1
|
Schachner ER, Moore AJ. Unidirectional airflow, air sacs or the horizontal septum: what does it take to make a bird lung? Philos Trans R Soc Lond B Biol Sci 2025; 380:20230418. [PMID: 40010391 DOI: 10.1098/rstb.2023.0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025] Open
Abstract
In this review, we evaluate the differences between the pulmonary anatomy of birds and other sauropsids, specifically those traits that make the avian respiratory system distinct: a fully decoupled and immobilized, isovolumetric gas-exchanging lung separated from compliant ventilatory air sacs by a horizontal septum. Imaging data, three-dimensional digital anatomical models and dissection images from a red-tailed hawk (Buteo jamaicensis), common ostrich (Struthio camelus), barred owl (Strix varia), African grey parrot (Psittacus erithacus) and zebra finch (Taeniopygia castanotis) are used to demonstrate the anatomical variation seen in the pulmonary air sacs, diverticula and the horizontal septum. We address the current state of knowledge regarding the avian respiratory system and the myriad areas that require further study, including the comparative and quantitative ecomorphology of the bronchial tree and air sacs, the non-ventilatory functions of the sacs and diverticula, the fluid dynamics and anatomical mechanisms underlying unidirectional airflow, post-cranial skeletal pneumaticity, and how all of these factors impact reconstructions of respiratory tissues in extinct archosaurs, particularly ornithodirans (i.e. pterosaurs + non-avian dinosaurs). Specifically, we argue that without evidence for the horizontal septum, a fully avian lung should not be reconstructed in non-avian ornithodirans, despite the presence of post-cranial skeletal pneumaticity.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Andrew J Moore
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Burton MG, Benito J, Mellor K, Smith E, Martin-Silverstone E, O'Connor P, Field DJ. The influence of soft tissue volume on estimates of skeletal pneumaticity: implications for fossil archosaurs. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230428. [PMID: 40010389 DOI: 10.1098/rstb.2023.0428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 02/28/2025] Open
Abstract
Air space proportion (ASP), the volume fraction in bone that is occupied by air, is frequently applied as a measure for quantifying the extent of skeletal pneumaticity in extant and fossil archosaurs. Nonetheless, ASP estimates rely on a key assumption: that the soft tissue mass within pneumatic bones is negligible, an assumption that has rarely been explicitly acknowledged or tested. Here, we provide the first comparisons between estimated air space proportion (where the internal cavity of a pneumatic bone is assumed to be completely air-filled) and true air space proportion (ASPt, where soft tissues present within the internal cavities of fresh specimens are considered). Using birds as model archosaurs exhibiting postcranial skeletal pneumaticity, we find that estimates of ASPt are significantly lower than estimates of ASP, raising an important consideration that should be acknowledged in investigations of the evolution of skeletal pneumaticity and bulk skeletal density in extinct archosaurs, as well as in volume-based estimates of archosaur body mass. We advocate for the difference between ASP and ASPt to be explicitly acknowledged in studies seeking to quantify the extent of skeletal pneumaticity in extinct archosaurs, to avoid the risk of systematically overestimating the volume fraction of pneumatic bones composed of air.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Maria Grace Burton
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Juan Benito
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Kirsty Mellor
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Emily Smith
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | | | - Patrick O'Connor
- Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO 80205, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH 45701, USA
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO 80205, USA
- Museum of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
3
|
Moore AJ, Schachner ER. When the lung invades: a review of avian postcranial skeletal pneumaticity. Philos Trans R Soc Lond B Biol Sci 2025; 380:rstb20230427. [PMID: 40010393 DOI: 10.1098/rstb.2023.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 02/28/2025] Open
Abstract
Birds are unique among extant tetrapods in exhibiting air-filled cavities that arise from the respiratory system and invade postcranial bones, a phenomenon called postcranial skeletal pneumaticity (PSP). These intraosseous cavities originate from diverticula of the ventilatory air sacs or directly from the gas-exchanging lung. Despite a long history of study, many of the basic characteristics of this system remain poorly understood. In this hybrid review, we synthesize insights from the anatomical, developmental, biomechanical and paleontological literature to review the functional and evolutionary significance of PSP. Leveraging new data, we confirm that the skeletons of pneumatic birds are not less heavy for their mass than those of apneumatic birds. Pneumatic skeletons may nonetheless be lightweight with respect to body volume, but this is a hypothesis that remains to be empirically tested. We also use micro-computed tomography scanning and deep learning-based segmentation to produce a pilot model of the pneumatized spaces in the neck of a Mallard (Anas platyrhynchos). This approach facilitates accurate modelling of bone architecture for quantitative comparative analysis within and between pneumatic taxa. Future work on PSP should focus on the cellular mechanisms and developmental processes that govern the onset and extent of pneumatization, which are essentially unknown.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Andrew J Moore
- Department of Anatomical Sciences, Stony Brook University, Health Sciences Center,101 Nicolls Road, Level 4, Stony Brook, NY 11794-8081, USA
| | - Emma R Schachner
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Gutherz SB, Stover K, Sze N, Groenke JR, O'Connor PM. Development of postcranial pneumaticity in the turkey ( Meleagris gallopavo): insight from the forelimb skeleton. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240357. [PMID: 40010381 DOI: 10.1098/rstb.2024.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025] Open
Abstract
