1
|
Luzete J, Giugliano LG, Klaczko J. Evaluating the drivers and engines of morphological diversification in the invasive gecko Hemidactylus mabouia (Moreau de Jonnès, 1818) (Squamata: Gekkonidae). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Development determines the range of possible phenotypes that can be produced and exposed to selection and has a major role in the evolutionary trajectories of species. Nevertheless, development is itself subject to evolutionary forces. Here, we describe differences at the ontogenetic and population levels in head and limb proportions of the invasive gecko Hemidactylus mabouia, to assess the developmental mechanisms and extrinsic forces associated with morphological diversification during colonization of novel habitats. We have found that allometric trajectories of most skeletal traits remain constant throughout postnatal development. Linear morphometric analysis did not find multivariate differences between ontogenetic stages or sexes. When comparing populations, our results showed that the divergence of the corresponding external measures was explained by shifts in the intercept of static allometry curves, indicating that differences arose early in development. Populations aggregated into two morphological groups that did not correspond to the groups formed on the basis of genetic structure. Using two different approaches, we found support for an adaptive hypothesis when comparing observed patterns of morphological variation with that expected under neutral evolutionary models.
Collapse
Affiliation(s)
- Juliana Luzete
- Laboratory of Comparative Vertebrate Anatomy, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia , Brasilia, DF, 70910-900 , Brazil
- Laboratory of Evolution and Integrative Biology, Department of Biology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo , Ribeirão Preto, SP, 14040-900 , Brazil
| | - Lilian G Giugliano
- Laboratory of Genetics and Biodiversity, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia , Brasilia, DF, 70910-900 , Brazil
| | - Julia Klaczko
- Laboratory of Comparative Vertebrate Anatomy, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia , Brasilia, DF, 70910-900 , Brazil
- Department of Life Sciences, Natural History Museum , London SW7 5BD , UK
| |
Collapse
|
2
|
Orbach DN. Gender Bias in the Study of Genital Evolution: Females Continue to Receive Less Attention than Males. Integr Comp Biol 2022; 62:icac012. [PMID: 35353194 DOI: 10.1093/icb/icac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of female genitalia has historically received less attention than male reproductive organs. Several papers have underscored the disparities in research efforts, but have calls for change resonated with the scientific community and rectified the skew? A literature review was conducted of journal articles published between 2013 through 2021 that explore genital evolution to determine if gender bias (sex of research subject) and imbalance (sex of researcher) have changed. Of the 334 articles that specifically explored genital evolution, first authors of both sexes published on female genitalia less than half as often as male genitalia, although the majority of authors published on genitalia of both sexes. First authors of both sexes mentioned females after males substantially more often than females before males. Female first authors published the most about genital evolution in all taxa except for insects and arachnids. Female first authors published in high impact journals marginally less often than male first authors. Articles about genital evolution across taxa generally had high impact factors, but how impact factors and number of citations varied by the sex of the subject was not clear. Although the number of studies exploring genital co-evolution between the sexes has increased across taxa and years, female genitalia continue to be researched less often than male genitalia when only one sex is investigated. Both female and male scientists are publishing in the field of genital evolution, although research on female subjects continue to lag behind males, demonstrating continued bias within the discipline.
Collapse
Affiliation(s)
- D N Orbach
- Department of Life Sciences, Texas A&M University- Corpus Christi
| |
Collapse
|
3
|
Pometti CL, Vilardi JC, Bessega CF. Signatures of natural selection in morphological quantitative traits in Argentinean populations of Senegalia gilliesii (Fabaceae). AN ACAD BRAS CIENC 2021; 93:e20201673. [PMID: 34706004 DOI: 10.1590/0001-3765202120201673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
In order to elucidate the role of evolutionary forces in shaping the variation of quantitative traits in Senegalia gilliesii we evaluate seven phenotypic traits in three Argentinean populations, two of them sharing environmental and vegetation type conditions, and a third one ecologically differentiated from the former. The phenotypic traits were compared with molecular markers. Here, we search for signatures of selection by means of the comparison PST-FST . We assessed if the averages of the seven phenotypic traits were different among populations by means of ANOVA and we performed discriminant analysis of principal components (DAPC) for both morphological and molecular data. The ANOVA showed significant results only for two traits. For all foliar traits and two spine traits, the PST-FST comparison suggested the occurrence of stabilizing selection. The DAPC obtained from AFLP data showed three well defined groups of populations; when the same analysis was conducted with morphological data the scatterplot showed high overlapping among individuals and could not separate the populations. Overall, our findings suggest a prominent role of stabilizing selection in all foliar traits and stipular spine length. These results could be extrapolated to other tropical and subtropical acacias. Further studies are needed to analyse the mechanisms underlying genetic differentiation in natural populations of S. gilliesii, find its relationship with eco-geographical variables.
