1
|
Rodrigues AMM, Gardner A. Transmission of social status drives cooperation and offspring philopatry. Proc Biol Sci 2023; 290:20231314. [PMID: 38018113 PMCID: PMC10685119 DOI: 10.1098/rspb.2023.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023] Open
Abstract
The evolution of cooperation depends on two crucial overarching factors: relatedness, which describes the extent to which the recipient shares genes in common with the actor; and quality, which describes the recipient's basic capacity to transmit genes into the future. While most research has focused on relatedness, there is a growing interest in understanding how quality modulates the evolution of cooperation. However, the impact of inheritance of quality on the evolution of cooperation remains largely unexplored, especially in spatially structured populations. Here, we develop a mathematical model to understand how inheritance of quality, in the form of social status, influences the evolution of helping and harming within social groups in a viscous-population setting. We find that: (1) status-reversal transmission, whereby parental and offspring status are negatively correlated, strongly inhibits the evolution of cooperation, with low-status individuals investing less in cooperation and high-status individuals being more prone to harm; (2) transmission of high status promotes offspring philopatry, with more cooperation being directed towards the higher-dispersal social class; and (3) fertility inequality and inter-generational status inheritance reduce within-group conflict. Overall, our study highlights the importance of considering different mechanisms of phenotypic inheritance, including social support, and their potential interactions in shaping animal societies.
Collapse
Affiliation(s)
- António M. M. Rodrigues
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
2
|
Parvinen K, Ohtsuki H, Wakano JY. Evolution of dispersal under spatio-temporal heterogeneity. J Theor Biol 2023; 574:111612. [PMID: 37659573 DOI: 10.1016/j.jtbi.2023.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Theoretical studies over the past decades have revealed various factors that favor or disfavor the evolution of dispersal. Among these, environmental heterogeneity is one driving force that can impact dispersal traits, because dispersing individuals can obtain a fitness benefit through finding better environments. Despite this potential benefit, some previous works have shown that the existence of spatial heterogeneity hinders evolution of dispersal. On the other hand, temporal heterogeneity has been shown to promote dispersal through a bet-hedging mechanism. When they are combined in a patch-structured population in which the quality of each patch varies over time independently of the others, it has been shown that spatiotemporal heterogeneity can favor evolution of dispersal. When individuals can use patch quality information so that dispersal decision is conditional, the evolutionary outcome can be different since individuals have options to disperse more/less offspring from bad/good patches. In this paper, we generalize the model and results of previous studies. We find richer dynamics including bistable evolutionary dynamics when there is arrival bias towards high-productivity patches. Then we study the evolution of conditional dispersal strategy in this generalized model. We find a surprising result that no offspring will disperse from a patch whose productivity was low when these offspring were born. In addition to mathematical proofs, we also provide intuition behind this initially counter-intuitive result based on reproductive-value arguments. Dispersal from high-productivity patches can evolve, and its parameter dependence behaves similarly, but not identically, to the case of unconditional dispersal. Our results unveil an importance of whether or not individuals can use patch quality information in dispersal evolution.
Collapse
Affiliation(s)
- Kalle Parvinen
- Department of Mathematics and Statistics, FI-20014, University of Turku, Finland; Advancing Systems Analysis Program, International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria; Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Hisashi Ohtsuki
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan; Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo 164-8525, Japan; Meiji Institute for Advanced Study of Mathematical Sciences, Tokyo 164-8525, Japan
| |
Collapse
|
3
|
Twyman KZ, Gardner A. Kin selection of time travel: the social evolutionary causes and consequences of dormancy. Proc Biol Sci 2023; 290:20231247. [PMID: 37700652 PMCID: PMC10498053 DOI: 10.1098/rspb.2023.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
A basic mechanism of kin selection is limited dispersal, whereby individuals remain close to their place of origin such that even indiscriminate social interaction tends to modify the fitness of genealogical kin. Accordingly, the causes and consequences of dispersal have received an enormous amount of attention in the social evolution literature. This work has focused on dispersal of individuals in space, yet similar logic should apply to dispersal of individuals in time (e.g. dormancy). We investigate how kin selection drives the evolution of dormancy and how dormancy modulates the evolution of altruism. We recover dormancy analogues of key results that have previously been given for dispersal, showing that: (1) kin selection favours dormancy as a means of relaxing competition between relatives; (2) when individuals may adjust their dormancy behaviour to local density, they are favoured to do so, resulting in greater dormancy in high-density neighbourhoods and a concomitant 'constant non-dormant principle'; (3) when dormancy is constrained to be independent of density, there is no relationship between the rate of dormancy and the evolutionary potential for altruism; and (4) when dormancy is able to evolve in a density-dependent manner, a greater potential for altruism is expected in populations with lower dormancy.