Postcranial skeletal pneumaticity is a phenomenon in birds in which epithelial extensions of the lung-air sac system aerate bones. Detailed development of this phenotype remains largely unknown. Here, we investigate changes in bone, soft tissue and air space volume in the developing humerus of turkeys using computed tomography and micro-computed tomography. Employing a two-phase approach, we first tracked humeral air space development in vivo in domesticated turkeys between week 10 (W10) and W18 post-hatch. In phase 2, we analysed air space and marrow volume change through the first 22 weeks of post-hatch development. Our results indicate that pneumatization of the humerus begins between W2 and W4 post-hatch, with air spaces expanding distally from the proximal humerus. Internal air space expands most rapidly between W7 and W9, with maximal volume reached at W15. Increased marrow growth occurs between W13 and W19, coincident with stabilization and a potential decline in relative air space volume. Our study highlights a dynamic relationship between bone, marrow and pneumatic epithelium, suggesting pneumaticity expression is likely impacted by both within-bone tissue growth dynamics and extrinsic factors related to forelimb function. This work provides the necessary gross anatomical framework for subsequent analyses of tissue-level and cellular mechanisms related to the pneumatization process.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
| | | | - Nicholas Sze
- Honors Tutorial College, Ohio University, Athens, OH, USA
- Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Joseph R Groenke
- Department of Biomedical Sciences, Heritage College of Medicine, Ohio University, Athens, OH, USA
| | - Patrick M O'Connor
- Department of Biomedical Sciences, Heritage College of Medicine, Ohio University, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Athens, OH, USA
- Earth and Space Sciences, Denver Museum of Nature & Science, Denver, CO, USA
| |
Collapse
|
5
|
Lawson AB, Martinez A, Hedrick BP, Echols MS, Schachner ER. Variation in air sac morphology and postcranial skeletal pneumatization patterns in the African grey parrot. J Anat 2025; 246:1-19. [PMID: 39374322 DOI: 10.1111/joa.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
The anatomy of the avian lower respiratory system includes a complex interaction between air-filled pulmonary tissues, pulmonary air sacs, and much of the postcranial skeleton. Hypotheses related to the function and phylogenetic provenance of these respiratory structures have been posed based on extensive interspecific descriptions for an array of taxa. By contrast, intraspecific descriptions of anatomical variation for these features are much more limited, particularly for skeletal pneumatization, and are essential to establish a baseline for evaluating interspecific variation. To address this issue, we collected micro-computed tomography (μCT) scans of live and deceased African grey parrots (Psittacus erithacus) to assess variation in the arrangement of the lungs, the air sacs, and their respective invasion of the postcranial skeleton via pneumatic foramina. Analysis reveals that the two pairs of caudalmost air sacs vary in size and arrangement, often exhibiting an asymmetric morphology. Further, locations of the pneumatic foramina are more variable for midline, non-costal skeletal elements when compared to other pneumatized bones. These findings indicate a need to better understand contributing factors to variation in avian postcranial respiratory anatomy that can inform future intraspecific and interspecific comparisons.
Collapse
Affiliation(s)
- Adam B Lawson
- Department of Structural & Cell Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Aracely Martinez
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Emma R Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Field DJ, Burton MG, Benito J, Plateau O, Navalón G. Whence the birds: 200 years of dinosaurs, avian antecedents. Biol Lett 2025; 21:20240500. [PMID: 39837495 PMCID: PMC11750382 DOI: 10.1098/rsbl.2024.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Among the most revolutionary insights emerging from 200 years of research on dinosaurs is that the clade Dinosauria is represented by approximately 11 000 living species of birds. Although the origin of birds among dinosaurs has been reviewed extensively, recent years have witnessed tremendous progress in our understanding of the deep evolutionary origins of numerous distinctive avian anatomical systems. These advances have been enabled by exciting new fossil discoveries, leading to an ever-expanding phylogenetic framework with which to pinpoint the origins of characteristic avian features. The present review focuses on four notable avian systems whose Mesozoic evolutionary history has been greatly clarified by recent discoveries: brain, kinetic palate, pectoral girdle and postcranial skeletal pneumaticity.
Collapse
Affiliation(s)
- Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| | - M. Grace Burton
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Juan Benito
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Olivia Plateau
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Guillermo Navalón
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Young MT, Schwab JA, Dufeau D, Racicot RA, Cowgill T, Bowman CIW, Witmer LM, Herrera Y, Higgins R, Zanno L, Xing X, Clark J, Brusatte SL. Skull sinuses precluded extinct crocodile relatives from cetacean-style deep diving as they transitioned from land to sea. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241272. [PMID: 39479241 PMCID: PMC11523105 DOI: 10.1098/rsos.241272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
During major evolutionary transitions, groups develop radically new body plans and radiate into new habitats. A classic example is cetaceans which evolved from terrestrial ancestors to become pelagic swimmers. In doing so, they altered their air-filled sinuses, transitioning some of these spaces to allow for fluctuations in air capacity and storage via soft tissue borders. Other tetrapods independently underwent land-to-sea transitions, but it is unclear if they similarly changed their sinuses. We use computed tomography to study sinus changes in thalattosuchian crocodylomorphs that transformed from land-bound ancestors to become the only known aquatic swimming archosaurs. We find that thalattosuchian braincase sinuses reduced over their transition, similar to cetaceans, but their snout sinuses counterintuitively expanded, distinct from cetaceans, and that both trends were underpinned by high evolutionary rates. We hypothesize that aquatic thalattosuchians were ill suited to deep diving by their snout sinuses, which seem to have remained large to help drain their unusual salt glands. Thus, although convergent in general terms, thalattosuchians and cetaceans were subject to different constraints that shaped their transitions to water. Thalattosuchians attained a stage similar to less pelagic transitional forms in the cetacean lineage (late protocetid-basilosaurid) but did not become further specialized for ocean life.