Collapse
Affiliation(s)
- Carolina L Pometti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Ecología, Genética y Evolución (EGE), Intendente Güiraldes 2160, 1428, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución (IEGEBA), Intendente Güiraldes 2160, 1428, Buenos Aires, Argentina
| | - Juan C Vilardi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Ecología, Genética y Evolución (EGE), Intendente Güiraldes 2160, 1428, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución (IEGEBA), Intendente Güiraldes 2160, 1428, Buenos Aires, Argentina
| | - Cecilia F Bessega
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Ecología, Genética y Evolución (EGE), Intendente Güiraldes 2160, 1428, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución (IEGEBA), Intendente Güiraldes 2160, 1428, Buenos Aires, Argentina
| |
Collapse
|
4
|
Stefanini MI, Gottschalk MS, Calvo NS, Soto IM. Evolution of male genitalia in the Drosophila repleta species group (Diptera: Drosophilidae). J Evol Biol 2021; 34:1488-1502. [PMID: 34378262 DOI: 10.1111/jeb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The Drosophila repleta group comprises more than one hundred species that inhabit several environments in the Neotropics and use different hosts as rearing and feeding resources. Rather homogeneous in their external morphology, they are generally distinguished by the male genitalia, seemingly their fastest evolving morphological trait, constituting an excellent model to study patterns of genital evolution in the context of a continental adaptive radiation. Although much is known about the evolution of animal genitalia at population level, surveys on macroevolutionary scale of this phenomenon are scarce. This study used a suite of phylogenetic comparative methods to elucidate the macroevolutionary patterns of genital evolution through deep time and large continental scales. Our results indicate that male genital size and some aspects of shape have been evolving by speciational evolution, probably due to the microevolutionary processes involved in species mate recognition. In contrast, several features of the aedeagus shape seemed to have evolved in a gradual fashion, with heterogeneous evolutionary phenotypic rates among clades. In general, the tempo of the evolution of aedeagus morphology was constant from the origin of the group until the Pliocene, when it accelerated in some clades that diversified mainly in this period. The incidence of novel ecological conditions in the tempo of aedeagus evolution and the relationship between species mate recognition and speciation in the Drosophila repleta group are discussed.
Collapse
Affiliation(s)
- Manuel I Stefanini
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| | - Marco S Gottschalk
- Departamento de Ecología, Zoologia e Genética, Instituto de Biología, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Natalia S Calvo
- Instituto Nacional de Limnología (UNL-CONICET), Santa Fe, Argentina
| | - Ignacio M Soto
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
5
|
House CM, Lewis Z, Sharma MD, Hodgson DJ, Hunt J, Wedell N, Hosken DJ. Sexual selection on the genital lobes of male Drosophila simulans. Evolution 2021; 75:501-514. [PMID: 33386741 DOI: 10.1111/evo.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/01/2022]
Abstract
Sexual selection is thought to be responsible for the rapid divergent evolution of male genitalia with several studies detecting multivariate sexual selection on genital form. However, in most cases, selection is only estimated during a single episode of selection, which provides an incomplete view of net selection on genital traits. Here, we estimate the strength and form of multivariate selection on the genitalia arch of Drosophila simulans when mating occurs in the absence of a competitor and during sperm competition, in both sperm defence and offense roles (i.e., when mating first and last). We found that the strength of sexual selection on the genital arch was strongest during noncompetitive mating and weakest during sperm offense. However, the direction of selection was similar across selection episodes with no evidence for antagonistic selection. Overall, selection was not particularly strong despite genitals clearly evolving rapidly in this species.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | - Zenobia Lewis
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Manmohan D Sharma
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hodgson
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - John Hunt
- School of Science, Western Sydney University, Richmond, NSW, Australia.,Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - Nina Wedell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
6
|
Wong VL, Hennen DA, Macias AM, Brewer MS, Kasson MT, Marek P. Natural history of the social millipede Brachycybe lecontii Wood, 1864. Biodivers Data J 2020; 8:e50770. [PMID: 32296285 PMCID: PMC7148388 DOI: 10.3897/bdj.8.e50770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/26/2020] [Indexed: 01/17/2023] Open
Abstract
The millipede Brachycybe lecontii Wood, 1864 is a fungivorous social millipede known for paternal care of eggs and forming multi-generational aggregations. We investigated the life history, paternal care, chemical defence, feeding and social behaviour of B. lecontii and provided morphological and anatomical descriptions, using light and scanning electron microscopy. Based on observations of B. lecontii from 13 locations throughout its distribution, we report the following natural history aspects. The oviposition period of B. lecontii lasted from mid-April to late June and the incubation period lasted 3-4 weeks. Only males cared for the eggs and subsequent care of juveniles was not observed. In one case, the clutches of two males became combined and they were later cared for by only one of the males. The defensive compound of B. lecontii is stored in large glands occupying a third of the paranotal volume and were observed only in stadia II millipedes and older. We observed B. lecontii feeding on fungi of the order Polyporales and describe a cuticular structure on the tip of the labrum that may relate to fungivory. We found that their stellate-shaped aggregations (pinwheels) do not form in the absence of fungus and suggest the aggregation is associated with feeding. We describe and illustrate a previously undescribed comb-like structure on the tibia and tarsi of the six anterior-most leg-pairs and measure the colour and spectral reflectance of the B. lecontii exoskeleton.