Collapse
Affiliation(s)
- Kalyani Z. Twyman
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| |
Collapse
|
4
|
Jones CT, Meynell L, Neto C, Susko E, Bielawski JP. The role of the ecological scaffold in the origin and maintenance of whole-group trait altruism in microbial populations. BMC Ecol Evol 2023; 23:11. [PMID: 37046187 PMCID: PMC10100367 DOI: 10.1186/s12862-023-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Kin and multilevel selection provide explanations for the existence of altruism based on traits or processes that enhance the inclusive fitness of an altruist individual. Kin selection is often based on individual-level traits, such as the ability to recognize other altruists, whereas multilevel selection requires a metapopulation structure and dispersal process. These theories are unified by the general principle that altruism can be fixed by positive selection provided the benefit of altruism is preferentially conferred to other altruists. Here we take a different explanatory approach based on the recently proposed concept of an "ecological scaffold". We demonstrate that ecological conditions consisting of a patchy nutrient supply that generates a metapopulation structure, episodic mixing of groups, and severe nutrient limitation, can support or "scaffold" the evolution of altruism in a population of microbes by amplifying drift. This contrasts with recent papers in which the ecological scaffold was shown to support selective processes and demonstrates the power of scaffolding even in the absence of selection. RESULTS Using computer simulations motivated by a simple theoretical model, we show that, although an altruistic mutant can be fixed within a single population of non-altruists by drift when nutrients are severely limited, the resulting altruistic population remains vulnerable to non-altruistic mutants. We then show how the imposition of the "ecological scaffold" onto a population of non-altruists alters the balance between selection and drift in a way that supports the fixation and subsequent persistence of altruism despite the possibility of invasion by non-altruists. CONCLUSIONS The fixation of an altruistic mutant by drift is possible when supported by ecological conditions that impose a metapopulation structure, episodic mixing of groups, and severe nutrient limitation. This is significant because it offers an alternative explanation for the evolution of altruism based on drift rather than selection. Given the ubiquity of low-nutrient "oligotrophic" environments in which microbes exist (e.g., the open ocean, deep subsurface soils, or under the polar ice caps) our results suggest that altruistic and cooperative behaviors may be highly prevalent among microbial populations.
Collapse
Affiliation(s)
- C T Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, NS, Halifax, Canada.
| | - L Meynell
- Department of Philosophy, Dalhousie University, Halifax, Canada
| | - C Neto
- Department of Social and Political Sciences, Philosophy, and Anthropology, University of Exeter, Exeter, UK
- Centre for the Study of the Life Sciences, EGENIS, University of Exeter, Exeter, UK
| | - E Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada
| | - J P Bielawski
- Department of Biology and Dept. of Mathematics and Statistics, Dalhousie University, Halifax, Canada
| |
Collapse
|
5
|
Rodrigues AMM, Barker JL, Robinson EJH. From inter-group conflict to inter-group cooperation: insights from social insects. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210466. [PMID: 35369743 PMCID: PMC8977659 DOI: 10.1098/rstb.2021.0466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/22/2022] [Indexed: 01/18/2023] Open
Abstract
The conflict between social groups is widespread, often imposing significant costs across multiple groups. The social insects make an ideal system for investigating inter-group relationships, because their interaction types span the full harming-helping continuum, from aggressive conflict, to mutual tolerance, to cooperation between spatially separate groups. Here we review inter-group conflict in the social insects and the various means by which they reduce the costs of conflict, including individual or colony-level avoidance, ritualistic behaviours and even group fusion. At the opposite extreme of the harming-helping continuum, social insect groups may peacefully exchange resources and thus cooperate between groups in a manner rare outside human societies. We discuss the role of population viscosity in favouring inter-group cooperation. We present a model encompassing intra- and inter-group interactions, and local and long-distance dispersal. We show that in this multi-level population structure, the increased likelihood of cooperative partners being kin is balanced by increased kin competition, such that neither cooperation (helping) nor conflict (harming) is favoured. This model provides a baseline context in which other intra- and inter-group processes act, tipping the balance toward or away from conflict. We discuss future directions for research into the ecological factors shaping the evolution of inter-group interactions. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
| | - Jessica L. Barker
- Interacting Minds Centre, Aarhus University, Aarhus, 8000 Aarhus, Denmark
- Department of Population Health Sciences, University of Alaska, Anchorage, AK 99503, USA
| | | |
Collapse
|
6
|
Priklopil T, Lehmann L. Metacommunities, fitness and gradual evolution. Theor Popul Biol 2021; 142:12-35. [PMID: 34530032 DOI: 10.1016/j.tpb.2021.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
We analyze the evolution of a multidimensional quantitative trait in a class-structured focal species interacting with other species in a wider metacommunity. The evolutionary dynamics in the focal species as well as the ecological dynamics of the whole metacommunity is described as a continuous-time process with birth, physiological development, dispersal, and death given as rates that can depend on the state of the whole metacommunity. This can accommodate complex local community and global metacommunity environmental feedbacks owing to inter- and intra-specific interactions, as well as local environmental stochastic fluctuations. For the focal species, we derive a fitness measure for a mutant allele affecting class-specific trait expression. Using classical results from geometric singular perturbation theory, we provide a detailed proof that if the effect of the mutation on phenotypic expression is small ("weak selection"), the large system of dynamical equations needed to describe selection on the mutant allele in the metacommunity can be reduced to a single ordinary differential equation on the arithmetic mean mutant allele frequency that is of constant sign. This invariance on allele frequency entails the mutant either dies out or will out-compete the ancestral resident (or wild) type. Moreover, the directional selection coefficient driving arithmetic mean allele frequency can be expressed as an inclusive fitness effect calculated from the resident metacommunity alone, and depends, as expected, on individual fitness differentials, relatedness, and reproductive values. This formalizes the Darwinian process of gradual evolution driven by random mutation and natural selection in spatially and physiologically class-structured metacommunities.