Collapse
Affiliation(s)
- Mark T. Young
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
- LWL-Museum für Naturkunde, Sentruper Straße 285, Münster48161, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Julia A. Schwab
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, ManchesterM13 9PL, UK
| | - David Dufeau
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Rachel A. Racicot
- Department of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, Frankfurt am Main60325, Germany
| | - Thomas Cowgill
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
| | | | - Lawrence M. Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Yanina Herrera
- CONICET, División Paleontología Vertebrados, Unidades de Investigación Anexo Museo, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Robert Higgins
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
| | - Lindsay Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, 100 Brooks Avenue, Raleigh, NC27607, USA
| | - Xu Xing
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming650031, People’s Republic of China
- Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, Beijing100044, People’s Republic of China
| | - James Clark
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Stephen L. Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh, UK
| |
Collapse
|
8
|
Myhrvold NP, Baumgart SL, Vidal D, Fish FE, Henderson DM, Saitta ET, Sereno PC. Diving dinosaurs? Caveats on the use of bone compactness and pFDA for inferring lifestyle. PLoS One 2024; 19:e0298957. [PMID: 38446841 PMCID: PMC10917332 DOI: 10.1371/journal.pone.0298957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
The lifestyle of spinosaurid dinosaurs has been a topic of lively debate ever since the unveiling of important new skeletal parts for Spinosaurus aegyptiacus in 2014 and 2020. Disparate lifestyles for this taxon have been proposed in the literature; some have argued that it was semiaquatic to varying degrees, hunting fish from the margins of water bodies, or perhaps while wading or swimming on the surface; others suggest that it was a fully aquatic underwater pursuit predator. The various proposals are based on equally disparate lines of evidence. A recent study by Fabbri and coworkers sought to resolve this matter by applying the statistical method of phylogenetic flexible discriminant analysis to femur and rib bone diameters and a bone microanatomy metric called global bone compactness. From their statistical analyses of datasets based on a wide range of extant and extinct taxa, they concluded that two spinosaurid dinosaurs (S. aegyptiacus, Baryonyx walkeri) were fully submerged "subaqueous foragers," whereas a third spinosaurid (Suchomimus tenerensis) remained a terrestrial predator. We performed a thorough reexamination of the datasets, analyses, and methodological assumptions on which those conclusions were based, which reveals substantial problems in each of these areas. In the datasets of exemplar taxa, we found unsupported categorization of taxon lifestyle, inconsistent inclusion and exclusion of taxa, and inappropriate choice of taxa and independent variables. We also explored the effects of uncontrolled sources of variation in estimates of bone compactness that arise from biological factors and measurement error. We found that the ability to draw quantitative conclusions is limited when taxa are represented by single data points with potentially large intrinsic variability. The results of our analysis of the statistical method show that it has low accuracy when applied to these datasets and that the data distributions do not meet fundamental assumptions of the method. These findings not only invalidate the conclusions of the particular analysis of Fabbri et al. but also have important implications for future quantitative uses of bone compactness and discriminant analysis in paleontology.
Collapse
Affiliation(s)
| | - Stephanie L. Baumgart
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Daniel Vidal
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
- Facultad de Ciencias, Departamento de Física Matemática y de Fluidos, Grupo de Biología Evolutiva, UNED, Madrid, Madrid, Spain
| | - Frank E. Fish
- Department of Biology, West Chester University, West Chester, Pennsylvania, United States of America
| | | | - Evan T. Saitta
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Paul C. Sereno
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Burton MGP, Benson RBJ, Field DJ. Direct quantification of skeletal pneumaticity illuminates ecological drivers of a key avian trait. Proc Biol Sci 2023; 290:20230160. [PMID: 36919426 PMCID: PMC10015330 DOI: 10.1098/rspb.2023.0160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Skeletal pneumaticity is a key feature of extant avian structure and biology, which first evolved among the non-flying archosaurian ancestors of birds. The widespread presence of air-filled bones across the postcranial skeleton is unique to birds among living vertebrates, but the true extent of skeletal pneumaticity has never been quantitatively investigated-hindering fundamental insights into the evolution of this key avian feature. Here, we use microCT scans of fresh, frozen birds to directly quantify the fraction of humerus volume occupied by air across a phylogenetically diverse taxon sample to test longstanding hypotheses regarding the evolution and function of avian skeletal pneumatization. Among other insights, we document weak positive allometry of internal air volume with humeral size among pneumatized humeri and provide strong support that humeral size, body mass, aquatic diving, and the presence or absence of pneumaticity all have independent effects on cortical bone thickness. Our quantitative evaluation of humeral pneumaticity across extant avian phylogeny sheds new light on the evolution and ontogenetic progression of an important aspect of avian skeletal architecture, and suggests that the last common ancestor of crown birds possessed a highly pneumatized humerus.
Collapse
Affiliation(s)
- Maria Grace P. Burton
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Roger B. J. Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
10
|
Gutherz SB, O'Connor PM. Postcranial skeletal pneumaticity in non-aquatic neoavians: Insights from accipitrimorphae. J Anat 2022; 241:1387-1398. [PMID: 35981708 DOI: 10.1111/joa.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Postcranial skeletal pneumaticity, air-filled bones of the trunk and limbs, is exclusive to birds among extant tetrapods and exhibits significant variation in its expression among different species. Such variation is not random but exhibits relationships with both body mass and locomotor specializations. Most species-level comparative research to date has focused on aquatic-oriented taxa (e.g., Anseriformes). The lack of data from non-aquatic birds constrains our ability to characterize global (i.e., avian-wide) patterns of this trait complex. To address this gap, the study conducted herein quantified postcranial pneumaticity in Accipitrimorphae, a mostly terrestrial clade composed of species that span a range of body sizes and exhibit diverse flight/foraging behaviors. All examined species (n = 88) invariably pneumatized the postaxial through pre-caudal vertebrae, sternum, coracoid, humerus, vertebral and sternal ribs, and pelvic girdle, a pattern herein referred to as the accipitrimorph baseline. Of the 88 sampled species, 41 expanded upon this pattern, whereas 10 species exhibited a reduction. No species deviated from the accipitrimorph baseline by more than two anatomical regions. A phylogenetically-informed regression analysis failed to identify a significant relationship between body mass and pneumaticity. However, specific pneumaticity phenotypes deviating from the baseline were correlated with aspects of wing morphology, tail length, and home range size. Results from this and previous studies provide clarity on two hypotheses: (1) aquatic taxa display distinct pneumaticity expression patterns relative to non-aquatic birds, notably with reductions in the proportion of the skeleton filled with air in diving specialists and (2) contemporary comparative studies, including the one herein, that explicitly account for phylogenetic relationships consistently fail to support the oft-cited positive relationship between pneumaticity and body mass. Instead, historical relationships and functional/ecological attributes (e.g., diving, specialized flight behaviors) appear to be the primary drivers underlying patterns of variation in this trait complex.
