1
|
Fotopulosova V, Tanieli G, Fusek K, Jansa P, Forejt J. A Minimal Hybrid Sterility Genome Assembled by Chromosome Swapping Between Mouse Subspecies (Mus musculus). Mol Biol Evol 2024; 41:msae211. [PMID: 39404090 PMCID: PMC11518865 DOI: 10.1093/molbev/msae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Hybrid sterility is a reproductive isolation barrier between diverging taxa securing the early steps of speciation. Hybrid sterility is ubiquitous in the animal and plant kingdoms, but its genetic control is poorly understood. In our previous studies, we have uncovered the sterility of hybrids between musculus and domesticus subspecies of the house mouse, which is controlled by the Prdm9 gene, the X-linked Hstx2 locus, and subspecific heterozygosity for genetic background. To further investigate this form of genic-driven chromosomal sterility, we constructed a simplified hybrid sterility model within the genome of the domesticus subspecies by swapping domesticus autosomes with their homologous partners from the musculus subspecies. We show that the "sterility" allelic combination of Prdm9 and Hstx2 can be activated by a musculus/domesticus heterozygosity of as few as two autosomes, Chromosome 17 (Chr 17) and Chr 18 and is further enhanced when another heterosubspecific autosomal pair is present, whereas it has no effect on meiotic progression in the pure domesticus genome. In addition, we identify a new X-linked hybrid sterility locus, Hstx3, at the centromeric end of Chr X, which modulates the incompatibility between Prdm9 and Hstx2. These results further support our concept of chromosomal hybrid sterility based on evolutionarily accumulated divergence between homologous sequences. Based on these and previous results, we believe that future studies should include more information on the mutual recognition of homologous chromosomes at or before the first meiotic prophase in interspecific hybrids, as this may serve as a general reproductive isolation checkpoint in mice and other species.
Collapse
Affiliation(s)
- Vladana Fotopulosova
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Giordano Tanieli
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Karel Fusek
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Petr Jansa
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Jiri Forejt
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
2
|
AbuAlia KFN, Damm E, Ullrich KK, Mukaj A, Parvanov E, Forejt J, Odenthal-Hesse L. Natural variation in the zinc-finger-encoding exon of Prdm9 affects hybrid sterility phenotypes in mice. Genetics 2024; 226:iyae004. [PMID: 38217871 PMCID: PMC10917509 DOI: 10.1093/genetics/iyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.
Collapse
Affiliation(s)
- Khawla F N AbuAlia
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Elena Damm
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Kristian K Ullrich
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Amisa Mukaj
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Linda Odenthal-Hesse
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| |
Collapse
|
3
|
Szabo N, Cutter AD. Experimental evolution of hybrid populations to identify Dobzhansky-Muller incompatibility loci. Ecol Evol 2024; 14:e10972. [PMID: 38333096 PMCID: PMC10851027 DOI: 10.1002/ece3.10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 02/10/2024] Open
Abstract
Epistatic interactions between loci that reduce fitness in interspecies hybrids, Dobzhansky-Muller incompatibilities (DMIs), contribute genetically to the inviability and infertility within hybrid populations. It remains a challenge, however, to identify the loci that contribute to DMIs as causes of reproductive isolation between species. Here, we assess through forward simulation the power of evolve-and-resequence (E&R) experimental evolution of hybrid populations to map DMI loci. We document conditions under which such a mapping strategy may be most feasible and demonstrate how mapping power is sensitive to biologically relevant parameters such as one-way versus two-way incompatibility type, selection strength, recombination rate, and dominance interactions. We also assess the influence of parameters under direct control of an experimenter, including duration of experimental evolution and number of replicate populations. We conclude that an E&R strategy for mapping DMI loci, and other cases of epistasis, can be a viable option under some circumstances for study systems with short generation times like Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Nicole Szabo
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Asher D. Cutter
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, Okude G, Stevison L, Yoshida K, Kitano J. Mechanisms of Intrinsic Postzygotic Isolation: From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives. Cold Spring Harb Perspect Biol 2023; 15:a041607. [PMID: 37696577 PMCID: PMC10547394 DOI: 10.1101/cshperspect.a041607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34090 Montpellier, France
| | - Jenn Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jonna Kulmuni
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, 1012 Amsterdam, The Netherlands
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, 00100 Helsinki, Finland
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076 Tuebingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Genta Okude
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Laurie Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Kohta Yoshida
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
5
|
Valiskova B, Gregorova S, Lustyk D, Šimeček P, Jansa P, Forejt J. Genic and Chromosomal Components of Prdm9-Driven Hybrid Male Sterility in Mice (Mus musculus). Genetics 2022; 222:6655690. [PMID: 35924978 PMCID: PMC9434306 DOI: 10.1093/genetics/iyac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility (HMS) gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus m. musculus x Mus m. domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break (DSB) hotspots results in difficult to repair DSBs, incomplete synapsis of homologous chromosomes and meiotic arrest at the first meiotic prophase. Here we show that Prdm9 behaves as a major HMS gene in mice outside the Mus m. musculus x Mus m. domesticus F1 hybrids, in the genomes composed of Mus m. castaneus and Mus m. musculus chromosomes segregating on the Mus m. domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of five quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, four control either meiotic synapsis or fertility phenotypes and one controls both, synapsis and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of HMS. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled HMS represents an example of genetic architecture of HMS consisting of genic and chromosomal components.
Collapse
Affiliation(s)
- Barbora Valiskova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Sona Gregorova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Petr Šimeček
- Central Laboratory of Bioinformatics, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Jiří Forejt
- Corresponding author: Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Průmyslová 595, Vestec 25250, Czech Republic.
| |
Collapse
|
6
|
Damm E, Ullrich KK, Amos WB, Odenthal-Hesse L. Evolution of the recombination regulator PRDM9 in minke whales. BMC Genomics 2022; 23:212. [PMID: 35296233 PMCID: PMC8925151 DOI: 10.1186/s12864-022-08305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types – that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. Results Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales – shared across North Atlantic and North Pacific minke whale subspecies boundaries. Conclusion The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08305-1.
Collapse
Affiliation(s)
- Elena Damm
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - Kristian K Ullrich
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - William B Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany.
| |
Collapse
|
7
|
Larson EL, Kopania EEK, Hunnicutt KE, Vanderpool D, Keeble S, Good JM. Stage-specific disruption of X chromosome expression during spermatogenesis in sterile house mouse hybrids. G3 (BETHESDA, MD.) 2022; 12:jkab407. [PMID: 34864964 PMCID: PMC9210296 DOI: 10.1093/g3journal/jkab407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.