Collapse
Affiliation(s)
- Tadeas Priklopil
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Vitt S, Hiller J, Thünken T. Intrasexual selection: Kin competition increases male-male territorial aggression in a monogamous cichlid fish. Ecol Evol 2020; 10:11183-11191. [PMID: 33144958 PMCID: PMC7593200 DOI: 10.1002/ece3.6759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 11/25/2022] Open
Abstract
During intrasexual competition, individuals of the same sex compete for access to breeding sites and mating partners, often accompanied by aggressive behavior. Kin selection theory predicts different kin-directed social interactions ranging from cooperation to aggression depending on the context and the resource in question. Kin competition reducing indirect fitness might be avoided by actively expelling relatives from territories and by showing higher aggression against kin. The West-African cichlid Pelvicachromis taeniatus is a monogamous cave breeder with males occupying and defending breeding sites against rivals. This species is capable of kin recognition and shows kin-preference during juvenile shoaling and mate choice. However, subadults of P. taeniatus seem to avoid the proximity of same-sex kin. In the present study, we examined territorial aggression of territory holders against intruding related and unrelated males as well as intruder's behavior. We observed higher aggression among related competitors suggesting that related males are less tolerated as neighbors. Avoidance of intrasexual competition with relatives might increase indirect fitness of males in monogamous species.
Collapse
Affiliation(s)
- Simon Vitt
- Institute for Evolutionary Biology and EcologyUniversity of BonnBonnGermany
| | - Jenny Hiller
- Institute for Evolutionary Biology and EcologyUniversity of BonnBonnGermany
| | - Timo Thünken
- Institute for Evolutionary Biology and EcologyUniversity of BonnBonnGermany
| |
Collapse
|
8
|
The components of directional and disruptive selection in heterogeneous group-structured populations. J Theor Biol 2020; 507:110449. [PMID: 32814071 DOI: 10.1016/j.jtbi.2020.110449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/23/2022]
Abstract
We derive how directional and disruptive selection operate on scalar traits in a heterogeneous group-structured population for a general class of models. In particular, we assume that each group in the population can be in one of a finite number of states, where states can affect group size and/or other environmental variables, at a given time. Using up to second-order perturbation expansions of the invasion fitness of a mutant allele, we derive expressions for the directional and disruptive selection coefficients, which are sufficient to classify the singular strategies of adaptive dynamics. These expressions include first- and second-order perturbations of individual fitness (expected number of settled offspring produced by an individual, possibly including self through survival); the first-order perturbation of the stationary distribution of mutants (derived here explicitly for the first time); the first-order perturbation of pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary distribution of mutants, each evaluated under neutrality. We introduce the concept of individual k-fitness (defined as the expected number of settled offspring of an individual for which k-1 randomly chosen neighbors are lineage members) and show its usefulness for calculating relatedness and its perturbation. We then demonstrate that the directional and disruptive selection coefficients can be expressed in terms individual k-fitnesses with k=1,2,3 only. This representation has two important benefits. First, it allows for a significant reduction in the dimensions of the system of equations describing the mutant dynamics that needs to be solved to evaluate explicitly the two selection coefficients. Second, it leads to a biologically meaningful interpretation of their components. As an application of our methodology, we analyze directional and disruptive selection in a lottery model with either hard or soft selection and show that many previous results about selection in group-structured populations can be reproduced as special cases of our model.
Collapse
|
9
|
Mullon C, Lehmann L. Eco-Evolutionary Dynamics in Metacommunities: Ecological Inheritance, Helping within Species, and Harming between Species. Am Nat 2018; 192:664-686. [DOI: 10.1086/700094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Rodrigues AMM. Resource availability and adjustment of social behaviour influence patterns of inequality and productivity across societies. PeerJ 2018; 6:e5488. [PMID: 30310732 PMCID: PMC6173167 DOI: 10.7717/peerj.5488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Animal societies vary widely in the diversity of social behaviour and the distribution of reproductive shares among their group members. It has been shown that individual condition can lead to divergent social roles and that social specialisation can cause an exacerbation or a mitigation of the inequality among group members within a society. This work, however, has not investigated cases in which resource availability varies between different societies, a factor that is thought to explain variation in the level of cooperation and the disparities in reproductive shares within each social group. In this study, I focus on how resource availability mediates the expression of social behaviour and how this, in turn, mediates inequality both within and between groups. I find that when differences in resource availability between societies persist over time, resource-rich societies become more egalitarian. Because lower inequality improves the productivity of a society, the inequality between resource-rich and resource-poor societies rises. When resource availability fluctuates over time, resource-rich societies tend to become more unequal. Because inequality hinders the productivity of a society, the inequality between resource-rich and resource-poor societies falls. From the evolutionary standpoint, my results show that spatial and temporal variation in resource availability may exert a strong influence on the level of inequality both within and between societies.