Collapse
Affiliation(s)
- Samuel B Gutherz
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA.,Ohio Center for Ecological and Evolutionary Studies, Irvine Hall, Ohio University, Athens, Ohio, USA
| | - Patrick M O'Connor
- Ohio Center for Ecological and Evolutionary Studies, Irvine Hall, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
11
|
Lapsansky AB, Warrick DR, Tobalske BW. High Wing-Loading Correlates with Dive Performance in Birds, Suggesting a Strategy to Reduce Buoyancy. Integr Comp Biol 2022; 62:878-889. [PMID: 35810134 DOI: 10.1093/icb/icac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
Diving birds are regarded as a classic example of morphological convergence (Darwin 1859). Divers tend to have small wings extending from rotund bodies, requiring many volant species to fly with rapid wingbeats, and rendering others flightless (Darwin 1839; Simpson 1946). The high wing-loading of diving birds is frequently associated with the challenge of using forelimbs adapted for flight for locomotion in a "draggier" fluid, but this does not explain why species that rely exclusively on their feet to dive should have relatively small wings, as well. Therefore, others have hypothesized that ecological factors shared by wing-propelled and foot-propelled diving birds drive the evolution of high wing-loading. Following a reexamination of the aquatic habits of birds, we tested between hypotheses seeking to explain high wing-loading in divers using new comparative data and phylogenetically informed analyses. We found little evidence that wing-propelled diving selects for small wings, as wing-propelled and foot-propelled species share similar wing-loadings. Instead, our results suggest that selection to reduce buoyancy has driven high wing-loading in divers, offering insights for the development of bird-like aquatic robots.
Collapse
Affiliation(s)
- Anthony B Lapsansky
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, MT, USA.,Department of Zoology, University of British Columbia, BC, Canada
| | | | - Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, MT, USA
| |
Collapse
|
12
|
Aquatic birds have middle ears adapted to amphibious lifestyles. Sci Rep 2022; 12:5251. [PMID: 35347167 PMCID: PMC8960762 DOI: 10.1038/s41598-022-09090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing.
Collapse
|
13
|
Smith NA, Koeller KL, Clarke JA, Ksepka DT, Mitchell JS, Nabavizadeh A, Ridgley RC, Witmer LM. Convergent evolution in dippers (Aves, Cinclidae): The only wing-propelled diving songbirds. Anat Rec (Hoboken) 2021; 305:1563-1591. [PMID: 34813153 PMCID: PMC9298897 DOI: 10.1002/ar.24820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
Of the more than 6,000 members of the most speciose avian clade, Passeriformes (perching birds), only the five species of dippers (Cinclidae, Cinclus) use their wings to swim underwater. Among nonpasserine wing‐propelled divers (alcids, diving petrels, penguins, and plotopterids), convergent evolution of morphological characteristics related to this highly derived method of locomotion have been well‐documented, suggesting that the demands of this behavior exert strong selective pressure. However, despite their unique anatomical attributes, dippers have been the focus of comparatively few studies and potential convergence between dippers and nonpasseriform wing‐propelled divers has not been previously examined. In this study, a suite of characteristics that are shared among many wing‐propelled diving birds were identified and the distribution of those characteristics across representatives of all clades of extant and extinct wing‐propelled divers were evaluated to assess convergence. Putatively convergent characteristics were drawn from a relatively wide range of sources including osteology, myology, endocranial anatomy, integument, and ethology. Comparisons reveal that whereas nonpasseriform wing‐propelled divers do in fact share some anatomical characteristics putatively associated with the biomechanics of underwater “flight”, dippers have evolved this highly derived method of locomotion without converging on the majority of concomitant changes observed in other taxa. Changes in the flight musculature and feathers, reduction of the keratin bounded external nares and an increase in subcutaneous fat are shared with other wing‐propelled diving birds, but endocranial anatomy shows no significant shifts and osteological modifications are limited. Muscular and integumentary novelties may precede skeletal and neuroendocranial morphology in the acquisition of this novel locomotory mode, with implications for understanding potential biases in the fossil record of other such transitions. Thus, dippers represent an example of a highly derived and complex behavioral convergence that is not fully associated with the anatomical changes observed in other wing‐propelled divers, perhaps owing to the relative recency of their divergence from nondiving passeriforms.
Collapse
Affiliation(s)
- N Adam Smith
- Campbell Geology Museum, Clemson University, Clemson, South Carolina, USA.,Department of Science and Education, Field Museum of Natural History, Chicago, Illinois, USA
| | - Krista L Koeller
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | | | - Jonathan S Mitchell
- Department of Biology, West Virginia University Institute of Technology, Beckley, West Virginia, USA
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan C Ridgley
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| |
Collapse
|
14
|
Baumgart SL, Sereno PC, Westneat MW. Wing Shape in Waterbirds: Morphometric Patterns Associated with Behavior, Habitat, Migration, and Phylogenetic Convergence. Integr Org Biol 2021; 3:obab011. [PMID: 34381962 DOI: 10.1093/iob/obab011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Wing shape plays a critical role in flight function in birds and other powered fliers and has been shown to be correlated with flight performance, migratory distance, and the biomechanics of generating lift during flight. Avian wing shape and flight mechanics have also been shown to be associated with general foraging behavior and habitat choice. We aim to determine if wing shape in waterbirds, a functionally and ecologically diverse assemblage united by their coastal and aquatic habitats, is correlated with various functional and ecological traits. We applied geometric morphometric approaches to the spread wings of a selection of waterbirds to search for evolutionary patterns between wing shape and foraging behavior, habitat, and migratory patterns. We found strong evidence of convergent evolution of high and low aspect ratio wing shapes in multiple clades. Foraging behavior also consistently exhibits strong evolutionary correlations with wing shape. Habitat, migration, and flight style, in contrast, do not exhibit significant correlation with wing shape in waterbirds. Although wing shape is critical to aerial flight function, its relationship to habitat and periodic locomotor demands such as migration is complex.
