioscience, Aarhus University Aarhus C, DK-8000, Denmark
| | - Torsten N Kristensen
- Department of Chemistry and Life Science, Aalborg University Aalborg East, DK-9220, Denmark
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University Aarhus C, DK-8000, Denmark
| |
Collapse
|
9
|
van Heerwaarden B, Lee RFH, Overgaard J, Sgrò CM. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. J Evol Biol 2014; 27:2541-53. [PMID: 25262984 DOI: 10.1111/jeb.12510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity may be an important initial mechanism to counter environmental change, yet we know relatively little about the evolution of plasticity in nature. Species with widespread distributions are expected to have evolved higher levels of plasticity compared with those with more restricted, tropical distributions. At the intraspecific level, temperate populations are expected to have evolved higher levels of plasticity than their tropical counterparts. However, empirical support for these expectations is limited. In addition, no studies have comprehensively examined the evolution of thermal plasticity across life stages. Using populations of Drosophila simulans collected from a latitudinal cline spanning the entire east coast of Australia, we assessed thermal plasticity, measured as hardening capacity (the difference between basal and hardened thermal tolerance) for multiple measures of heat and cold tolerance across both adult and larval stages of development. This allowed us to explicitly ask whether the evolution of thermal plasticity is favoured in more variable, temperate environments. We found no relationship between thermal plasticity and latitude, providing little support for the hypothesis that temperate populations have evolved higher levels of thermal plasticity than their tropical counterparts. With the exception of adult heat survival, we also found no association between plasticity and ten climatic variables, indicating that the evolution of thermal plasticity is not easily predicted by the type of environment that a particular population occupies. We discuss these results in the context of the role of plasticity in a warming climate.
Collapse
Affiliation(s)
- B van Heerwaarden
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | | | | | | |
Collapse
|
10
|
Coombs MR, Bale JS. Comparison of thermal activity thresholds of the spider mite predators Phytoseiulus macropilis and Phytoseiulus persimilis (Acari: Phytoseiidae). EXPERIMENTAL & APPLIED ACAROLOGY 2013; 59:435-445. [PMID: 23011107 DOI: 10.1007/s10493-012-9619-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/18/2012] [Indexed: 06/01/2023]
Abstract
The lower and upper thermal activity thresholds of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) were compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae) and one of the alternative commercially available control agents for T. urticae, Phytoseiulus persimilis Athias-Henriot. Adult female P. macropilis retained ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (8.2 and 0.4 °C, respectively) than that of P. persimilis (11.1 and 3.3 °C) and T. urticae (10.6 and 10.3 °C). As the temperature was raised, P. macropilis ceased walking (CTmax) and entered heat coma (42.7 and 43.6 °C), beyond the upper locomotory limits of P. persimilis (40.0 and 41.1 °C), but before T. urticae (47.3 and 48.7 °C). Walking speeds were investigated and P. persimilis was found to have significantly faster ambulation than P. macropilis and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that P. macropilis will make an effective biological control agent in temperate climates.
Collapse
Affiliation(s)
- Megan R Coombs
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | |
Collapse
|
11
|
Bechsgaard JS, Hoffmann AA, Sgró C, Loeschcke V, Bilde T, Kristensen TN. A comparison of inbreeding depression in tropical and widespread Drosophila species. PLoS One 2013; 8:e51176. [PMID: 23460779 PMCID: PMC3584098 DOI: 10.1371/journal.pone.0051176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022] Open
Abstract
The evolutionary history of widespread and specialized species is likely to cause a different genetic architecture of key ecological traits in the two species groups. This may affect how these two groups respond to inbreeding. Here we investigate inbreeding effects in traits related to performance in 5 widespread and 5 tropical restricted species of Drosophila with the aim of testing whether the two species groups suffered differently from inbreeding depression. The traits investigated were egg-to-adult viability, developmental time and resistance to heat, cold and desiccation. Our results showed that levels of inbreeding depression were species and trait specific and did not differ between the species groups for stress resistance traits. However, for the life history traits developmental time and egg-to adult viability, more inbreeding depression was observed in the tropical species. The results reported suggest that for life history traits tropical species of Drosophila will suffer more from inbreeding depression than widespread species in case of increases in the rate of inbreeding e.g. due to declines in population sizes.