Collapse
Affiliation(s)
- António M M Rodrigues
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Wolfson College, Cambridge, United Kingdom
| |
Collapse
|
11
|
Rodrigues AMM. Ecological succession, patch age and the evolution of social behaviour and terminal investment. OIKOS 2018. [DOI: 10.1111/oik.05341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- António M. M. Rodrigues
- Dept of Zoology, Univ. of Cambridge; Downing Street Cambridge CB2 3EJ UK
- Wolfson College; Barton Road Cambridge UK
| |
Collapse
|
12
|
Spatial heterogeneity and evolution of fecundity-affecting traits. J Theor Biol 2018; 454:190-204. [DOI: 10.1016/j.jtbi.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
|
13
|
Cooper GA, Levin SR, Wild G, West SA. Modeling relatedness and demography in social evolution. Evol Lett 2018. [DOI: 10.1002/evl3.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Guy A. Cooper
- Department of Zoology; University of Oxford; Oxford OX1 3PS United Kingdom
| | - Samuel R. Levin
- Department of Zoology; University of Oxford; Oxford OX1 3PS United Kingdom
| | - Geoff Wild
- Department of Applied Mathematics; University of Western Ontario; London Ontario N6A 3K7 Canada
| | - Stuart A. West
- Department of Zoology; University of Oxford; Oxford OX1 3PS United Kingdom
| |
Collapse
|
14
|
Rodrigues AMM. Demography, life history and the evolution of age-dependent social behaviour. J Evol Biol 2018; 31:1340-1353. [DOI: 10.1111/jeb.13308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/15/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
15
|
Rodrigues AMM, Taylor TB. Ecological and demographic correlates of cooperation from individual to budding dispersal. J Evol Biol 2018; 31:1058-1070. [DOI: 10.1111/jeb.13286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Tiffany B. Taylor
- The Milner Centre for Evolution & Department of Biology and Biochemistry; University of Bath; Bath UK
| |
Collapse
|
16
|
Rodrigues AMM, Kokko H. Models of social evolution: can we do better to predict 'who helps whom to achieve what'? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150088. [PMID: 26729928 DOI: 10.1098/rstb.2015.0088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Models of social evolution and the evolution of helping have been classified in numerous ways. Two categorical differences have, however, escaped attention in the field. Models tend not to justify why they use a particular assumption structure about who helps whom: a large number of authors model peer-to-peer cooperation of essentially identical individuals, probably for reasons of mathematical convenience; others are inspired by particular cooperatively breeding species, and tend to assume unidirectional help where subordinates help a dominant breed more efficiently. Choices regarding what the help achieves (i.e. which life-history trait of the helped individual is improved) are similarly made without much comment: fecundity benefits are much more commonly modelled than survival enhancements, despite evidence that these may interact when the helped individual can perform life-history reallocations (load-lightening and related phenomena). We review our current theoretical understanding of effects revealed when explicitly asking 'who helps whom to achieve what', from models of mutual aid in partnerships to the very few models that explicitly contrast the strength of selection to help enhance another individual's fecundity or survival. As a result of idiosyncratic modelling choices in contemporary literature, including the varying degree to which demographic consequences are made explicit, there is surprisingly little agreement on what types of help are predicted to evolve most easily. We outline promising future directions to fill this gap.