Collapse
Affiliation(s)
- Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
8
|
Forejt J, Jansa P, Parvanov E. Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet 2021; 37:1095-1108. [PMID: 34238593 DOI: 10.1016/j.tig.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Hybrid sterility is a critical step in the evolution of reproductive barriers between diverging taxa during the process of speciation. Recent studies of young subspecies of the house mouse revealed a multigenic nature and frequent polymorphism of hybrid sterility genes as well as the recurrent engagement of the meiosis-specific gene PR domain-containing 9 (Prdm9) and X-linked loci. Prdm9-controlled hybrid sterility is essentially chromosomal in nature, conditioned by the sequence divergence between subspecies. Depending on the Prdm9 interallelic interactions and the X-linked Hstx2 locus, the same homologs either regularly recombine and synapse, or show impaired DNA DSB repair, asynapsis, and early meiotic arrest. Thus, Prdm9-dependent hybrid sterility points to incompatibilities affecting meiotic recombination as a possible mechanism of reproductive isolation between (sub)species.
Collapse
Affiliation(s)
- Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic.
| | - Petr Jansa
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Emil Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| |
Collapse
|
9
|
Bikchurina TI, Golenishchev FN, Kizilova EA, Mahmoudi A, Borodin PM. Reproductive Isolation Between Taxonomically Controversial Forms of the Gray Voles ( Microtus, Rodentia; Arvicolinae): Cytological Mechanisms and Taxonomical Implications. Front Genet 2021; 12:653837. [PMID: 34040633 PMCID: PMC8141921 DOI: 10.3389/fgene.2021.653837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
The formation of hybrid sterility is an important stage of speciation. The voles of the genus Microtus, which is the most speciose genus of rodents, provide a good model for studying the cytological mechanisms of hybrid sterility. The voles of the "mystacinus" group of the subgenus Microtus (2n = 54) comprising several recently diverged forms with unclear taxonomic status are especially interesting. To resolve the taxonomic status of Microtus mystacinus and Microtus kermanensis, we crossed both with Microtus rossiaemeridionalis, and M. kermanensis alone with Microtus arvalis "obscurus" and M. transcaspicus and examined the reproductive performance of their F1 hybrids. All interspecies male hybrids were sterile. Female M. kermanensis × M. arvalis and M. kermanensis × M. transcaspicus hybrids were sterile as well. Therefore, M. mystacinus, M. kermanensis, and M. rossiaemeridionalis could be considered valid species. To gain an insight into the cytological mechanisms of male hybrid sterility, we carried out a histological analysis of spermatogenesis and a cytological analysis of chromosome synapsis, recombination, and epigenetic chromatin modifications in the germ cells of the hybrids using immunolocalization of key meiotic proteins. The hybrids showed wide variation in the onset of spermatogenesis arrest stage, from mature (although abnormal) spermatozoa to spermatogonia only. Chromosome asynapsis was apparently the main cause of meiotic arrest. The degree of asynapsis varied widely across cells, individuals, and the crosses-from partial asynapsis of several small bivalents to complete asynapsis of all chromosomes. The asynapsis was accompanied by a delayed repair of DNA double-strand breaks marked by RAD51 antibodies and silencing of unpaired chromatin marked by γH2A.X antibodies. Overall, the severity of disturbances in spermatogenesis in general and in chromosome synapsis in particular increased in the hybrids with an increase in the phylogenetic distance between their parental species.
Collapse
Affiliation(s)
- Tatiana I Bikchurina
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Structural and Functional Genome Organization, Novosibirsk State University, Novosibirsk, Russia
| | - Fedor N Golenishchev
- Laboratory of Theriology, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena A Kizilova
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Pavel M Borodin
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
10
|
Mukaj A, Piálek J, Fotopulosova V, Morgan AP, Odenthal-Hesse L, Parvanov ED, Forejt J. Prdm9 Intersubspecific Interactions in Hybrid Male Sterility of House Mouse. Mol Biol Evol 2020; 37:3423-3438. [PMID: 32642764 PMCID: PMC7743643 DOI: 10.1093/molbev/msaa167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Amisa Mukaj
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladana Fotopulosova
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | | | - Linda Odenthal-Hesse
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Emil D Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| |
Collapse
|
11
|
Widmayer SJ, Handel MA, Aylor DL. Age and Genetic Background Modify Hybrid Male Sterility in House Mice. Genetics 2020; 216:585-597. [PMID: 32817010 PMCID: PMC7536842 DOI: 10.1534/genetics.120.303474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 12 weeks and after 35 weeks. However, some PWKB6 and PWKAJ males were transiently fertile between 12 and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.
Collapse
Affiliation(s)
- Samuel J Widmayer
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Graduate Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | | | - David L Aylor
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
12
|
Evaluation of Drosophila chromosomal segments proposed by means of simulations of possessing hybrid sterility genes from reproductive isolation. J Genet 2020. [DOI: 10.1007/s12041-020-01215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Morimoto K, Numata K, Daitoku Y, Hamada Y, Kobayashi K, Kato K, Suzuki H, Ayabe S, Yoshiki A, Takahashi S, Murata K, Mizuno S, Sugiyama F. Reverse genetics reveals single gene of every candidate on Hybrid sterility, X Chromosome QTL 2 (Hstx2) are dispensable for spermatogenesis. Sci Rep 2020; 10:9060. [PMID: 32493902 PMCID: PMC7270182 DOI: 10.1038/s41598-020-65986-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
F1 hybrid progenies between related subspecies often show hybrid sterility (HS) or inviability. HS is caused by failure of meiotic chromosome synapsis and sex body formation in house mouse. Previous studies identified two HS critical genomic regions named Hstx2 on Chr X and Hst1 on Chr 17 by murine forward genetic approaches. HS gene on Hst1 was reported to be Prdm9. Intersubspecific polymorphisms of Prdm9 induce HS in hybrids, and Prdm9 null mutation leads to sterility in the inbred strain. However, HS gene on Hstx2 remains unknown. Here, using knock-out studies, we showed that HS candidate genes on Hstx2 are not individually essential for spermatogenesis in B6 strain. We examined 12 genes on Hstx2: Ctag2, 4930447F04Rik, Mir743, Mir465d, Mir465c-2, Mir465b-1, Mir465c-1, Mir465, Gm1140, Gm14692, 4933436I01Rik, and Gm6812. These genes were expressed in adult testes, and showed intersubspecific polymorphisms on expressed regions. This first reverse genetic approach to identify HS gene on Hstx2 suggested that the loss of function of any one HS candidate gene does not cause complete sterility, unlike Prdm9. Thus, the mechanism(s) of HS by the HS gene on Hstx2 might be different from that of Prdm9.