Collapse
Affiliation(s)
- Victoria L Wong
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, United States of America Department of Entomology, Virginia Polytechnic Institute and State University Blacksburg United States of America
| | - Derek A Hennen
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, United States of America Department of Entomology, Virginia Polytechnic Institute and State University Blacksburg United States of America
| | - Angie M Macias
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, United States of America Division of Plant and Soil Sciences, West Virginia University Morgantown United States of America
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, United States of America Department of Biology, East Carolina University Greenville United States of America
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, United States of America Division of Plant and Soil Sciences, West Virginia University Morgantown United States of America
| | - Paul Marek
- Virginia Tech, Blacksburg, United States of America Virginia Tech Blacksburg United States of America.,Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, United States of America Department of Entomology, Virginia Polytechnic Institute and State University Blacksburg United States of America
| |
Collapse
|
7
|
House C, Tunstall P, Rapkin J, Bale MJ, Gage M, Del Castillo E, Hunt J. Multivariate stabilizing sexual selection and the evolution of male and female genital morphology in the red flour beetle. Evolution 2020; 74:883-896. [PMID: 31889313 PMCID: PMC7317928 DOI: 10.1111/evo.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 11/28/2022]
Abstract
Male genitals are highly divergent in animals with internal fertilization. Most studies attempting to explain this diversity have focused on testing the major hypotheses of genital evolution (the lock‐and‐key, pleiotropy, and sexual selection hypotheses), and quantifying the form of selection targeting male genitals has played an important role in this endeavor. However, we currently know far less about selection targeting female genitals or how male and female genitals interact during mating. Here, we use formal selection analysis to show that genital size and shape is subject to strong multivariate stabilizing sexual selection in both sexes of the red flour beetle, Tribolium castaneum. Moreover, we show significant sexual selection on the covariance between the sexes for specific aspects of genital shape suggesting that male and female genitalia also interact to determine the successful transfer of a spermatophore during mating. Our work therefore highlights the important role that both male and female genital morphologies play in determining mating success and that these effects can occur independently, as well as through their interaction. Moreover, it cautions against the overly simplistic view that the sexual selection targeting genital morphology will always be directional in form and restricted primarily to males.
Collapse
Affiliation(s)
- Clarissa House
- School of Science and Health and Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Philip Tunstall
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, TR10 9EZ, United Kingdom
| | - James Rapkin
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, TR10 9EZ, United Kingdom
| | - Mathilda J Bale
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, TR10 9EZ, United Kingdom
| | - Matthew Gage
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Enrique Del Castillo
- Department of Industrial Engineering and Department of Statistics, Pennsylvania State University, State College, Pennsylvania, 16802
| | - John Hunt
- School of Science and Health and Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, TR10 9EZ, United Kingdom
| |
Collapse
|
8
|
Ruschel TP, Bianchi FM, Campos LA. Genital coupling, morphology and evolution of male holding structures in Cicadinae (Hemiptera: Cicadidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Male and female genitalia include some of the most complex and morphologically diverse structures in Metazoa. Ornamentations in genitalia have been studied in several groups, and a variety of functional roles have been proposed. Although complex features of the genitalia have been observed in internal genitalia in cicadas, their functions have not yet been elucidated. These ornamentations, together with precopulatory sexual selection, make cicadas good models for evolutionary studies on genital coupling. We explore the structural interaction of male and female genitalia in Guyalna bonaerensis (Berg) (Cicadinae) and the morphology of male ornamentations in Cicadinae generally. We group these ornamentations into two traits according to their inferred function: anchoring or gripping. We analyse the theca and vesica of 24 species and perform ancestral trait reconstruction under maximum likelihood and stochastic mapping on a Bayesian tree. Ornamentations of the male vesica and the female seminal ampoule possibly ensure male attachment by working as an active lock to avoid the premature termination of intercourse. These ornamentations emerged independently in different lineages in Cicadinae, reinforcing the suggestion that they are important adaptations to achieve complete copulation. Our results foster questions for the field of sexual selection and associated mechanisms shaping the evolution of male and female genitalia.
Collapse
Affiliation(s)
- Tatiana Petersen Ruschel
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | - Filipe Michels Bianchi
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | - Luiz Alexandre Campos
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Zajitschek S, Zajitschek F, Josway S, Al Shabeeb R, Weiner H, Manier MK. Costs and benefits of giant sperm and sperm storage organs in
Drosophila melanogaster. J Evol Biol 2019; 32:1300-1309. [DOI: 10.1111/jeb.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Susanne Zajitschek
- Department of Biological Sciences George Washington University Washington DC USA
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Felix Zajitschek
- Department of Biological Sciences George Washington University Washington DC USA
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Sarah Josway
- Department of Biological Sciences George Washington University Washington DC USA
| | - Reem Al Shabeeb
- Department of Biological Sciences George Washington University Washington DC USA
| | - Halli Weiner
- Department of Biological Sciences George Washington University Washington DC USA
| | - Mollie K. Manier
- Department of Biological Sciences George Washington University Washington DC USA
| |
Collapse
|
10
|
Sloan NS, Simmons LW. The evolution of female genitalia. J Evol Biol 2019; 32:882-899. [PMID: 31267594 DOI: 10.1111/jeb.13503] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Female genitalia have been largely neglected in studies of genital evolution, perhaps due to the long-standing belief that they are relatively invariable and therefore taxonomically and evolutionarily uninformative in comparison with male genitalia. Contemporary studies of genital evolution have begun to dispute this view, and to demonstrate that female genitalia can be highly diverse and covary with the genitalia of males. Here, we examine evidence for three mechanisms of genital evolution in females: species isolating 'lock-and-key' evolution, cryptic female choice and sexual conflict. Lock-and-key genital evolution has been thought to be relatively unimportant; however, we present cases that show how species isolation may well play a role in the evolution of female genitalia. Much support for female genital evolution via sexual conflict comes from studies of both invertebrate and vertebrate species; however, the effects of sexual conflict can be difficult to distinguish from models of cryptic female choice that focus on putative benefits of choice for females. We offer potential solutions to alleviate this issue. Finally, we offer directions for future studies in order to expand and refine our knowledge surrounding female genital evolution.