Collapse
Affiliation(s)
- António M M Rodrigues
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Wolfson College, Barton Road, Cambridge CB3 9BB, UK
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Jacob S, Wehi P, Clobert J, Legrand D, Schtickzelle N, Huet M, Chaine A. Cooperation-mediated plasticity in dispersal and colonization. Evolution 2016; 70:2336-2345. [DOI: 10.1111/evo.13028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale du CNRS; UMR 5321; 09200 Saint-Girons France
- Université Catholique de Louvain; Earth and Life Institute and Biodiversity Research Centre; Croix du Sud 4, L7-07-04 1348 Louvain-la-Neuve Belgium
| | - Priscilla Wehi
- Station d'Ecologie Théorique et Expérimentale du CNRS; UMR 5321; 09200 Saint-Girons France
- Current Address: Landcare Research Manaaki Whenua; Private Bag 1930 Dunedin 9054 New Zealand
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale du CNRS; UMR 5321; 09200 Saint-Girons France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale du CNRS; UMR 5321; 09200 Saint-Girons France
- Université Catholique de Louvain; Earth and Life Institute and Biodiversity Research Centre; Croix du Sud 4, L7-07-04 1348 Louvain-la-Neuve Belgium
| | - Nicolas Schtickzelle
- Université Catholique de Louvain; Earth and Life Institute and Biodiversity Research Centre; Croix du Sud 4, L7-07-04 1348 Louvain-la-Neuve Belgium
| | - Michele Huet
- Station d'Ecologie Théorique et Expérimentale du CNRS; UMR 5321; 09200 Saint-Girons France
| | - Alexis Chaine
- Station d'Ecologie Théorique et Expérimentale du CNRS; UMR 5321; 09200 Saint-Girons France
- Institute for Advanced Studies in Toulouse; Toulouse School of Economics; 21 allée de Brienne 31015 Toulouse France
| |
Collapse
|
18
|
Lehmann L, Mullon C, Akçay E, Van Cleve J. Invasion fitness, inclusive fitness, and reproductive numbers in heterogeneous populations. Evolution 2016; 70:1689-702. [PMID: 27282317 DOI: 10.1111/evo.12980] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/28/2016] [Indexed: 12/25/2022]
Abstract
How should fitness be measured to determine which phenotype or "strategy" is uninvadable when evolution occurs in a group-structured population subject to local demographic and environmental heterogeneity? Several fitness measures, such as basic reproductive number, lifetime dispersal success of a local lineage, or inclusive fitness have been proposed to address this question, but the relationships between them and their generality remains unclear. Here, we ascertain uninvadability (all mutant strategies always go extinct) in terms of the asymptotic per capita number of mutant copies produced by a mutant lineage arising as a single copy in a resident population ("invasion fitness"). We show that from invasion fitness uninvadability is equivalently characterized by at least three conceptually distinct fitness measures: (i) lineage fitness, giving the average individual fitness of a randomly sampled mutant lineage member; (ii) inclusive fitness, giving a reproductive value weighted average of the direct fitness costs and relatedness weighted indirect fitness benefits accruing to a randomly sampled mutant lineage member; and (iii) basic reproductive number (and variations thereof) giving lifetime success of a lineage in a single group, and which is an invasion fitness proxy. Our analysis connects approaches that have been deemed different, generalizes the exact version of inclusive fitness to class-structured populations, and provides a biological interpretation of natural selection on a mutant allele under arbitrary strength of selection.
Collapse
Affiliation(s)
- Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Pennsylvania
| | | |
Collapse
|
19
|
Powers ST, Lehmann L. When is bigger better? The effects of group size on the evolution of helping behaviours. Biol Rev Camb Philos Soc 2016; 92:902-920. [PMID: 26989856 DOI: 10.1111/brv.12260] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Understanding the evolution of sociality in humans and other species requires understanding how selection on social behaviour varies with group size. However, the effects of group size are frequently obscured in the theoretical literature, which often makes assumptions that are at odds with empirical findings. In particular, mechanisms are suggested as supporting large-scale cooperation when they would in fact rapidly become ineffective with increasing group size. Here we review the literature on the evolution of helping behaviours (cooperation and altruism), and frame it using a simple synthetic model that allows us to delineate how the three main components of the selection pressure on helping must vary with increasing group size. The first component is the marginal benefit of helping to group members, which determines both direct fitness benefits to the actor and indirect fitness benefits to recipients. While this is often assumed to be independent of group size, marginal benefits are in practice likely to be maximal at intermediate group sizes for many types of collective action problems, and will eventually become very small in large groups due to the law of decreasing marginal returns. The second component is the response of social partners on the past play of an actor, which underlies conditional behaviour under repeated social interactions. We argue that under realistic conditions on the transmission of information in a population, this response on past play decreases rapidly with increasing group size so that reciprocity alone (whether direct, indirect, or generalised) cannot sustain cooperation in very large groups. The final component is the relatedness between actor and recipient, which, according to the rules of inheritance, again decreases rapidly with increasing group size. These results explain why helping behaviours in very large social groups are limited to cases where the number of reproducing individuals is small, as in social insects, or where there are social institutions that can promote (possibly through sanctioning) large-scale cooperation, as in human societies. Finally, we discuss how individually devised institutions can foster the transition from small-scale to large-scale cooperative groups in human evolution.
Collapse
Affiliation(s)
- Simon T Powers
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,School of Computing, Edinburgh Napier University, Edinburgh, EH10 5DT, U.K
| | - Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Rodrigues AMM, Gardner A. Simultaneous failure of two sex-allocation invariants: implications for sex-ratio variation within and between populations. Proc Biol Sci 2016; 282:rspb.2015.0570. [PMID: 26085590 PMCID: PMC4590475 DOI: 10.1098/rspb.2015.0570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Local mate competition (LMC) occurs when male relatives compete for mating opportunities, and this may favour the evolution of female-biased sex allocation. LMC theory is among the most well developed and empirically supported topics in behavioural ecology, clarifies links between kin selection, group selection and game theory, and provides among the best quantitative evidence for Darwinian adaptation in the natural world. Two striking invariants arise from this body of work: the number of sons produced by each female is independent of both female fecundity and also the rate of female dispersal. Both of these invariants have stimulated a great deal of theoretical and empirical research. Here, we show that both of these invariants break down when variation in female fecundity and limited female dispersal are considered in conjunction. Specifically, limited dispersal of females following mating leads to local resource competition (LRC) between female relatives for breeding opportunities, and the daughters of high-fecundity mothers experience such LRC more strongly than do those of low-fecundity mothers. Accordingly, high-fecundity mothers are favoured to invest relatively more in sons, while low-fecundity mothers are favoured to invest relatively more in daughters, and the overall sex ratio of the population sex ratio becomes more female biased as a result.