Collapse
Affiliation(s)
- Kento Morimoto
- Laboratory Animal Science, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koki Numata
- Laboratory Animal Science, Bachelor of Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Clinical Laboratories, University of Tsukuba Hospital, 2-1-1 Amakubo Tsukuba, Ibaraki, 305-8576, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Keiko Kobayashi
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Developmental Engineering & Embryology Group Genetically Engineered Models and Services Charles River Laboratories Japan, Inc., 955 Kamibayashi, Ishioka, Ibaraki, 315-0138, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hayate Suzuki
- Laboratory Animal Science, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
14
|
Vara C, Capilla L, Ferretti L, Ledda A, Sánchez-Guillén RA, Gabriel SI, Albert-Lizandra G, Florit-Sabater B, Bello-Rodríguez J, Ventura J, Searle JB, Mathias ML, Ruiz-Herrera A. PRDM9 Diversity at Fine Geographical Scale Reveals Contrasting Evolutionary Patterns and Functional Constraints in Natural Populations of House Mice. Mol Biol Evol 2020; 36:1686-1700. [PMID: 31004162 PMCID: PMC6657731 DOI: 10.1093/molbev/msz091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.
Collapse
Affiliation(s)
- Covadonga Vara
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luca Ferretti
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Ledda
- Department for Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rosa A Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Ecología AC (INECOL), Red de Biología Evolutiva, Xalapa, Veracruz, Mexico
| | - Sofia I Gabriel
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Guillermo Albert-Lizandra
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriu Florit-Sabater
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Bello-Rodríguez
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Maria L Mathias
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Lustyk D, Kinský S, Ullrich KK, Yancoskie M, Kašíková L, Gergelits V, Sedlacek R, Chan YF, Odenthal-Hesse L, Forejt J, Jansa P. Genomic Structure of Hstx2 Modifier of Prdm9-Dependent Hybrid Male Sterility in Mice. Genetics 2019; 213:1047-1063. [PMID: 31562180 PMCID: PMC6827376 DOI: 10.1534/genetics.119.302554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.
Collapse
Affiliation(s)
- Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Faculty of Science, Charles University, Prague CZ-12000, Czech Republic
| | - Slavomír Kinský
- The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Kristian Karsten Ullrich
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Michelle Yancoskie
- Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany
| | - Lenka Kašíková
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Radislav Sedlacek
- The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Yingguang Frank Chan
- Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| |
Collapse
|
16
|
Nishino R, Petri S, Handel MA, Kunieda T, Fujiwara Y. Hybrid Sterility with Meiotic Metaphase Arrest in Intersubspecific Mouse Crosses. J Hered 2019; 110:183-193. [PMID: 30452700 PMCID: PMC6399516 DOI: 10.1093/jhered/esy060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Although organisms belonging to different species and subspecies sometimes produce fertile offspring, a hallmark of the speciation process is reproductive isolation, characterized by hybrid sterility (HS) due to failure in gametogenesis. In mammals, HS is usually exhibited by males, the heterogametic sex. The phenotypic manifestations of HS are complex. The most frequently observed are abnormalities in both autosomal and sex chromosome interactions that are linked to meiotic prophase arrest or postmeiotic spermiogenesis aberrations and lead to defective or absent gametes. The aim of this study was to determine the HS phenotypes in intersubspecific F1 mice produced by matings between Mus musculus molossinus-derived strains and diverse Mus musculus domesticus-inbred laboratory mouse strains. Most of these crosses produced fertile F1 offspring. However, when female BALB/cJ (domesticus) mice were mated to male JF1/MsJ (molossinus) mice, the (BALBdomxJF1mol)F1 males were sterile, whereas the (JF1molxBALBdom)F1 males produced by the reciprocal crossings were fertile; thus the sterility phenotype was asymmetric. The sterile (BALBdomxJF1mol) F1 males exhibited a high rate of meiotic metaphase arrest with misaligned chromosomes, probably related to a high frequency of XY dissociation. Intriguingly, in the sterile (BALBdomxJF1mol)F1 males we observed aberrant allele-specific expression of several meiotic genes, that play critical roles in important meiotic events including chromosome pairing. Together, these observations of an asymmetrical HS phenotype in intersubspecific F1 males, probably owing to meiotic defects in the meiotic behavior of the XY chromosomes pair and possibly also transcriptional misregulation of meiotic genes, provide new models and directions for understanding speciation mechanisms in mammals.
Collapse
Affiliation(s)
- Risako Nishino
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Okayama, Japan
- Institute of Environmental Toxicology, Joso, Ibaraki, Japan
| | | | | | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Okayama, Japan
| | - Yasuhiro Fujiwara
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Okayama, Japan
- The Jackson Laboratory, Bar Harbor, ME, Japan
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Wang L, Valiskova B, Forejt J. Cisplatin-induced DNA double-strand breaks promote meiotic chromosome synapsis in PRDM9-controlled mouse hybrid sterility. eLife 2018; 7:e42511. [PMID: 30592461 PMCID: PMC6324875 DOI: 10.7554/elife.42511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
PR domain containing 9 (Prdm9) is specifying hotspots of meiotic recombination but in hybrids between two mouse subspecies Prdm9 controls failure of meiotic chromosome synapsis and hybrid male sterility. We have previously reported that Prdm9-controlled asynapsis and meiotic arrest are conditioned by the inter-subspecific heterozygosity of the hybrid genome and we presumed that the insufficient number of properly repaired PRDM9-dependent DNA double-strand breaks (DSBs) causes asynapsis of chromosomes and meiotic arrest (Gregorova et al., 2018). We now extend the evidence for the lack of properly processed DSBs by improving meiotic chromosome synapsis with exogenous DSBs. A single injection of chemotherapeutic drug cisplatin increased frequency of RPA and DMC1 foci at the zygotene stage of sterile hybrids, enhanced homolog recognition and increased the proportion of spermatocytes with fully synapsed homologs at pachytene. The results bring a new evidence for a DSB-dependent mechanism of synapsis failure and infertility of intersubspecific hybrids.