Collapse
Affiliation(s)
- Nadia S Sloan
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Greenway R, McNemee R, Okamoto A, Plath M, Arias‐Rodriguez L, Tobler M. Correlated divergence of female and male genitalia in replicated lineages with ongoing ecological speciation. Evolution 2019; 73:1200-1212. [DOI: 10.1111/evo.13742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ryan Greenway
- Division of Biology Kansas State University Manhattan Kansas 66506
| | - Rachel McNemee
- Division of Biology Kansas State University Manhattan Kansas 66506
| | - Alexander Okamoto
- Division of Biology Kansas State University Manhattan Kansas 66506
- Department of Organismal Biology and Anatomy The University of Chicago Chicago Illinois 60637
| | - Martin Plath
- College of Animal Science and Technology Northwest A&F University Yangling Shaanxi PR China
| | - Lenin Arias‐Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa Tabasco México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan Kansas 66506
| |
Collapse
|
12
|
Hedrick BP, Antalek‐Schrag P, Conith AJ, Natanson LJ, Brennan PLR. Variability and asymmetry in the shape of the spiny dogfish vagina revealed by 2D and 3D geometric morphometrics. J Zool (1987) 2019. [DOI: 10.1111/jzo.12653] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- B. P. Hedrick
- Department of Earth Sciences University of Oxford Oxford UK
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - P. Antalek‐Schrag
- Department of Biological Sciences Mount Holyoke College South Hadley MA USA
| | - A. J. Conith
- Department of Biology University of Massachusetts Amherst Amherst MA USA
| | - L. J. Natanson
- Northeast Fisheries Science Center National Marine Fisheries Service NOAA Narragansett RI USA
| | - P. L. R. Brennan
- Department of Biological Sciences Mount Holyoke College South Hadley MA USA
| |
Collapse
|
13
|
Iglesias PP, Soto IM, Soto EM, Calderón L, Hurtado J, Hasson E. Rapid divergence of courtship song in the face of neutral genetic homogeneity in the cactophilic fly Drosophila buzzatii. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Patricia P Iglesias
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Ignacio M Soto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Eduardo M Soto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Luciano Calderón
- CONICET-Instituto de Biología Agrícola de Mendoza (IBAM), Mendoza, Argentina
| | - Juan Hurtado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Esteban Hasson
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| |
Collapse
|
14
|
Stefanini MI, Milla Carmona P, Iglesias PP, Soto EM, Soto IM. Differential Rates of Male Genital Evolution in Sibling Species of Drosophila. Evol Biol 2018. [DOI: 10.1007/s11692-018-9444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Tinago T, Mwabvu T, MacDonald AHH. Evidence of multiple divergent mitochondrial lineages within the southern African diplopod genus Bicoxidens Attems, 1928 (Spirostreptida). AFRICAN ZOOLOGY 2017. [DOI: 10.1080/15627020.2017.1387504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tawanda Tinago
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Tarombera Mwabvu
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Angus HH MacDonald
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Means JC, Marek PE. Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae? PeerJ 2017; 5:e3854. [PMID: 29038750 PMCID: PMC5641431 DOI: 10.7717/peerj.3854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921-a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels.
Collapse
Affiliation(s)
- Jackson C. Means
- Department of Entomology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Paul E. Marek
- Department of Entomology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
17
|
Barnard AA, Fincke OM, McPeek MA, Masly JP. Mechanical and tactile incompatibilities cause reproductive isolation between two young damselfly species. Evolution 2017; 71:2410-2427. [PMID: 28744900 DOI: 10.1111/evo.13315] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
Abstract
External male reproductive structures have received considerable attention as a cause of reproductive isolation (RI), because the morphology of these structures often evolves rapidly between populations. This rapid evolution presents the potential for mechanical incompatibilities with heterospecific female structures during mating and could thus prevent interbreeding between nascent species. Although such mechanical incompatibilities have received little empirical support as a common cause of RI, the potential for mismatch of reproductive structures to cause RI due to incompatible species-specific tactile cues has not been tested. We tested the importance of mechanical and tactile incompatibilities in RI between Enallagma anna and E. carunculatum, two damselfly species that diverged within the past ∼250,000 years and currently hybridize in a sympatric region. We quantified 19 prezygotic and postzygotic RI barriers using both naturally occurring and laboratory-reared damselflies. We found incomplete mechanical isolation between the two pure species and between hybrid males and pure species females. Interestingly, in mating pairs for which mechanical isolation was incomplete, females showed greater resistance and refusal to mate with hybrid or heterospecific males compared to conspecific males. This observation suggests that tactile incompatibilities involving male reproductive structures can influence female mating decisions and form a strong barrier to gene flow in early stages of speciation.