Collapse
Affiliation(s)
| | - Ary A. Hoffmann
- Department of Genetics and Bio21 Institute, Melbourne University, Melbourne, Australia
| | - Carla Sgró
- School of Biological Sciences, Monash University, Melbourne, Australia
| | | | - Trine Bilde
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Torsten N. Kristensen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- NordGen - Nordic Genetic Resource Center, Ås, Norway
| |
Collapse
|
12
|
Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus? Naturwissenschaften 2013; 100:281-4. [DOI: 10.1007/s00114-013-1023-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 11/25/2022]
|
13
|
Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc Natl Acad Sci U S A 2012; 109:16228-33. [PMID: 22988106 DOI: 10.1073/pnas.1207553109] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upper thermal limits vary less than lower limits among related species of terrestrial ectotherms. This pattern may reflect weak or uniform selection on upper limits, or alternatively tight evolutionary constraints. We investigated this issue in 94 Drosophila species from diverse climates and reared in a common environment to control for plastic effects that may confound species comparisons. We found substantial variation in upper thermal limits among species, negatively correlated with annual precipitation at the central point of their distribution and also with the interaction between precipitation and maximum temperature, showing that heat resistance is an important determinant of Drosophila species distributions. Species from hot and relatively dry regions had higher resistance, whereas resistance was uncorrelated with temperature in wetter regions. Using a suite of analyses we showed that phylogenetic signal in heat resistance reflects phylogenetic inertia rather than common selection pressures. Current species distributions are therefore more likely to reflect environmental sorting of lineages rather than local adaptation. Similar to previous studies, thermal safety margins were small at low latitudes, with safety margins smallest for species occupying both humid and dry tropical environments. Thus, species from a range of environments are likely to be at risk owing to climate change. Together these findings suggest that this group of insects is unlikely to buffer global change effects through marked evolutionary changes, highlighting the importance of facilitating range shifts for maintaining biodiversity.
Collapse
|
14
|
Reed DH, Fox CW, Enders LS, Kristensen TN. Inbreeding-stress interactions: evolutionary and conservation consequences. Ann N Y Acad Sci 2012; 1256:33-48. [PMID: 22583046 DOI: 10.1111/j.1749-6632.2012.06548.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The effect of environmental stress on the magnitude of inbreeding depression has a long history of intensive study. Inbreeding-stress interactions are of great importance to the viability of populations of conservation concern and have numerous evolutionary ramifications. However, such interactions are controversial. Several meta-analyses over the last decade, combined with omic studies, have provided considerable insight into the generality of inbreeding-stress interactions, its physiological basis, and have provided the foundation for future studies. In this review, we examine the genetic and physiological mechanisms proposed to explain why inbreeding-stress interactions occur. We specifically examine whether the increase in inbreeding depression with increasing stress could be due to a concomitant increase in phenotypic variation, using a larger data set than any previous study. Phenotypic variation does usually increase with stress, and this increase can explain some of the inbreeding-stress interaction, but it cannot explain all of it. Overall, research suggests that inbreeding-stress interactions can occur via multiple independent channels, though the relative contribution of each of the mechanisms is unknown. To better understand the causes and consequences of inbreeding-stress interactions in natural populations, future research should focus on elucidating the genetic architecture of such interactions and quantifying naturally occurring levels of stress in the wild.
Collapse
Affiliation(s)
- David H Reed
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | | | | | | |
Collapse
|
15
|
Kellermann V, Loeschcke V, Hoffmann AA, Kristensen TN, Fløjgaard C, David JR, Svenning JC, Overgaard J. PHYLOGENETIC CONSTRAINTS IN KEY FUNCTIONAL TRAITS BEHIND SPECIES’ CLIMATE NICHES: PATTERNS OF DESICCATION AND COLD RESISTANCE ACROSS 95DROSOPHILASPECIES. Evolution 2012; 66:3377-89. [DOI: 10.1111/j.1558-5646.2012.01685.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Bijlsma R, Loeschcke V. Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 2011; 5:117-29. [PMID: 25568035 PMCID: PMC3353342 DOI: 10.1111/j.1752-4571.2011.00214.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 11/26/2022] Open
Abstract
Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected to obstruct such adaptive responses: (i) genetic drift will cause a decrease in the level of adaptive genetic variation, thereby limiting evolutionary responses; (ii) inbreeding and the concomitant inbreeding depression will reduce individual fitness and, consequently, the tolerance of populations to environmental stress. Importantly, inbreeding generally increases the sensitivity of a population to stress, thereby increasing the amount of inbreeding depression. As adaptation to stress is most often accompanied by increased mortality (cost of selection), the increase in the ‘cost of inbreeding’ under stress is expected to severely hamper evolutionary adaptive processes. Inbreeding thus plays a pivotal role in this process and is expected to limit the probability of genetically eroded populations to successfully adapt to stressful environmental conditions. Consequently, the dynamics of small fragmented populations may differ considerably from large nonfragmented populations. The resilience of fragmented populations to changing and deteriorating environments is expected to be greatly decreased. Alleviating inbreeding depression, therefore, is crucial to ensure population persistence.
Collapse
Affiliation(s)
- R Bijlsma
- Population and Conservation Genetics, University of Groningen, Center for Life Sciences Groningen, The Netherlands ; Theoretical Biology, University of Groningen, Center for Life Sciences Groningen, The Netherlands
| | - Volker Loeschcke
- Department of Biosciences, Ecology and Genetics, Aarhus University Aarhus C, Denmark
| |
Collapse
|