Collapse
Affiliation(s)
- Stephanie L Baumgart
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA
| | - Paul C Sereno
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA.,Committee on Evolutionary Biology, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA.,Committee on Evolutionary Biology, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Moore AJ. Vertebral pneumaticity is correlated with serial variation in vertebral shape in storks. J Anat 2021; 238:615-625. [PMID: 32981054 PMCID: PMC7855073 DOI: 10.1111/joa.13322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/23/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
Birds and their ornithodiran ancestors are unique among vertebrates in exhibiting air-filled sinuses in their postcranial bones, a phenomenon called postcranial skeletal pneumaticity. The factors that account for serial and interspecific variation in postcranial skeletal pneumaticity are poorly understood, although body size, ecology, and bone biomechanics have all been implicated as influencing the extent to which pneumatizing epithelia invade the skeleton and induce bone resorption. Here, I use high-resolution computed-tomography to holistically quantify vertebral pneumaticity in members of the neognath family Ciconiidae (storks), with pneumaticity measured as the relative volume of internal air space. These data are used to describe serial variation in extent of pneumaticity and to assess whether and how pneumaticity varies with the size and shape of a vertebra. Pneumaticity increases dramatically from the middle of the neck onwards, contrary to previous predictions that cervical pneumaticity should decrease toward the thorax to maintain structural integrity as the mass and bending moments of the neck increase. Although the largest vertebrae sampled are also the most pneumatic, vertebral size cannot on its own account for serial or interspecific variation in extent of pneumaticity. Vertebral shape, as quantified by three-dimensional geometric morphometrics, is found to be significantly correlated with extent of pneumaticity, with elongate vertebrae being less pneumatic than craniocaudally short and dorsoventrally tall vertebrae. Considered together, the results of this study are consistent with the hypothesis that shape- and position-specific biomechanics influence the amount of bone loss that can be safely tolerated. These results have potentially important implications for the evolution of vertebral morphology in birds and their extinct relatives.
Collapse
Affiliation(s)
- Andrew J. Moore
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA,Department of Anatomical SciencesStony Brook UniversityStony BrookNYUSA
| |
Collapse
|
16
|
Gutherz SB, O'Connor PM. Postcranial Skeletal Pneumaticity in Cuculidae. ZOOLOGY 2021; 146:125907. [PMID: 33730625 DOI: 10.1016/j.zool.2021.125907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
Postcranial skeletal pneumaticity (i.e., epithelial-lined, air-filled bones) is a condition unique to birds among extant tetrapods. Previous research reveals extensive variation in the expression of this trait in different bird species, from taxa that pneumatize nearly the entire skeleton to others that do not pneumatize a single bone. These studies, however, have primarily focused on aquatic/semi-aquatic birds, specifically Anseriformes (screamers, ducks, geese, swans) and Aequorlitornithes (loons, gulls, penguins, storks, etc.). This is the first clade-centric study of pneumaticity in an exclusively terrestrial clade (i.e., a group without any proclivities for water), Cuculidae. Given the variation in body size and ecology exhibited by cuckoos, they represent an ideal group for evaluating previously established trends in pneumaticity patterns. Similar to previous studies, our results indicate that cuckoos do exhibit extensive postcranial skeletal pneumaticity but with much more limited variation in expression. Of the surveyed species, 30 of 41 display an identical expression pattern, pneumatizing all postaxial vertebrae, the humerus, sternum, and pelvic girdle. The remaining species (11/41) deviate from this pattern by no more than two elements (i.e., the femur or the scapula/coracoid). All variable species expand upon the basic cuckoo pattern, with five species pneumatizing the femur and the remaining six taxa pneumatizing both the scapula and coracoid. Furthermore, most variation occurs in early diverging clades, with distinct subclades associated with specific anatomical expansions in pneumaticity (e.g., pneumatic femora in Neomorphinae and pneumatic scapulae/coracoids in select members of Couinae and Centropodinae). Limited variation noted in Cuculidae may be the result of the relatively high base level of pneumaticity when compared with previously sampled groups of water-oriented birds. Additional analyses indicate a positive relationship between body mass and pneumaticity, with possible (i.e., non-quantifiable) relationships noted between the limited expansions from the basic cuckoo pattern and specific locomotor behaviors (e.g., pneumatic femora present in species with enhanced cursorial behavior). These basic trends have also been observed in other densely sampled neognath clades. Taken together, the data presented herein supports the hypothesis that changes in pneumaticity expression may be correlated with shifts in biomechanical loading regimes rather than solely as a weight saving (i.e., density-altering) mechanism.