Collapse
Affiliation(s)
- Alexandra A Barnard
- Ecology & Evolutionary Biology Program, Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Ola M Fincke
- Ecology & Evolutionary Biology Program, Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Mark A McPeek
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - John P Masly
- Ecology & Evolutionary Biology Program, Department of Biology, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
18
|
Angyal D, Makarov SE, Korsós Z. Redescription of the cave-dwelling Brachydesmus troglobius Daday, 1889 (Diplopoda, Polydesmida). ACTA ZOOL ACAD SCI H 2017. [DOI: 10.17109/azh.63.1.53.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Richmond MP, Park J, Henry CS. The function and evolution of male and female genitalia in
Phyllophaga
Harris scarab beetles (Coleoptera: Scarabaeidae). J Evol Biol 2016; 29:2276-2288. [DOI: 10.1111/jeb.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/23/2016] [Accepted: 07/13/2016] [Indexed: 12/01/2022]
Affiliation(s)
- M. P. Richmond
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
- Division of Biological Sciences UC San Diego La Jolla New York CA USA
| | - J. Park
- Division of Biological Sciences UC San Diego La Jolla New York CA USA
- Institute for Genomic Medicine Columbia University New York NY USA
| | - C. S. Henry
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| |
Collapse
|
20
|
Noguerales V, García-Navas V, Cordero PJ, Ortego J. The role of environment and core-margin effects on range-wide phenotypic variation in a montane grasshopper. J Evol Biol 2016; 29:2129-2142. [DOI: 10.1111/jeb.12915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- V. Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| | - V. García-Navas
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| | - P. J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - J. Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| |
Collapse
|
21
|
Burns M, Tsurusaki N. Male Reproductive Morphology Across Latitudinal Clines and Under Long-Term Female Sex-Ratio Bias. Integr Comp Biol 2016; 56:715-27. [DOI: 10.1093/icb/icw017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Decker P. Phylogenetic analysis of the Australian trans-Bass Strait millipede genus Pogonosternum (Carl, 1912) (Diplopoda, Polydesmida, Paradoxosomatidae) indicates multiple glacial refugia in southeastern Australia. Zookeys 2016:15-31. [PMID: 27110194 PMCID: PMC4829959 DOI: 10.3897/zookeys.578.8052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 11/12/2022] Open
Abstract
This study documents the first detailed phylogenetic analysis of an Australian paradoxosomatid millipede genus. Two mitochondrial genes (partial COI and 16S) as well as partial nuclear 28S rDNA were amplified and sequenced for 41 individuals of the southeastern Australian genus Pogonosternum Jeekel, 1965. The analysis indicates that five species groups of Pogonosternum occur across New South Wales, Victoria and Tasmania: Pogonosternumnigrovirgatum (Carl, 1912), Pogonosternumadrianae Jeekel, 1982, Pogonosternumlaetificum Jeekel, 1982 and two undescribed species. Pogonosternumconiferum (Jeekel, 1965) specimens cluster within Pogonosternumnigrovirgatum. Most of these five species groups exhibit a pattern of high intraspecific genetic variability and highly localized haplotypes, suggesting that they were confined to multiple Pleistocene refugia on the southeastern Australian mainland. The phylogenetic data also show that northwestern Tasmania was colonized by Pogonosternumnigrovirgatum, probably from central Victoria, and northeastern Tasmania by an as yet undescribed species from eastern Victoria.
Collapse
|
23
|
Decker P. Integrative taxonomic revision of the polymorphic flat-millipede genera Oncocladosoma and Somethus in South Australia (Diplopoda : Polydesmida : Paradoxosomatidae). INVERTEBR SYST 2016. [DOI: 10.1071/is15047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The South Australian members of the flat-millipede genera Oncocladosoma Jeekel, 1985 and Somethus Chamberlin, 1920 are revised using an integrative approach incorporating sequence data and morphology. The partial mitochondrial cytochrome c oxidase subunit I (COI) barcoding gene and partial nuclear ribosomal 28S rRNA were amplified and sequenced for 15 Oncocladosoma specimens and 10 Somethus specimens and the datasets were used for molecular phylogenetic analysis and genetic distance determination. Both morphology and molecular data indicate that all species of Oncocladosoma fall within Somethus, and therefore, Oncocladosoma is synonymised with Somethus. Within those species supported by molecular data, features of the solenomere tip are relatively stable and useful for species identification. 28S rRNA has proven to provide sufficient nucleotide variation to provisionally discriminate species. Oncocladosoma castaneum ingens Jeekel, 1985, O. clavigerum Jeekel, 1985 and O. conigerum Jeekel, 1985 are junior synonyms of Somethus castaneus, comb. nov., and Somethus modicus Jeekel, 2002 is a synonym of S. scopiferus Jeekel, 2002. New records and electron scanning micrographs of gonopods are provided for S. castaneus, comb. nov., S. inflatus (Jeekel, 2002), comb. nov., S. lancearius Jeekel, 2002, S. scopiferus Jeekel, 2002, and Somethus grossi Jeekel, 1985, together with a key to the South Australian species of Somethus.