Collapse
Affiliation(s)
- Liu Wang
- BIOCEV DivisionInstitute of Molecular Genetics, Czech Academy of SciencesVestecCzech Republic
| | - Barbora Valiskova
- BIOCEV DivisionInstitute of Molecular Genetics, Czech Academy of SciencesVestecCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jiri Forejt
- BIOCEV DivisionInstitute of Molecular Genetics, Czech Academy of SciencesVestecCzech Republic
| |
Collapse
|
18
|
Schwahn DJ, Wang RJ, White MA, Payseur BA. Genetic Dissection of Hybrid Male Sterility Across Stages of Spermatogenesis. Genetics 2018; 210:1453-1465. [PMID: 30333190 PMCID: PMC6283182 DOI: 10.1534/genetics.118.301658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Hybrid sterility is a common form of reproductive isolation between nascent species. Although hybrid sterility is routinely documented and genetically dissected in speciation studies, its developmental basis is rarely examined, especially in generations beyond the F1 generation. To identify phenotypic and genetic determinants of hybrid male sterility from a developmental perspective, we characterized testis histology in 312 F2 hybrids generated by intercrossing inbred strains of Mus musculus domesticus and M. m. musculus, two subspecies of house mice. Hybrids display a range of histologic abnormalities that indicate defective spermatogenesis. Among these abnormalities, we quantified decreased testis size, reductions in spermatocyte and spermatid number, increased apoptosis of meiosis I spermatocytes, and more multinucleated syncytia. Collectively, our phenotypic data point to defects in meiosis I as a primary barrier to reproduction. We identified seven quantitative trait loci (QTL) controlling five histologic traits. A region of chromosome 17 that contains Prdm9, a gene known to confer F1 hybrid male sterility, affects multinucleated syncytia and round spermatids, potentially extending the phenotypic outcomes of this incompatibility. The X chromosome also plays a key role, with loci affecting multinucleated syncytia, apoptosis of round spermatids, and round spermatid numbers. We detected an epistatic interaction between QTL on chromosomes 17 and X for multinucleated syncytia. Our results refine the developmental basis of a key reproductive barrier in a classic model system for speciation genetics.
Collapse
Affiliation(s)
- Denise J Schwahn
- Research Animal Resources Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Richard J Wang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael A White
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
19
|
Gregorova S, Gergelits V, Chvatalova I, Bhattacharyya T, Valiskova B, Fotopulosova V, Jansa P, Wiatrowska D, Forejt J. Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice. eLife 2018. [PMID: 29537370 PMCID: PMC5902161 DOI: 10.7554/elife.34282] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9, the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9-controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species.
Collapse
Affiliation(s)
- Sona Gregorova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Vaclav Gergelits
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Irena Chvatalova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Tanmoy Bhattacharyya
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Barbora Valiskova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladana Fotopulosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Petr Jansa
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Diana Wiatrowska
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Jiri Forejt
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| |
Collapse
|
20
|
Paigen K, Petkov PM. PRDM9 and Its Role in Genetic Recombination. Trends Genet 2018; 34:291-300. [PMID: 29366606 DOI: 10.1016/j.tig.2017.12.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
PRDM9 is a zinc finger protein that binds DNA at specific locations in the genome where it trimethylates histone H3 at lysines 4 and 36 at surrounding nucleosomes. During meiosis in many species, including humans and mice where PRDM9 has been most intensely studied, these actions determine the location of recombination hotspots, where genetic recombination occurs. In addition, PRDM9 facilitates the association of hotspots with the chromosome axis, the site of the programmed DNA double-strand breaks (DSBs) that give rise to genetic exchange between chromosomes. In the absence of PRDM9 DSBs are not properly repaired. Collectively, these actions determine patterns of genetic linkage and the possibilities for chromosome reorganization over successive generations.
Collapse
|
21
|
Tiemann-Boege I, Schwarz T, Striedner Y, Heissl A. The consequences of sequence erosion in the evolution of recombination hotspots. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160462. [PMID: 29109225 PMCID: PMC5698624 DOI: 10.1098/rstb.2016.0462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans-acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| |
Collapse
|
22
|
Larson EL, Keeble S, Vanderpool D, Dean MD, Good JM. The Composite Regulatory Basis of the Large X-Effect in Mouse Speciation. Mol Biol Evol 2017; 34:282-295. [PMID: 27999113 PMCID: PMC6200130 DOI: 10.1093/molbev/msw243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expression in sterile hybrids at every stage of spermatogenesis. Failure of MSCI was developmentally preceded by increased silencing of autosomal genes, supporting the hypothesis that divergence at the hybrid incompatibility gene, Prdm9, results in increased rates of autosomal asynapsis which in turn triggers widespread silencing of unsynapsed chromatin. We also detected opposite patterns of postmeiotic overexpression or hyper-repression of the sex chromosomes in reciprocal hybrids, supporting the hypothesis that genomic conflict has driven functional divergence that leads to deleterious X-Y dosage imbalances in hybrids. Our developmental timeline also exposed more subtle patterns of mitotic misregulation on the X chromosome, a previously undocumented stage of spermatogenic disruption in this cross. These results indicate that multiple hybrid incompatibilities have converged on a common regulatory phenotype, the disrupted expression of the sex chromosomes during spermatogenesis. Collectively, these data reveal a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation. We propose that the inherent sensitivity of spermatogenesis to X-linked regulatory disruption has the potential to be a major driver of reproductive isolation in species with chromosomal sex determination.
Collapse
Affiliation(s)
- Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT
| |
Collapse
|
23
|
Visualization of Results from Systems Genetics Studies in Chromosomal Context. Methods Mol Biol 2016. [PMID: 27933530 DOI: 10.1007/978-1-4939-6427-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes methods currently available for visualizing results from systems genetics experiments. Here, we abstract from the statistical methods used for genetic mapping, which are dependent on the specific resource being used, i.e. F2, RILs, or outbred populations among others. We use a public dataset with results from a mouse eQTL experiment for three examples of visualization: genome-wide dot plots of marker-by-gene association, karyotype-like plots, and circos plots. Dot plots give a first overview of the results from eQTL mapping, allowing detecting genome-wide patterns of cis- and trans-genetic association to transcription level. Karyotype-like plots provide chromosomal context and allow integrating multiple tracks of information in a single plot. Circos plots can, in addition, display long-range interactions to provide an overview of genetic connectivity at the genome level. All examples are developed and explained using R code, an open-source language with powerful statistical and graphical capabilities. The principles reviewed here, however, can be applied with other software options, organisms, and to any type of molecular phenotype that can be assigned to a genomic position.