Collapse
Affiliation(s)
- Samuel B Gutherz
- Department of Biological Sciences, Ohio University, 228 Irvine Hall, Athens, OH, 45701, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 228 Irvine Hall, Athens, OH, 45701, USA; Ohio Center for Ecological and Evolutionary Studies, Irvine Hall, Ohio University, Athens, OH, 45701, USA.
| | - Patrick M O'Connor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 228 Irvine Hall, Athens, OH, 45701, USA; Ohio Center for Ecological and Evolutionary Studies, Irvine Hall, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
17
|
Acosta Hospitaleche C, Paulina-Carabajal A, Yury-Yáñez R. The skull of the Miocene Spheniscus urbinai (Aves, Sphenisciformes): osteology, brain morphology, and the cranial pneumatic systems. J Anat 2021; 239:151-166. [PMID: 33576081 DOI: 10.1111/joa.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/27/2022] Open
Abstract
Spheniscus urbinai represents one of four extinct Spheniscus species from the Cenozoic of southern South America, known from several poorly described diversely complete skulls and postcranial elements. Here, we present a review of the cranial osteology of all known specimens (collected in Argentina, Chile, and Peru), including a paleoneurological analysis using CT scans, and an exploration of its cranial pneumaticity compared to other extinct and living seabirds. Our results show that among Spheniscus species, S. urbinai exhibits slightly greater cranial pneumaticity than the living species. Additionally, we confirm previous findings which indicate that the marked reduction of cranial pneumaticity-which is characteristic of living penguins-occurred early during the Eocene (as observed in the Antarctic penguin MLP 12-I-20-1, but not in the coeval Anthropornis).
Collapse
Affiliation(s)
- Carolina Acosta Hospitaleche
- CONICET, División Paleontología de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ariana Paulina-Carabajal
- Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Argentina
| | - Roberto Yury-Yáñez
- Laboratorio de Zoología de Vertebrados, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Eliason CM, Straker L, Jung S, Hackett SJ. Morphological innovation and biomechanical diversity in plunge-diving birds. Evolution 2020; 74:1514-1524. [PMID: 32452015 DOI: 10.1111/evo.14024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/21/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Innovations in foraging behavior can drive morphological diversity by opening up new ways of interacting with the environment, or limit diversity through functional constraints associated with different foraging behaviors. Several classic examples of adaptive radiations in birds show increased variation in ecologically relevant traits. However, these cases primarily focus on geographically narrow adaptive radiations, consider only morphological evolution without a biomechanical approach, or do not investigate tradeoffs with other non-focal traits that might be affected by use of different foraging habitats. Here, we use X-ray microcomputed tomography, biomechanical modeling, and multivariate comparative methods to explore the interplay between foraging behavior and cranial morphology in kingfishers, a global radiation of birds with variable beaks and foraging behaviors, including the archetypal plunge-dive into water. Our results quantify covariation between the shape of the outer keratin covering (rhamphotheca) and the inner skeletal core of the beak, as well as highlight distinct patterns of morphospace occupation for different foraging behaviors and considerable rate variation among these skull regions. We anticipate these findings will have implications for inferring beak shapes in fossil taxa and inform biomimetic design of novel impact-reducing structures.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, Illinois, 60605
| | - Lorian Straker
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853
| | - Shannon J Hackett
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, Illinois, 60605.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, 60605
| |
Collapse
|
19
|
Canoville A, Schweitzer MH, Zanno LE. Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia. BMC Evol Biol 2019; 19:71. [PMID: 30845911 PMCID: PMC6407237 DOI: 10.1186/s12862-019-1402-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Medullary bone (MB) is an estrogen-dependent, sex-specific tissue produced by female birds during lay and inferred to be present in extinct avemetatarsalians (bird-line archosaurs). Although preliminary studies suggest that MB can be deposited within most skeletal elements, these are restricted to commercial layers or hormonally treated male pigeons, which are poor analogues for wild birds. By contrast, studies in wild bird species noted the presence of MB almost exclusively within limb bones, spurring the misconception that MB deposition is largely restricted to these regions. These disparate claims have cast doubt on the nature of MB-like tissues observed in some extinct avemetatarsalians because of their "unusual" anatomical locations. Furthermore, previous work reported that MB deposition is related to blood supply and pneumatization patterns, yet these hypotheses have not been tested widely in birds. To document the skeletal distribution of MB across Neornithes, reassess previous hypotheses pertaining to its deposition/distribution patterns, and refine the set of criteria by which to evaluate the nature of purported MB tissue in extinct avemetatarsalians, we CT-scanned skeletons of 40 female birds (38 species) that died during the egg-laying cycle, recorded presence or absence of MB in 19 skeletal regions, and assessed pneumatization of stylopods. Selected elements were destructively analyzed to ascertain the chemical and histological nature of observed endosteal bone tissues in contentious skeletal regions. RESULTS Although its skeletal distribution varies interspecifically, we find MB to be a systemic tissue that can be deposited within virtually all skeletal regions, including cranial elements. We also provide evidence that the deposition of MB is dictated by skeletal distribution patterns of both pneumaticity and bone marrow; two factors linked to ecology (body size, foraging). Hence, skeletal distribution of MB can be extensive in small-bodied and diving birds, but more restricted in large-bodied species or efficient flyers. CONCLUSIONS Previously outlined anatomical locations of purported MB in extinct taxa are invalid criticisms against their potential reproductive nature. Moreover, the proposed homology of lung tissues between birds and some extinct avemetatarsalians permit us to derive a series of location-based predictions that can be used to critically evaluate MB-like tissues in fossil specimens.
Collapse
Affiliation(s)
- Aurore Canoville
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Mary H Schweitzer
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Machado JP, Johnson WE, Gilbert MTP, Zhang G, Jarvis ED, O'Brien SJ, Antunes A. Bone-associated gene evolution and the origin of flight in birds. BMC Genomics 2016; 17:371. [PMID: 27193938 PMCID: PMC4870793 DOI: 10.1186/s12864-016-2681-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 04/28/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. RESULTS We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. CONCLUSIONS Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.