Collapse
|
24
|
Monceau K. The next meeting for animal personality: population genetics. ETHOL ECOL EVOL 2015. [DOI: 10.1080/03949370.2014.984345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Kunz K, Witthuhn M, Uhl G. Paired and complex copulatory organs: do they really impede flexible use? J Zool (1987) 2015. [DOI: 10.1111/jzo.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- K. Kunz
- Zoological Institute and Museum Department of General and Systematic Zoology University of Greifswald Greifswald Germany
| | - M. Witthuhn
- Zoological Institute and Museum Department of General and Systematic Zoology University of Greifswald Greifswald Germany
| | - G. Uhl
- Zoological Institute and Museum Department of General and Systematic Zoology University of Greifswald Greifswald Germany
| |
Collapse
|
26
|
Barley AJ, Monnahan PJ, Thomson RC, Grismer LL, Brown RM. Sun skink landscape genomics: assessing the roles of micro-evolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape. Mol Ecol 2015; 24:1696-712. [DOI: 10.1111/mec.13151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Anthony J. Barley
- Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| | - Patrick J. Monnahan
- Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| | - Robert C. Thomson
- Department of Biology; University of Hawai'i at Mānoa; Honolulu HI 96822 USA
| | - L. Lee Grismer
- Department of Biology; La Sierra University; Riverside CA 92515 USA
| | - Rafe M. Brown
- Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| |
Collapse
|
27
|
Puniamoorthy N. Behavioural barriers to reproduction may evolve faster than sexual morphology among populations of a dung fly (Sepsidae). Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Rix MG, Edwards DL, Byrne M, Harvey MS, Joseph L, Roberts JD. Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biol Rev Camb Philos Soc 2014; 90:762-93. [PMID: 25125282 DOI: 10.1111/brv.12132] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 01/21/2023]
Abstract
The south-western land division of Western Australia (SWWA), bordering the temperate Southern and Indian Oceans, is the only global biodiversity hotspot recognised in Australia. Renowned for its extraordinary diversity of endemic plants, and for some of the largest and most botanically significant temperate heathlands and woodlands on Earth, SWWA has long fascinated biogeographers. Its flat, highly weathered topography and the apparent absence of major geographic factors usually implicated in biotic diversification have challenged attempts to explain patterns of biogeography and mechanisms of speciation in the region. Botanical studies have always been central to understanding the biodiversity values of SWWA, although surprisingly few quantitative botanical analyses have allowed for an understanding of historical biogeographic processes in both space and time. Faunistic studies, by contrast, have played little or no role in defining hotspot concepts, despite several decades of accumulating quantitative research on the phylogeny and phylogeography of multiple lineages. In this review we critically analyse datasets with explicit supporting phylogenetic data and estimates of the time since divergence for all available elements of the terrestrial fauna, and compare these datasets to those available for plants. In situ speciation has played more of a role in shaping the south-western Australian fauna than has long been supposed, and has occurred in numerous endemic lineages of freshwater fish, frogs, reptiles, snails and less-vagile arthropods. By contrast, relatively low levels of endemism are found in birds, mammals and highly dispersive insects, and in situ speciation has played a negligible role in generating local endemism in birds and mammals. Quantitative studies provide evidence for at least four mechanisms driving patterns of endemism in south-western Australian animals, including: (i) relictualism of ancient Gondwanan or Pangaean taxa in the High Rainfall Province; (ii) vicariant isolation of lineages west of the Nullarbor divide; (iii) in situ speciation; and (iv) recent population subdivision. From dated quantitative studies we derive four testable models of historical biogeography for animal taxa in SWWA, each explicit in providing a spatial, temporal and topological perspective on patterns of speciation or divergence. For each model we also propose candidate lineages that may be worthy of further study, given what we know of their taxonomy, distributions or relationships. These models formalise four of the strongest patterns seen in many animal taxa from SWWA, although other models are clearly required to explain particular, idiosyncratic patterns. Generating numerous new datasets for suites of co-occurring lineages in SWWA will help refine our understanding of the historical biogeography of the region, highlight gaps in our knowledge, and allow us to derive general postulates from quantitative (rather than qualitative) results. For animals, this process has now begun in earnest, as has the process of taxonomically documenting many of the more diverse invertebrate lineages. The latter remains central to any attempt to appreciate holistically biogeographic patterns and processes in SWWA, and molecular phylogenetic studies should - where possible - also lead to tangible taxonomic outcomes.