Collapse
|
24
|
Mack KL, Nachman MW. Gene Regulation and Speciation. Trends Genet 2016; 33:68-80. [PMID: 27914620 DOI: 10.1016/j.tig.2016.11.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
Understanding the genetic architecture of speciation is a major goal in evolutionary biology. Hybrid dysfunction is thought to arise most commonly through negative interactions between alleles at two or more loci. Divergence between interacting regulatory elements that affect gene expression (i.e., regulatory divergence) may be a common route for these negative interactions to arise. We review here how regulatory divergence between species can result in hybrid dysfunction, including recent theoretical support for this model. We then discuss the empirical evidence for regulatory divergence between species and evaluate evidence for misregulation as a source of hybrid dysfunction. Finally, we review unresolved questions in gene regulation as it pertains to speciation and point to areas that could benefit from future research.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
25
|
Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier. Cell Metab 2016; 24:283-94. [PMID: 27425585 PMCID: PMC4981548 DOI: 10.1016/j.cmet.2016.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/29/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022]
Abstract
Vertebrate cells carry two different genomes, nuclear (nDNA) and mitochondrial (mtDNA), both encoding proteins involved in oxidative phosphorylation. Because of the extensive interactions, adaptive coevolution of the two genomes must occur to ensure normal mitochondrial function. To investigate whether incompatibilities between these two genomes could contribute to interspecies reproductive barriers, we performed reciprocal mtDNA replacement (MR) in zygotes between widely divergent Mus m. domesticus (B6) and conplastic Mus m. musculus (PWD) mice. Transfer of MR1 cybrid embryos (B6nDNA-PWDmtDNA) supported normal development of F1 offspring with reduced male fertility but unaffected reproductive fitness in females. Furthermore, donor PWD mtDNA was faithfully transmitted through the germline into F2 and F3 generations. In contrast, reciprocal MR2 (PWDnDNA-B6mtDNA) produced high embryonic loss and stillborn rates, suggesting an association between mitochondrial function and infertility. These results strongly suggest that functional incompatibility between nuclear and mitochondrial genomes contributes to interspecies reproductive isolation in mammals.
Collapse
|
26
|
Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse. PLoS Genet 2016; 12:e1005906. [PMID: 27104744 PMCID: PMC4841592 DOI: 10.1371/journal.pgen.1005906] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/08/2016] [Indexed: 11/28/2022] Open
Abstract
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. During differentiation of germ cells into gametes, a maternal and a paternal copy of each chromosome have to find each other, pair, and synapse in order to ensure proper chromosome segregation into the gametes. Because of the unique ability to identify homologous DNA sequences between homologous chromosomes, meiotic recombination is an essential step in proper chromosome pairing and synapsis in the majority of species. However, when the paternal and maternal sets of chromosomes come from different (sub)species, the recognition of homologs can be disturbed and result in sterility of male hybrids. In this study we investigated the genetic control of variation in the global recombination rate between two closely related mouse subspecies with regard to the known infertility of their F1 hybrids. We show that the variation in the global recombination rate between both subspecies is under the control of three genomic loci. The strongest one appeared within the hybrid sterility X2 genomic locus on Chromosome X. Our findings will allow positional cloning of the gene and will shed new light on the role of meiotic recombination in reproductive isolation between closely related species.
Collapse
|
27
|
Baker CL, Petkova P, Walker M, Flachs P, Mihola O, Trachtulec Z, Petkov PM, Paigen K. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots. PLoS Genet 2015; 11:e1005512. [PMID: 26368021 PMCID: PMC4569383 DOI: 10.1371/journal.pgen.1005512] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023] Open
Abstract
Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. During formation of sperm and eggs chromosomes exchange DNA in a process known as recombination, creating new combinations responsible for much of the enormous diversity in populations. In some mammals, including humans, the locations of recombination are chosen by a DNA-binding protein named PRDM9. Importantly, there are tens to hundreds of different variations of the Prdm9 gene (termed alleles), many of which are predicted to bind a unique DNA sequence. This high frequency of variation results in many individuals having two different copies of Prdm9, and several lines of evidence indicate that alleles compete to initiate recombination. In seeking to understand the mechanism of this competition we found that Prdm9 activity is sensitive to the number of gene copies present, suggesting that availability of this protein is a limiting factor during recombination. Moreover, we found that variant forms of PRDM9 protein can physically interact suggesting that when this happens one variant can influence which hotspots will become activated. Genetic crosses in mice support these observations; the presence of a dominant Prdm9 allele can completely suppress recombination at some locations. We conclude that allele-dominance of PRDM9 is a consequence of protein-protein interaction and competition for DNA binding in a limited pool of molecules, thus shaping the recombination landscape in natural populations.
Collapse
Affiliation(s)
- Christopher L. Baker
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Pavlina Petkova
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Michael Walker
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Petko M. Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kropáčková L, Piálek J, Gergelits V, Forejt J, Reifová R. Maternal-foetal genomic conflict and speciation: no evidence for hybrid placental dysplasia in crosses between two house mouse subspecies. J Evol Biol 2015; 28:688-98. [PMID: 25682889 DOI: 10.1111/jeb.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/05/2015] [Indexed: 11/29/2022]
Abstract
Interspecific hybridization between closely related mammalian species, including various species of the genus Mus, is commonly associated with abnormal growth of the placenta and hybrid foetuses, a phenomenon known as hybrid placental dysplasia (HPD). The role of HPD in speciation is anticipated but still poorly understood. Here, we studied placental and foetal growth in F1 crosses between four inbred mouse strains derived from two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus. These subspecies are in the early stage of speciation and still hybridize in nature. In accordance with the maternal-foetal genomic conflict hypothesis, we found different parental influences on placental and foetal development, with placental weight most affected by the father's body weight and foetal weight by the mother's body weight. After removing the effects of parents' body weight, we did not find any significant differences in foetal or placental weights between intra-subspecific and inter-subspecific F1 crosses. Nevertheless, we found that the variability in placental weight in inter-subspecific crosses is linked to the X chromosome, similarly as for HPD in interspecific mouse crosses. Our results suggest that maternal-foetal genomic conflict occurs in the house mouse system, but has not yet diverged sufficiently to cause abnormalities in placental and foetal growth in inter-subspecific crosses. HPD is thus unlikely to contribute to speciation in the house mouse system. However, we cannot rule out that it might have contributed to other speciation events in the genus Mus, where differences in the levels of polyandry exist between the species.