Collapse
Affiliation(s)
- António M M Rodrigues
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Wolfson College, Barton Road, Cambridge CB3 9BB, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| |
Collapse
|
21
|
Rodrigues AMM, Johnstone RA. Evolution of positive and negative density-dependent dispersal. Proc Biol Sci 2015; 281:20141226. [PMID: 25100700 DOI: 10.1098/rspb.2014.1226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the evolution of density-dependent dispersal strategies has been a major challenge for evolutionary ecologists. Some existing models suggest that selection should favour positive and others negative density-dependence in dispersal. Here, we develop a general model that shows how and why selection may shift from positive to negative density-dependence in response to key ecological factors, in particular the temporal stability of the environment. We find that in temporally stable environments, particularly with low dispersal costs and large group sizes, habitat heterogeneity selects for negative density-dependent dispersal, whereas in temporally variable environments, particularly with high dispersal costs and small group sizes, habitat heterogeneity selects for positive density-dependent dispersal. This shift reflects the changing balance between the greater competition for breeding opportunities in more productive patches, versus the greater long-term value of offspring that establish themselves there, the latter being very sensitive to the temporal stability of the environment. In general, dispersal of individuals out of low-density patches is much more sensitive to habitat heterogeneity than is dispersal out of high-density patches.
Collapse
Affiliation(s)
- António M M Rodrigues
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Rufus A Johnstone
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
22
|
Rodrigues AMM, Gardner A. The constant philopater hypothesis: a new life history invariant for dispersal evolution. J Evol Biol 2015; 29:153-66. [PMID: 26431821 PMCID: PMC4738439 DOI: 10.1111/jeb.12771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022]
Abstract
Surprising invariance relationships have emerged from the study of social interaction, whereby a cancelling‐out of multiple partial effects of genetic, ecological or demographic parameters means that they have no net impact upon the evolution of a social behaviour. Such invariants play a pivotal role in the study of social adaptation: on the one hand, they provide theoretical hypotheses that can be empirically tested; and, on the other hand, they provide benchmark frameworks against which new theoretical developments can be understood. Here we derive a novel invariant for dispersal evolution: the ‘constant philopater hypothesis’ (CPH). Specifically, we find that, irrespective of variation in maternal fecundity, all mothers are favoured to produce exactly the same number of philopatric offspring, with high‐fecundity mothers investing proportionally more, and low‐fecundity mothers investing proportionally less, into dispersing offspring. This result holds for female and male dispersal, under haploid, diploid and haplodiploid modes of inheritance, irrespective of the sex ratio, local resource availability and whether mother or offspring controls the latter's dispersal propensity. We explore the implications of this result for evolutionary conflict of interests – and the exchange and withholding of contextual information – both within and between families, and we show that the CPH is the fundamental invariant that underpins and explains a wider family of invariance relationships that emerge from the study of social evolution.
Collapse
Affiliation(s)
- A M M Rodrigues
- Department of Zoology, University of Cambridge, Cambridge, UK.,Wolfson College, Cambridge, UK
| | - A Gardner
- School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
23
|
Faria GS, Varela SAM, Gardner A. Sex-biased dispersal, kin selection and the evolution of sexual conflict. J Evol Biol 2015; 28:1901-10. [PMID: 26190034 DOI: 10.1111/jeb.12697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/01/2022]
Abstract
There is growing interest in resolving the curious disconnect between the fields of kin selection and sexual selection. Rankin's (2011, J. Evol. Biol. 24, 71-81) theoretical study of the impact of kin selection on the evolution of sexual conflict in viscous populations has been particularly valuable in stimulating empirical research in this area. An important goal of that study was to understand the impact of sex-specific rates of dispersal upon the coevolution of male-harm and female-resistance behaviours. But the fitness functions derived in Rankin's study do not flow from his model's assumptions and, in particular, are not consistent with sex-biased dispersal. Here, we develop new fitness functions that do logically flow from the model's assumptions, to determine the impact of sex-specific patterns of dispersal on the evolution of sexual conflict. Although Rankin's study suggested that increasing male dispersal always promotes the evolution of male harm and that increasing female dispersal always inhibits the evolution of male harm, we find that the opposite can also be true, depending upon parameter values.
Collapse
Affiliation(s)
- Gonçalo S Faria
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Susana A M Varela
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
24
|
Social evolution and genetic interactions in the short and long term. Theor Popul Biol 2015; 103:2-26. [PMID: 26003630 DOI: 10.1016/j.tpb.2015.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022]
Abstract
The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work.