Collapse
Affiliation(s)
- Michael G Rix
- Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.,Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia
| | - Danielle L Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06520, U.S.A
| | - Margaret Byrne
- Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley DC, Western Australia 6983, Australia
| | - Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.,School of Animal Biology, Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Facilities and Collections, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - J Dale Roberts
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.,School of Animal Biology, Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.,Centre of Excellence in Natural Resource Management, University of Western Australia, PO Box 5771, Albany, Western Australia 6332, Australia
| |
Collapse
|
29
|
Monceau K, Cézilly F, Moreau J, Motreuil S, Wattier R. Colonisation and diversification of the Zenaida Dove (Zenaida aurita) in the Antilles: phylogeography, contemporary gene flow and morphological divergence. PLoS One 2013; 8:e82189. [PMID: 24349217 PMCID: PMC3861367 DOI: 10.1371/journal.pone.0082189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Caribbean avifaunal biogeography has been mainly studied based on mitochondrial DNA. Here, we investigated both past and recent island differentiation and micro-evolutionary changes in the Zenaida Dove (Zenaida aurita) based on combined information from one mitochondrial (Cytochrome c Oxydase subunit I, COI) and 13 microsatellite markers and four morphological characters. This Caribbean endemic and abundant species has a large distribution, and two subspecies are supposed to occur: Z. a. zenaida in the Greater Antilles (GA) and Z. a. aurita in the Lesser Antilles (LA). Doves were sampled on two GA islands (Puerto Rico and the British Virgin Islands) and six LA islands (Saint Barthélemy, Guadeloupe, Les Saintes, Martinique, Saint Lucia and Barbados). Eleven COI haplotypes were observed that could be assembled in two distinct lineages, with six specific to GA, four to LA, the remaining one occurring in all islands. However, the level of divergence between those two lineages was too moderate to fully corroborate the existence of two subspecies. Colonisation of the studied islands appeared to be a recent process. However, both phenotypic and microsatellite data suggest that differentiation is already under way between all of them, partly associated with the existence of limited gene flow. No isolation by distance was observed. Differentiation for morphological traits was more pronounced than for neutral markers. These results suggest that despite recent colonisation, genetic drift and/or restricted gene flow are promoting differentiation for neutral markers. Variation in selective pressures between islands may explain the observed phenotypic differentiation.
Collapse
Affiliation(s)
- Karine Monceau
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Dijon, France
| | - Frank Cézilly
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Dijon, France
- Institut Universitaire de France, France
| | - Jérôme Moreau
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Dijon, France
| | - Sébastien Motreuil
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Dijon, France
| | - Rémi Wattier
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Dijon, France
| |
Collapse
|
30
|
Brewer MS, Bond JE. Ordinal-level phylogenomics of the arthropod class Diplopoda (millipedes) based on an analysis of 221 nuclear protein-coding loci generated using next-generation sequence analyses. PLoS One 2013; 8:e79935. [PMID: 24236165 PMCID: PMC3827447 DOI: 10.1371/journal.pone.0079935] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. METHODS Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered. The timings of major millipede lineage divergence points were estimated. RESULTS The resulting phylogeny differed from the existing classifications in a number of fundamental ways. Our phylogeny includes a grouping that has never been described (Juliformia+Merocheta+Stemmiulida), and the ancestral reconstructions suggest caution with respect to using spinnerets as a unifying characteristic for the Nematophora. Our results are shown to have significantly stronger support than previous hypotheses given our data. Our efforts represent the first step toward obtaining a well-supported and robust phylogeny of the Diplopoda that can be used to answer many questions concerning the evolution of this ancient and diverse animal group.
Collapse
Affiliation(s)
- Michael S. Brewer
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Jason E. Bond
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
31
|
Tanabe T, Sota T. BOTH MALE AND FEMALE NOVEL TRAITS PROMOTE THE CORRELATED EVOLUTION OF GENITALIA BETWEEN THE SEXES IN AN ARTHROPOD. Evolution 2013; 68:441-52. [DOI: 10.1111/evo.12288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 09/19/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Tsutomu Tanabe
- Faculty of Education; Kumamoto University; Kurokami Kumamoto 860-8555 Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| |
Collapse
|
32
|
Simmons LW, Firman RC. EXPERIMENTAL EVIDENCE FOR THE EVOLUTION OF THE MAMMALIAN BACULUM BY SEXUAL SELECTION. Evolution 2013; 68:276-83. [DOI: 10.1111/evo.12229] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/30/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology (M092); The University of Western Australia; Crawley 6009 Australia
| | - Renée C. Firman
- Centre for Evolutionary Biology; School of Animal Biology (M092); The University of Western Australia; Crawley 6009 Australia
| |
Collapse
|
33
|
Soto IM, Carreira VP, Soto EM, Márquez F, Lipko P, Hasson E. Rapid Divergent Evolution of Male Genitalia Among Populations of Drosophila buzzatii. Evol Biol 2013. [DOI: 10.1007/s11692-013-9223-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Leinonen T, McCairns RJS, O'Hara RB, Merilä J. Q(ST)-F(ST) comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 2013; 14:179-90. [PMID: 23381120 DOI: 10.1038/nrg3395] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Comparative studies of the divergence of quantitative traits and neutral molecular markers, known as Q(ST)-F(ST) comparisons, provide a means for researchers to distinguish between natural selection and genetic drift as causes of population differentiation in complex polygenic traits. The use of Q(ST)-F(ST) comparisons has increased rapidly in the last few years, highlighting the utility of this approach for addressing a wide range of questions that are relevant to evolutionary and ecological genetics. These studies have also provided lessons for the design of future Q(ST)-F(ST) comparisons. Methods based on the Q(ST)-F(ST) approach could also be used to analyse various types of 'omics' data in new and revealing ways.