Collapse
Affiliation(s)
- L Kropáčková
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
29
|
Turner LM, Harr B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife 2014; 3. [PMID: 25487987 PMCID: PMC4359376 DOI: 10.7554/elife.02504] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022] Open
Abstract
Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.
Collapse
Affiliation(s)
- Leslie M Turner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Bettina Harr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
30
|
Kreisinger J, Cížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol 2014; 23:5048-60. [PMID: 25204516 DOI: 10.1111/mec.12909] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/26/2022]
Abstract
The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild-derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units - OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory-kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.
Collapse
Affiliation(s)
- Jakub Kreisinger
- Studenec Research Facility, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic; Department of Zoology, Faculty of Science, Charles University Prague, Viničná 7, 128 44, Prague, Czech Republic; Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, I-38010, San Michele all'Adige, TN, Italy
| | | | | | | |
Collapse
|
31
|
Flachs P, Bhattacharyya T, Mihola O, Piálek J, Forejt J, Trachtulec Z. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids. PLoS One 2014; 9:e95806. [PMID: 24756080 PMCID: PMC3995920 DOI: 10.1371/journal.pone.0095806] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/30/2014] [Indexed: 01/19/2023] Open
Abstract
PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9-Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9-Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains.
Collapse
Affiliation(s)
- Petr Flachs
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Tanmoy Bhattacharyya
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Ondřej Mihola
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jiří Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Zdenek Trachtulec
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| |
Collapse
|
32
|
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2014; 47:563-99. [PMID: 24050176 DOI: 10.1146/annurev-genet-110711-155423] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species. This process also creates new combinations of alleles and has important consequences for genome evolution. Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), which are repaired by homologous recombination. DSBs are catalyzed by the evolutionarily conserved SPO11 protein, assisted by several other factors. Some of them are absolutely required, whereas others are needed only for full levels of DSB formation and may participate in the regulation of DSB timing and frequency as well as the coordination between DSB formation and repair. The sites where DSBs occur are not randomly distributed in the genome, and remarkably distinct strategies have emerged to control their localization in different species. Here, I review the recent advances in the components required for DSB formation and localization in the various model organisms in which these studies have been performed.
Collapse
Affiliation(s)
- Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherché Scientifique, UPR1142, 34396 Montpellier, France;
| |
Collapse
|
33
|
Campbell P, Nachman MW. X-y interactions underlie sperm head abnormality in hybrid male house mice. Genetics 2014; 196:1231-40. [PMID: 24504187 PMCID: PMC3982709 DOI: 10.1534/genetics.114.161703] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022] Open
Abstract
The genetic basis of hybrid male sterility in house mice is complex, highly polygenic, and strongly X linked. Previous work suggested that there might be interactions between the Mus musculus musculus X and the M. m. domesticus Y with a large negative effect on sperm head morphology in hybrid males with an F1 autosomal background. To test this, we introgressed the M. m. domesticus Y onto a M. m. musculus background and measured the change in sperm morphology, testis weight, and sperm count across early backcross generations and in 11th generation backcross males in which the opportunity for X-autosome incompatibilities is effectively eliminated. We found that abnormality in sperm morphology persists in M. m. domesticus Y introgression males, and that this phenotype is rescued by M. m. domesticus introgressions on the X chromosome. In contrast, the severe reductions in testis weight and sperm count that characterize F1 males were eliminated after one generation of backcrossing. These results indicate that X-Y incompatibilities contribute specifically to sperm morphology. In contrast, X-autosome incompatibilities contribute to low testis weight, low sperm count, and sperm morphology. Restoration of normal testis weight and sperm count in first generation backcross males suggests that a small number of complex incompatibilities between loci on the M. m. musculus X and the M. m. domesticus autosomes underlie F1 male sterility. Together, these results provide insight into the genetic architecture of F1 male sterility and help to explain genome-wide patterns of introgression across the house mouse hybrid zone.
Collapse
Affiliation(s)
- Polly Campbell
- Corresponding author: Department of Zoology, 508 Life Sciences West, Oklahoma State University, Stillwater, OK 74078. E-mail:
| | | |
Collapse
|
34
|
Abstract
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics.
Collapse
|
35
|
Kass DH, Janoušek V, Wang L, Tucker PK. The uncharacterized gene 1700093K21Rik and flanking regions are correlated with reproductive isolation in the house mouse, Mus musculus. Mamm Genome 2014; 25:223-34. [DOI: 10.1007/s00335-014-9506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/30/2013] [Indexed: 11/30/2022]
|
36
|
Bhattacharyya T, Reifova R, Gregorova S, Simecek P, Gergelits V, Mistrik M, Martincova I, Pialek J, Forejt J. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids. PLoS Genet 2014; 10:e1004088. [PMID: 24516397 PMCID: PMC3916230 DOI: 10.1371/journal.pgen.1004088] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. Genomes of newly emerging species restrict their gene exchange with related taxa in order to secure integrity. Hybrid sterility is one of the reproductive isolation mechanisms restricting gene flow between closely related, sexually reproducing organisms. We showed that hybrid sterility between two closely related mouse subspecies is executed by a failure of meiotic synapsis of orthologous chromosomes in F1 hybrid males. The asynapsis of orthologous chromosomes occurred in meiosis of male and female hybrids, though only males were sterile due to trans-acting male-specific hybrid sterility genes. We located one of the two major hybrid sterility genes to a 4.7 Mb interval on Chromosome X, showed that it controls male sterility by modulating the extent of meiotic asynapsis and using the inter-subspecific chromosome substitution strains we refuted the simple interpretation of dominance theory of Haldane's rule. A new working hypothesis posits male sterility of mouse inter-subsubspecific F1 hybrids as a consequence of meiotic chromosome asynapsis caused by the cis-acting mismatch between orthologous chromosomes modulated by the trans-acting hybrid male sterility genes.