Collapse
|
25
|
Berman CM. Primate Kinship: Contributions from Cayo Santiago. Am J Primatol 2015; 78:63-77. [PMID: 25704962 DOI: 10.1002/ajp.22383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 11/09/2022]
Abstract
Research on Cayo Santiago and Japan deserves credit for launching the study of primate kinship and for continuing to help shape it in important ways. This review describes the origins of kinship research on Cayo Santiago, beginning with Donald Sade's pioneering work establishing the concepts of kin preferences, matrilineal dominance systems and incest avoidance. It then reviews subsequent research by later Cayo Santiago researchers and alumni, focusing primarily on maternal kinship. Together these researchers have greatly expanded our knowledge of kin preferences in rhesus in terms of (i) what age-sex classes, behaviors and types of kin show them, (ii) the ways in which kinship interfaces with rank, sex, age, and dispersal patterns, and (iii) the graded and variably limited nature of kin preferences in terms of degree of relatedness. Second, the argument for kin selection at least for some types of behavior has survived challenges posed by several alternative explanations, and has been both strengthened by recent findings of paternal kin preferences and narrowed by studies showing that unilateral altruism may extend only to very close kin. Third, work on Cayo Santiago has contributed to an appreciation that both current conditions and inherent social characteristics may influence the strength of kin preferences, and fourth, it has contributed to an understanding of the possible origins of our own species' family systems. Cayo Santiago became a leader in kinship research in large part because of management practices that produce known extended lineages. These lineages have promoted and accelerated research on kinship, prompting other researchers to investigate its importance in other groups and species, where its effects only then became clear. The extended lineages remain valuable tools for research on a species that lives in a broad range of environments in the wild, including those with key parallels to Cayo Santiago.
Collapse
Affiliation(s)
- Carol M Berman
- Department of Anthropology and Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo, New York
| |
Collapse
|
26
|
Gardner A. The genetical theory of multilevel selection. J Evol Biol 2015; 28:305-19. [PMID: 25475922 PMCID: PMC4415573 DOI: 10.1111/jeb.12566] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022]
Abstract
The theory of multilevel selection (MLS) is beset with conceptual difficulties. Although it is widely agreed that covariance between group trait and group fitness may arise in the natural world and drive a response to 'group selection', ambiguity exists over the precise meaning of group trait and group fitness and as to whether group selection should be defined according to changes in frequencies of different types of individual or different types of group. Moreover, the theory of MLS has failed to properly engage with the problem of class structure, which greatly limits its empirical application to, for example, social insects whose colonies are structured into separate age, sex, caste and ploidy classes. Here, I develop a genetical theory of MLS, to address these problems. I show that taking a genetical approach facilitates a decomposition of group-level traits - including reproductive success - into the separate contributions made by each constituent individual, even in the context of so-called emergence. However, I uncover a novel problem with the group-oriented approach: in many scenarios, it may not be possible to express a meaningful covariance between trait and fitness at the level of the social group, because the group's constituents belong to separate, irreconcilable classes.
Collapse
Affiliation(s)
- A Gardner
- School of Biology, University of St AndrewsSt Andrews, UK
| |
Collapse
|
27
|
Lebigre C, Alatalo RV, Soulsbury CD, Höglund J, Siitari H. Limited indirect fitness benefits of male group membership in a lekking species. Mol Ecol 2014; 23:5356-65. [PMID: 25263625 DOI: 10.1111/mec.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
In group living species, individuals may gain the indirect fitness benefits characterizing kin selection when groups contain close relatives. However, tests of kin selection have primarily focused on cooperatively breeding and eusocial species, whereas its importance in other forms of group living remains to be fully understood. Lekking is a form of grouping where males display on small aggregated territories, which females then visit to mate. As females prefer larger aggregations, territorial males might gain indirect fitness benefits if their presence increases the fitness of close relatives. Previous studies have tested specific predictions of kin selection models using measures such as group-level relatedness. However, a full understanding of the contribution of kin selection in the evolution of group living requires estimating individuals' indirect fitness benefits across multiple sites and years. Using behavioural and genetic data from the black grouse (Tetrao tetrix), we show that the indirect fitness benefits of group membership were very small because newcomers joined leks containing few close relatives who had limited mating success. Males' indirect fitness benefits were higher in yearlings during increasing population density but marginally changed the variation in male mating success. Kin selection acting through increasing group size is therefore unlikely to contribute substantially to the evolution and maintenance of lekking in this black grouse population.