Collapse
Affiliation(s)
- João Paulo Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 177, 4050-123, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Volgade 5-7, 1350, Copenhagen, Denmark
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzen, 518083, China
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Erich D Jarvis
- Department of Neurobiology Box 3209, Duke University Medical Center, Durham, NC, 27710, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, 199004, Russia
- Oceanographic Center, 8000 N. Ocean Drive, Nova Southeastern University, Ft Lauderdale, FL, 33004, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 177, 4050-123, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
21
|
Kuramoto T, Nishihara H, Watanabe M, Okada N. Determining the Position of Storks on the Phylogenetic Tree of Waterbirds by Retroposon Insertion Analysis. Genome Biol Evol 2015; 7:3180-9. [PMID: 26527652 PMCID: PMC4700946 DOI: 10.1093/gbe/evv213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Despite many studies on avian phylogenetics in recent decades that used morphology, mitochondrial genomes, and/or nuclear genes, the phylogenetic positions of several birds (e.g., storks) remain unsettled. In addition to the aforementioned approaches, analysis of retroposon insertions, which are nearly homoplasy-free phylogenetic markers, has also been used in avian phylogenetics. However, the first step in the analysis of retroposon insertions, that is, isolation of retroposons from genomic libraries, is a costly and time-consuming procedure. Therefore, we developed a high-throughput and cost-effective protocol to collect retroposon insertion information based on next-generation sequencing technology, which we call here the STRONG (Screening of Transposons Obtained by Next Generation Sequencing) method, and applied it to 3 waterbird species, for which we identified 35,470 loci containing chicken repeat 1 retroposons (CR1). Our analysis of the presence/absence of 30 CR1 insertions demonstrated the intra- and interordinal phylogenetic relationships in the waterbird assemblage, namely 1) Loons diverged first among the waterbirds, 2) penguins (Sphenisciformes) and petrels (Procellariiformes) diverged next, and 3) among the remaining families of waterbirds traditionally classified in Ciconiiformes/Pelecaniformes, storks (Ciconiidae) diverged first. Furthermore, our genome-scale, in silico retroposon analysis based on published genome data uncovered a complex divergence history among pelican, heron, and ibis lineages, presumably involving ancient interspecies hybridization between the heron and ibis lineages. Thus, our retroposon-based waterbird phylogeny and the established phylogenetic position of storks will help to understand the evolutionary processes of aquatic adaptation and related morphological convergent evolution.
Collapse
Affiliation(s)
- Tae Kuramoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hidenori Nishihara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan Foundation for Advancement of International Science, Tsukuba, Ibaraki, Japan Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
22
|
Olsen AM. Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass. Ecol Evol 2015; 5:5016-32. [PMID: 26640679 PMCID: PMC4662324 DOI: 10.1002/ece3.1787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low‐quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds.
Collapse
Affiliation(s)
- Aaron M Olsen
- Department of Organismal Biology and Anatomy University of Chicago 1027 E. 57th Street Chicago Illinois 60637 ; Bird Division The Field Museum of Natural History 1400 S. Lake Shore Drive Chicago Illinois 60605
| |
Collapse
|
23
|
Felice RN. Coevolution of caudal skeleton and tail feathers in birds. J Morphol 2014; 275:1431-40. [DOI: 10.1002/jmor.20321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 07/26/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Ryan N. Felice
- Department of Biological Sciences; 107 Irvine Hall, Ohio University; Athens Ohio 45701
- Ohio Center for Ecology and Evolutionary Studies; Irvine Hall, Ohio University; Athens Ohio 45701
| |
Collapse
|
24
|
Wang X, Clarke JA. Phylogeny and forelimb disparity in waterbirds. Evolution 2014; 68:2847-60. [PMID: 24989899 DOI: 10.1111/evo.12486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023]
Abstract
Previous work has shown that the relative proportions of wing components (i.e., humerus, ulna, carpometacarpus) in birds are related to function and ecology, but these have rarely been investigated in a phylogenetic context. Waterbirds including "Pelecaniformes," Ciconiiformes, Procellariiformes, Sphenisciformes, and Gaviiformes form a highly supported clade and developed a great diversity of wing forms and foraging ecologies. In this study, forelimb disparity in the waterbird clade was assessed in a phylogenetic context. Phylogenetic signal was assessed via Pagel's lambda, Blomberg's K, and permutation tests. We find that different waterbird clades are clearly separated based on forelimb component proportions, which are significantly correlated with phylogeny but not with flight style. Most of the traditional contents of "Pelecaniformes" (e.g., pelicans, cormorants, and boobies) cluster with Ciconiiformes (herons and storks) and occupy a reduced morphospace. These taxa are closely related phylogenetically but exhibit a wide range of ecologies and flight styles. Procellariiformes (e.g., petrels, albatross, and shearwaters) occupy a wide range of morphospace, characterized primarily by variation in the relative length of carpometacarpus and ulna. Gaviiformes (loons) surprisingly occupy a wing morphospace closest to diving petrels and penguins. Whether this result may reflect wing proportions plesiomorphic for the waterbird clade or a functional signal is unclear. A Bayesian approach detecting significant rate shifts across phylogeny recovered two such shifts. At the base of the two sister clades Sphenisciformes + Procellariiformes, a shift to an increase evolutionary rate of change is inferred for the ulna and carpometacarpus. Thus, changes in wing shape begin prior to the loss of flight in the wing-propelled diving clade. Several shifts to slower rate of change are recovered within stem penguins.
Collapse
Affiliation(s)
- Xia Wang
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|
25
|
Comparative morphology of the radial carpal bone of neornithine birds and the phylogenetic significance of character variation. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0236-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Felice RN, O’Connor PM. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa. PLoS One 2014; 9:e89737. [PMID: 24586998 PMCID: PMC3935938 DOI: 10.1371/journal.pone.0089737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/23/2014] [Indexed: 01/07/2023] Open
Abstract
Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc.) and foraging style (aerial, terrestrial, plunge dive, etc.). Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also the underlying caudal skeleton, reinforcing the importance of the entire caudal locomotor module in avian ecological diversification.