Collapse
Affiliation(s)
- Tanmoy Bhattacharyya
- Mouse Molecular Genetics Group, Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radka Reifova
- Mouse Molecular Genetics Group, Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sona Gregorova
- Mouse Molecular Genetics Group, Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Simecek
- Mouse Molecular Genetics Group, Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vaclav Gergelits
- Mouse Molecular Genetics Group, Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Iva Martincova
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jaroslav Pialek
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jiri Forejt
- Mouse Molecular Genetics Group, Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
37
|
Latour Y, Perriat-Sanguinet M, Caminade P, Boursot P, Smadja CM, Ganem G. Sexual selection against natural hybrids may contribute to reinforcement in a house mouse hybrid zone. Proc Biol Sci 2013; 281:20132733. [PMID: 24352947 DOI: 10.1098/rspb.2013.2733] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual selection may hinder gene flow across contact zones when hybrid recognition signals are discriminated against. We tested this hypothesis in a unimodal hybrid zone between Mus musculus musculus and Mus musculus domesticus where a pattern of reinforcement was described and lower hybrid fitness documented. We presented mice from the border of the hybrid zone with a choice between opposite sex urine from the same subspecies versus hybrids sampled in different locations across the zone. While no preference was evidenced in domesticus mice, musculus males discriminated in favour of musculus signals and against hybrid signals. Remarkably, the pattern of hybrid unattractiveness did not vary across the hybrid zone. Moreover, allopatric populations tested in the same conditions did not discriminate against hybrid signals, indicating character displacement for signal perception or preference. Finally, habituation-discrimination tests assessing similarities between signals pointed out that hybrid signals differed from the parental ones. Overall, our results suggest that perception of hybrids as unattractive has evolved in border populations of musculus after the secondary contact with domesticus. We discuss the mechanisms involved in hybrid unattractiveness, and the potential impact of asymmetric sexual selection on the hybrid zone dynamics and gene flow between the two subspecies.
Collapse
Affiliation(s)
- Yasmin Latour
- CNRS, Institut des Sciences de l'Evolution de Montpellier, UMR5554, , Université Montpellier 2, Montpellier, France
| | | | | | | | | | | |
Collapse
|
38
|
Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 2013; 14:794-806. [PMID: 24136506 DOI: 10.1038/nrg3573] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During meiosis, a programmed induction of DNA double-strand breaks (DSBs) leads to the exchange of genetic material between homologous chromosomes. These exchanges increase genome diversity and are essential for proper chromosome segregation at the first meiotic division. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic DSBs in mammals by a rapidly evolving gene, PR domain-containing 9 (PRDM9), and genome-wide analyses have facilitated the characterization of meiotic DSB sites at unprecedented resolution. In addition, the identification of new players in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, crossovers and non-crossovers, which have distinct mechanistic roles and consequences for genome evolution.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institute of Human Genetics, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, 34396 Montpellier, France
| | | | | |
Collapse
|
39
|
The genetic architecture of chemosensory cues involved in species recognition: a behavioral approach in the house mouse. Behav Genet 2013; 44:56-67. [PMID: 24158628 DOI: 10.1007/s10519-013-9621-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
Abstract
The genetics of chemical signals is poorly understood. We addressed this issue in two subspecies of mice, Mus musculus musculus and M. m. domesticus, comparing their odor phenotypes with that of their hybrids. Earlier studies indicated that these subspecies could be discriminated on the basis of their urinary odor. We assessed male odor phenotypes from perception of musculus mice acting as olfactometers. Our results point to a complex genetic determinism. Reciprocal F1 hybrids produced a distinct odor phenotype, with shared characteristics distinguishing them from their parents, and stronger similarity to domesticus than to musculus. These results are consistent with implications of genes with partial dominance and a parent of origin effect. Further, similarities between reciprocal F2 allowed us to reject a direct role of the Y-chromosome in shaping the odor phenotype. However we show that the X-chromosome could be involved in explaining domesticus phenotype, while epistasis between genes on the sex chromosomes and the autosomes might influence musculus phenotype.
Collapse
|
40
|
Dickman CTD, Moehring AJ. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana. PLoS One 2013; 8:e73325. [PMID: 24039910 PMCID: PMC3764152 DOI: 10.1371/journal.pone.0073325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/22/2013] [Indexed: 01/17/2023] Open
Abstract
When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could ‘mask’ the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.
Collapse
Affiliation(s)
| | - Amanda J. Moehring
- Department of Biology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
41
|
Steiner CC, Ryder OA. Characterization of Prdm9 in equids and sterility in mules. PLoS One 2013; 8:e61746. [PMID: 23613924 PMCID: PMC3632555 DOI: 10.1371/journal.pone.0061746] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/12/2013] [Indexed: 11/25/2022] Open
Abstract
Prdm9 (Meisetz) is the first speciation gene discovered in vertebrates conferring reproductive isolation. This locus encodes a meiosis-specific histone H3 methyltransferase that specifies meiotic recombination hotspots during gametogenesis. Allelic differences in Prdm9, characterized for a variable number of zinc finger (ZF) domains, have been associated with hybrid sterility in male house mice via spermatogenic failure at the pachytene stage. The mule, a classic example of hybrid sterility in mammals also exhibits a similar spermatogenesis breakdown, making Prdm9 an interesting candidate to evaluate in equine hybrids. In this study, we characterized the Prdm9 gene in all species of equids by analyzing sequence variation of the ZF domains and estimating positive selection. We also evaluated the role of Prdm9 in hybrid sterility by assessing allelic differences of ZF domains in equine hybrids. We found remarkable variation in the sequence and number of ZF domains among equid species, ranging from five domains in the Tibetan kiang and Asiatic wild ass, to 14 in the Grevy’s zebra. Positive selection was detected in all species at amino acid sites known to be associated with DNA-binding specificity of ZF domains in mice and humans. Equine hybrids, in particular a quartet pedigree composed of a fertile mule showed a mosaic of sequences and number of ZF domains suggesting that Prdm9 variation does not seem by itself to contribute to equine hybrid sterility.
Collapse
Affiliation(s)
- Cynthia C Steiner
- Genetics Division, San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, California, USA.
| | | |
Collapse
|
42
|
Abstract
According to the Dobzhansky-Muller model, hybrid sterility is a consequence of the independent evolution of related taxa resulting in incompatible genomic interactions of their hybrids. The model implies that the incompatibilities evolve randomly, unless a particular gene or nongenic sequence diverges much faster than the rest of the genome. Here we propose that asynapsis of heterospecific chromosomes in meiotic prophase provides a recurrently evolving trigger for the meiotic arrest of interspecific F1 hybrids. We observed extensive asynapsis of chromosomes and disturbance of the sex body in >95% of pachynemas of Mus m. musculus × Mus m. domesticus sterile F1 males. Asynapsis was not preceded by a failure of double-strand break induction, and the rate of meiotic crossing over was not affected in synapsed chromosomes. DNA double-strand break repair was delayed or failed in unsynapsed autosomes, and misexpression of chromosome X and chromosome Y genes was detected in single pachynemas and by genome-wide expression profiling. Oocytes of F1 hybrid females showed the same kind of synaptic problems but with the incidence reduced to half. Most of the oocytes with pachytene asynapsis were eliminated before birth. We propose the heterospecific pairing of homologous chromosomes as a preexisting condition of asynapsis in interspecific hybrids. The asynapsis may represent a universal mechanistic basis of F1 hybrid sterility manifested by pachytene arrest. It is tempting to speculate that a fast-evolving subset of the noncoding genomic sequence important for chromosome pairing and synapsis may be the culprit.