Collapse
Affiliation(s)
- Christophe Lebigre
- Catholic University of Louvain, Earth and Life Institute, Croix du Sud 4, B-1348, Louvain-la-Neuve, Belgium; Centre of Excellence in Evolutionary Research, Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
| | | | | | | | | |
Collapse
|
28
|
Mullon C, Lehmann L. The robustness of the weak selection approximation for the evolution of altruism against strong selection. J Evol Biol 2014; 27:2272-82. [DOI: 10.1111/jeb.12462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/29/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022]
Affiliation(s)
- C. Mullon
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - L. Lehmann
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
29
|
Débarre F, Hauert C, Doebeli M. Social evolution in structured populations. Nat Commun 2014; 5:3409. [DOI: 10.1038/ncomms4409] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/06/2014] [Indexed: 11/09/2022] Open
|
30
|
Van Cleve J, Lehmann L. Stochastic stability and the evolution of coordination in spatially structured populations. Theor Popul Biol 2013; 89:75-87. [DOI: 10.1016/j.tpb.2013.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/08/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
31
|
Uchinomiya K, Iwasa Y. Evolution of stalk/spore ratio in a social amoeba: Cell-to-cell interaction via a signaling chemical shaped by cheating risk. J Theor Biol 2013; 336:110-8. [DOI: 10.1016/j.jtbi.2013.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022]
|
32
|
Kuijper B, Johnstone RA. How should parents adjust the size of their young in response to local environmental cues? J Evol Biol 2013; 26:1488-98. [PMID: 23675944 DOI: 10.1111/jeb.12156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 11/28/2022]
Abstract
Models of parental investment typically assume that populations are well mixed and homogeneous and have devoted little attention to the impact of spatial variation in the local environment. Here, in a patch-structured model with limited dispersal, we assess to what extent resource-rich and resource-poor mothers should alter the size of their young in response to the local environment in their patch. We show that limited dispersal leads to a correlation between maternal and offspring environments, which favours plastic adjustment of offspring size in response to local survival risk. Strikingly, however, resource-poor mothers are predicted to respond more strongly to local survival risk, whereas resource-rich mothers are predicted to respond less strongly. This lack of sensitivity on the part of resource-rich mothers is favoured because they accrue much of their fitness through dispersing young. By contrast, resource-poor mothers accrue a larger fraction of their fitness through philopatric young and should therefore respond more strongly to local risk. Mothers with more resources gain a larger share of their fitness through dispersing young partly because their fitness in the local patch is constrained by the limited number of local breeding spots. In addition, when resource variation occurs at the patch level, the philopatric offspring of resource-rich mothers face stronger competition from the offspring of other local mothers, who also enjoy abundant resources. The effect of limited local breeding opportunities becomes less pronounced as patch size increases, but the impact of patch-level variation in resources holds up even with many breeders per patch.
Collapse
Affiliation(s)
- B Kuijper
- Environment and Sustainability Institute, University of Exeter, Penryn, UK.
| | | |
Collapse
|
33
|
Rodrigues AMM, Gardner A. Evolution of Helping and Harming in Viscous Populations When Group Size Varies. Am Nat 2013; 181:609-22. [DOI: 10.1086/670031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Rodrigues AMM, Gardner A. Evolution of helping and harming in heterogeneous groups. Evolution 2013; 67:2284-98. [PMID: 23888851 DOI: 10.1111/evo.12110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 03/07/2013] [Indexed: 11/27/2022]
Abstract
Social groups are often composed of individuals who differ in many respects. Theoretical studies on the evolution of helping and harming behaviors have largely focused upon genetic differences between individuals. However, nongenetic variation between group members is widespread in natural populations, and may mediate differences in individuals' social behavior. Here, we develop a framework to study how variation in individual quality mediates the evolution of unconditional and conditional social traits. We investigate the scope for the evolution of social traits that are conditional on the quality of the actor and/or recipients. We find that asymmetries in individual quality can lead to the evolution of plastic traits with different individuals expressing helping and harming traits within the same group. In this context, population viscosity can mediate the evolution of social traits, and local competition can promote both helping and harming behaviors. Furthermore, asymmetries in individual quality can lead to the evolution of competition-like traits between clonal individuals. Overall, we highlight the importance of asymmetries in individual quality, including differences in reproductive value and the ability to engage in successful social interactions, in mediating the evolution of helping and harming behaviors.
Collapse
Affiliation(s)
- António M M Rodrigues
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom.
| | | |
Collapse
|
35
|
Ingram KK, Pilko A, Heer J, Gordon DM. Colony life history and lifetime reproductive success of red harvester ant colonies. J Anim Ecol 2013; 82:540-50. [DOI: 10.1111/1365-2656.12036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/12/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Krista K. Ingram
- Department of Biology; Colgate University; Hamilton; NY; 13346; USA
| | - Anna Pilko
- Department of Biology; Stanford University; Stanford; CA; 94305-5020; USA
| | - Jeffrey Heer
- Department of Computer Science; Stanford University; Stanford; CA; 94305-5020; USA
| | - Deborah M. Gordon
- Department of Biology; Stanford University; Stanford; CA; 94305-5020; USA
| |
Collapse
|
36
|
Yeh AYC, Gardner A. A general ploidy model for the evolution of helping in viscous populations. J Theor Biol 2012; 304:297-303. [DOI: 10.1016/j.jtbi.2012.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Kuijper B, Johnstone RA. How dispersal influences parent–offspring conflict over investment. Behav Ecol 2012. [DOI: 10.1093/beheco/ars054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|