Collapse
Affiliation(s)
- Tuomas Leinonen
- Ecological Genetics Research Unit, Department of Biosciences, PO Box 65, FI-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
35
|
Wojcieszek JM, Simmons LW. Divergence in genital morphology may contribute to mechanical reproductive isolation in a millipede. Ecol Evol 2013; 3:334-43. [PMID: 23467632 PMCID: PMC3586643 DOI: 10.1002/ece3.466] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022] Open
Abstract
Genitalia appear to evolve rapidly and divergently in taxa with internal fertilization. The current consensus is that intense directional sexual selection drives the rapid evolution of genitalia. Recent research on the millipede Antichiropus variabilis suggests that the male genitalia are currently experiencing stabilizing selection – a pattern of selection expected for lock-and-key structures that enforce mate recognition and reproductive isolation. Here, we investigate how divergence in genital morphology affects reproductive compatibility among isolated populations of A. variabilis. Females from a focal population were mated first to a male from their own population and, second, to a male from one of two populations with divergent genital morphology. We observed variation in mating behavior that might indicate the emergence of precopulatory reproductive barriers: males from one divergent population took significantly longer to recognize females and exhibited mechanical difficulty in genital insertion. Moreover, we observed very low paternity success for extra-population males who were successful in copulating. Our data suggest that divergence in genital shape may be contributing to reproductive isolation, and incipient speciation among isolated populations of A. variabilis.
Collapse
Affiliation(s)
- Janine M Wojcieszek
- Centre for Evolutionary Biology, School of Animal Biology M092, University of Western Australia 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | | |
Collapse
|
36
|
Bath E, Tatarnic N, Bonduriansky R. Asymmetric reproductive isolation and interference in neriid flies: the roles of genital morphology and behaviour. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Brewer MS, Sierwald P, Bond JE. Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group. PLoS One 2012; 7:e37240. [PMID: 22615951 PMCID: PMC3352885 DOI: 10.1371/journal.pone.0037240] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 04/18/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The arthropod class Diplopoda is a mega-diverse group comprising >12,000 described millipede species. The history of taxonomic research within the group is tumultuous and, consequently, has yielded a questionable higher-level classification. Few higher-taxa are defined using synapomorphies, and the practice of single taxon descriptions lacking a revisionary framework has produced many monotypic taxa. Additionally, taxonomic and geographic biases render global species diversity estimations unreliable. We test whether the ordinal taxa of the Diplopoda are consistent with regards to underlying taxonomic diversity, attempt to provide estimates for global species diversity, and examine millipede taxonomic effort at a global geographic scale. METHODOLOGY/PRINCIPAL FINDINGS A taxonomic distinctness metric was employed to assess uniformity of millipede ordinal taxa. We found that ordinal-level taxa are not uniform and are likely overinflated with higher-taxa when compared to related groups. Several methods of estimating global species richness were employed (Bayesian, variation in taxonomic productivity, extrapolation from nearly fully described taxa). Two of the three methods provided estimates ranging from 13,413-16,760 species. Variations in geographic diversity show biases to North America and Europe and a paucity of works on tropical taxa. CONCLUSIONS/SIGNIFICANCE Before taxa can be used in an extensible way, they must be definable with respect to the diversity they contain and the diagnostic characters used to delineate them. The higher classification for millipedes is shown to be problematic from a number of perspectives. Namely, the ordinal taxa are not uniform in their underlying diversity, and millipedes appear to have a disproportionate number of higher-taxa. Species diversity estimates are unreliable due to inconsistent taxonomic effort at temporal, geographic, and phylogenetic scales. Lack of knowledge concerning many millipede groups compounds these issues. Diplopods are likely not unique in this regard as these issues may persist in many other diverse yet poorly studied groups.
Collapse
Affiliation(s)
- Michael S Brewer
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America.
| | | | | |
Collapse
|
38
|
SAKURAI G, HIMURO C, KASUYA E. Intra-specific variation in the morphology and the benefit of large genital sclerites of males in the adzuki bean beetle (Callosobruchus chinensis). J Evol Biol 2012; 25:1291-7. [DOI: 10.1111/j.1420-9101.2012.02517.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Wojcieszek JM, Austin P, Harvey MS, Simmons LW. Micro-CT scanning provides insight into the functional morphology of millipede genitalia. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2011.00892.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. M. Wojcieszek
- Centre for Evolutionary Biology; School of Animal Biology M092; University of Western Australia; Crawley; WA; Australia
| | - P. Austin
- CSIRO Process Science and Engineering; Australian Minerals Research Centre; Karawara; WA; Australia
| | | | - L. W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology M092; University of Western Australia; Crawley; WA; Australia
| |
Collapse
|