Collapse
|
43
|
Nowick K, Carneiro M, Faria R. A prominent role of KRAB-ZNF transcription factors in mammalian speciation? Trends Genet 2012; 29:130-9. [PMID: 23253430 DOI: 10.1016/j.tig.2012.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 12/29/2022]
Abstract
The mechanisms of speciation have been one of the most debated topics in evolutionary biology. Among all reproductive barriers, postzygotic reproductive isolation is perhaps the one that has attracted the most attention from geneticists. Despite remarkable advances in the identification of loci involved in Drosophila speciation, little is known about the genes, functions, and biochemical interactions of the molecules underlying hybrid sterility and inviability in mammals. Here, we discuss the main evolutionary and molecular features that make transcription factors (TFs), especially the family of zinc finger proteins with a Krüppel-associated box domain (KRAB-ZNF), strong candidates to play an important role in postzygotic reproductive isolation. Motivated by the recent identification of the gene encoding PR domain zinc finger protein 9 (Prdm9; a KRAB-ZNF gene) as the first hybrid sterility gene identified in mammals, we further propose integrative approaches to study KRAB-ZNF genes with the main goal of characterizing the molecular pathways and interactions involved in hybrid incompatibilities.
Collapse
Affiliation(s)
- Katja Nowick
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | |
Collapse
|
44
|
Flachs P, Mihola O, Šimeček P, Gregorová S, Schimenti JC, Matsui Y, Baudat F, de Massy B, Piálek J, Forejt J, Trachtulec Z. Interallelic and intergenic incompatibilities of the Prdm9 (Hst1) gene in mouse hybrid sterility. PLoS Genet 2012; 8:e1003044. [PMID: 23133405 PMCID: PMC3486856 DOI: 10.1371/journal.pgen.1003044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
The Dobzhansky-Muller model of incompatibilities explains reproductive isolation between species by incorrect epistatic interactions. Although the mechanisms of speciation are of great interest, no incompatibility has been characterized at the gene level in mammals. The Hybrid sterility 1 gene (Hst1) participates in the arrest of meiosis in F1 males of certain strains from two Mus musculus subspecies, e.g., PWD from M. m. musculus and C57BL/6J (henceforth B6) from M. m. domesticus. Hst1 has been identified as a meiotic PR-domain gene (Prdm9) encoding histone 3 methyltransferase in the male offspring of PWD females and B6 males, (PWD×B6)F1. To characterize the incompatibilities underlying hybrid sterility, we phenotyped reproductive and meiotic markers in males with altered copy numbers of Prdm9. A partial rescue of fertility was observed upon removal of the B6 allele of Prdm9 from the azoospermic (PWD×B6)F1 hybrids, whereas removing one of the two Prdm9 copies in PWD or B6 background had no effect on male reproduction. Incompatibility(ies) not involving Prdm9B6 also acts in the (PWD×B6)F1 hybrids, since the correction of hybrid sterility by Prdm9B6 deletion was not complete. Additions and subtractions of Prdm9 copies, as well as allelic replacements, improved meiotic progression and fecundity also in the progeny-producing reciprocal (B6×PWD)F1 males. Moreover, an increased dosage of Prdm9 and reciprocal cross enhanced fertility of other sperm-carrying male hybrids, (PWD×B6-C3H.Prdm9)F1, harboring another Prdm9 allele of M. m. domesticus origin. The levels of Prdm9 mRNA isoforms were similar in the prepubertal testes of all types of F1 hybrids of PWD with B6 and B6-C3H.Prdm9 despite their different prospective fertility, but decreased to 53% after removal of Prdm9B6. Therefore, the Prdm9B6 allele probably takes part in posttranscriptional dominant-negative hybrid interaction(s) absent in the parental strains. Disturbed gametogenesis in the progeny of two fertile parental forms is called hybrid sterility; it is an important part of reproductive barriers between species. The Dobzhansky-Muller model of incompatibilities explains reproductive isolation between species by incorrect interactions between genes. Hybrid sterility 1 (Hst1) is one of the genes causing meiotic arrest in F1 male hybrids between certain Mus musculus musculus (e.g., the PWD strain) and M. m. domesticus (C57BL/6J etc.) mice. Hst1, the first mammalian candidate for a speciation gene, was identified as a meiotic PR/SET-domain gene, Prdm9, but the mechanism causing sterility has remained unknown. While the F1 male offspring of C57BL/6J males and PWD females produce no sperm, the males from the reciprocal cross using PWD males and C57BL/6J females yield progeny. Here we show that the meiotic progress and fertility of hybrid males from both F1 crosses improved by removal as well as overexpression of the C57BL/6J allele of Prdm9, suggesting that Prdm9 interactions not present in the parental species (incompatibilities) play a role in hybrid sterility. Furthermore, the Prdm9 dosage also controlled fecundity in other F1 hybrids, indicating that this gene is an important regulator of mouse hybrid fertility.
Collapse
Affiliation(s)
- Petr Flachs
- Department of Mouse Molecular Genetics and Center for Applied Genomics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Mihola
- Department of Mouse Molecular Genetics and Center for Applied Genomics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Šimeček
- Department of Mouse Molecular Genetics and Center for Applied Genomics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Soňa Gregorová
- Department of Mouse Molecular Genetics and Center for Applied Genomics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - John C. Schimenti
- Center for Vertebrate Genomics, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Frédéric Baudat
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Jaroslav Piálek
- Institute of Vertebrate Biology, Academy of Sciences CR, Brno and Studenec, Czech Republic
| | - Jiří Forejt
- Department of Mouse Molecular Genetics and Center for Applied Genomics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenek Trachtulec
- Department of Mouse Molecular Genetics and Center for Applied Genomics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
45
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|