Collapse
Affiliation(s)
- Ryan N. Felice
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
- Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
| | - Patrick M. O’Connor
- Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, United States of America
| |
Collapse
|
27
|
Field DJ, Lynner C, Brown C, Darroch SAF. Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS One 2013; 8:e82000. [PMID: 24312392 PMCID: PMC3843728 DOI: 10.1371/journal.pone.0082000] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies.
Collapse
Affiliation(s)
- Daniel J. Field
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Colton Lynner
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
| | - Christian Brown
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
| | - Simon A. F. Darroch
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
28
|
Wedel MJ, Taylor MP. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLoS One 2013; 8:e78213. [PMID: 24205162 PMCID: PMC3812994 DOI: 10.1371/journal.pone.0078213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula--those that leave few or no skeletal traces--in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy.
Collapse
Affiliation(s)
- Mathew J. Wedel
- College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | | |
Collapse
|
29
|
Corbin CE, Lowenberger LK, Dorkoski RP. The skeleton flight apparatus of North American bluebirds (Sialia): phylogenetic thrushes or functional flycatchers? J Morphol 2013; 274:909-17. [PMID: 23576285 DOI: 10.1002/jmor.20147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/10/2013] [Accepted: 02/03/2013] [Indexed: 11/10/2022]
Abstract
To better understand ecological traits of organisms, one can study them from two, not necessarily mutually exclusive perspectives: how the traits evolved, and their current adaptive utility. In birds, foraging behavior and associated morphological traits generally are explained by a combination of adaptive and phylogenetic predictors. The avian skeleton and more specifically, the skeletal flight apparatus is under well-known functional and phylogenetic constraints. This is an interesting area to partition the relative contributions of adaptive correlated evolution and phylogenetic constraint to species clustering in morphological space. A prediction of convergent evolution is that nonphylogenetic morphological clustering is a characteristic of ecological similarity. We tested this using representatives of North American birds from two clades, one with a mixture of foraging modes (Turdid thrushes, solitaires, and bluebirds) and one with more canalized foraging behaviors (Tyrannid flycatchers). Nine characters on the skeletal flight apparatus from 19 species were used to characterize the morphological space and test for ecomorphological clustering. When body size and phylogeny are considered, the three bluebird species and Townsend's solitaire cluster with the ecologically similar flycatchers rather than with their phylogenetic close relatives. Furthermore, sit-and-wait foragers tend to exhibit relatively long distal elements and a long keel while active ground foragers have deeper keels and a longer humerus. Distal elements, expected to be relatively shorter and more bowed in the flycatchers and bluebirds, were actually longer and narrower. A reduction of distal element mass may be more important for facilitating maneuverability than surface area for insertion of wing-rotational musculature.
Collapse
Affiliation(s)
- Clay E Corbin
- Department of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, Pennsylvania 17815, USA.
| | | | | |
Collapse
|
30
|
Gutzwiller SC, Su A, O'Connor PM. Postcranial Pneumaticity and Bone Structure in Two Clades of Neognath Birds. Anat Rec (Hoboken) 2013; 296:867-76. [DOI: 10.1002/ar.22691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 02/04/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sarah C. Gutzwiller
- Honors Tutorial College; Ohio University; Athens Ohio
- Ohio Center for Ecology and Evolutionary Studies; Ohio University; Athens Ohio
| | - Anne Su
- College of Sciences and Health Professions; Cleveland State University; Cleveland Ohio
| | - Patrick M. O'Connor
- Ohio Center for Ecology and Evolutionary Studies; Ohio University; Athens Ohio
- Department of Biomedical Sciences; Ohio University Heritage College of Osteopathic Medicine; Athens Ohio
| |
Collapse
|
31
|
Langer MC, Nesbitt SJ, Bittencourt JS, Irmis RB. Non-dinosaurian Dinosauromorpha. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIchnological evidence suggests that dinosauromorphs originated by the Early Triassic, and skeletal remains of non-dinosaur representatives of the clade occur from the Anisian to the end of the Triassic. These taxa are small- to medium-sized, vary in feeding and locomotor features, and occurred over most of western Pangaea. They include the small lagerpetids from the Mid–Late Triassic of Argentina and the United States, and the larger, quadrupedal Silesauridae, with records in the Middle Triassic of Africa and Argentina, and in the Late Triassic of Europe, the Americas and northern Africa. The former group represents the earliest diverging dinosauromorphs, whereas silesaurids are more closely related to Dinosauria. Other dinosauromorphs include the archetypal early dinosauriform Marasuchus lilloensis (Middle Triassic of Argentina) and poorly known/controversial taxa such as Lewisuchus admixtus and Saltopus elginensis. The earliest diverging dinosauromorphs may have preyed on small animals (including insects), but cranio-dental remains are rare; by contrast, most silesaurids probably included plant material in their diet, as indicated by their modified jaw apparatus and teeth. Our knowledge of the anatomy and thus relationships of non-dinosaurian Dinosauromorpha is still deficient, and we suspect that future discoveries will continue to reveal novel patterns and hypotheses of palaeobiology and biogeography.
Collapse
Affiliation(s)
- Max C. Langer
- Departamento de Biologia-FFCLRP, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
| | - Sterling J. Nesbitt
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jonathas S. Bittencourt
- Departamento de Biologia-FFCLRP, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
- Instituto de Geociências, Universidade Federal de Minas Gerais,31270-901 Belo Horizonte, Brazil
| | - Randall B. Irmis
- Natural History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
| |
Collapse
|
32
|
Butler RJ, Barrett PM, Gower DJ. Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system. PLoS One 2012; 7:e34094. [PMID: 22470520 PMCID: PMC3314707 DOI: 10.1371/journal.pone.0034094] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/21/2012] [Indexed: 11/19/2022] Open
Abstract
Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present in these taxa (and secondarily lost in extant crocodilians) and was potentially primitive for Archosauria as a whole.
Collapse
Affiliation(s)
- Richard J Butler
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | |
Collapse
|