1
|
Brown KS, Caruso CM. The effect of experimental pollinator decline on pollinator-mediated selection on floral traits. Ecol Evol 2023; 13:e10706. [PMID: 37953983 PMCID: PMC10636310 DOI: 10.1002/ece3.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
Human-mediated environmental change, by reducing mean fitness, is hypothesized to strengthen selection on traits that mediate interactions among species. For example, human-mediated declines in pollinator populations are hypothesized to reduce mean seed production by increasing the magnitude of pollen limitation and thus strengthen pollinator-mediated selection on floral traits that increase pollinator attraction or pollen transfer efficiency. To test this hypothesis, we measured two female fitness components and six floral traits of Lobelia siphilitica plants exposed to supplemental hand-pollination, ambient open-pollination, or reduced open-pollination treatments. The reduced treatment simulated pollinator decline, while the supplemental treatment was used to estimate pollen limitation and pollinator-mediated selection. We found that plants in the reduced pollination treatment were significantly pollen limited, resulting in pollinator-mediated selection for taller inflorescences and more vibrant petals, both traits that could increase pollinator attraction. This contrasts with plants in the ambient pollination treatment, where reproduction was not pollen limited and there was not significant pollinator-mediated selection on any floral trait. Our results support the hypothesis that human-mediated environmental change can strengthen selection on traits of interacting species and suggest that these traits have the potential to evolve in response to changing environments.
Collapse
Affiliation(s)
- Kaitlyn S. Brown
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | |
Collapse
|
2
|
Hossack GC, Caruso CM. Simulated pollinator decline has similar effects on seed production of female and hermaphrodite Lobelia siphilitica, but different effects on selection on floral traits. AMERICAN JOURNAL OF BOTANY 2023; 110:e16106. [PMID: 36401558 DOI: 10.1002/ajb2.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Pollinator decline, by reducing seed production, is predicted to strengthen natural selection on floral traits. However, the effect of pollinator decline on gender dimorphic species (such as gynodioecious species, where plants produce female or hermaphrodite flowers) may differ between the sex morphs: if pollinator decline reduces the seed production of females more than hermaphrodites, then it should also have a larger effect on selection on floral traits in females than in hermaphrodites. METHODS To simulate pollinator decline, we experimentally reduced pollinator access to female and hermaphrodite Lobelia siphilitica plants. We compared the seed production of plants in the reduced pollination treatment to plants that were exposed to ambient pollination conditions. Within each treatment, we also measured directional selection on four floral traits of females and hermaphrodites. RESULTS Experimentally reducing pollination decreased seed production of both females and hermaphrodites by ~21%. Reducing pollination also strengthened selection on floral traits, but this effect was not larger in females than in hermaphrodites. Instead, reducing pollination intensified selection for taller inflorescences in hermaphrodites, but did not intensify selection on any floral trait in females. CONCLUSIONS Our results suggest that pollinator decline will not have a larger effect on either seed production or selection on floral traits of female plants. As such, any effect of pollinator decline on seed production may be similar for gender dimorphic and monomorphic species. However, the potential for floral traits of females (and thus of gender dimorphic species) to evolve in response to pollinator decline may be limited.
Collapse
Affiliation(s)
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Lee KJ, Caruso CM. Plasticity in floral longevity and sex-phase duration of Lobelia siphilitica in response to simulated pollinator declines. AMERICAN JOURNAL OF BOTANY 2022; 109:526-534. [PMID: 35253215 DOI: 10.1002/ajb2.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Pollinator declines can reduce the quantity and quality of pollination services, resulting in less pollen deposited on flowers and lower seed production by plants. In response to these reductions, plant species that cannot autonomously self-pollinate and thus are dependent on pollinators to set seed could plastically adjust their floral traits. Such plasticity could increase the opportunity for outcross pollination directly, as well as indirectly by affecting inflorescence traits. METHODS To test whether plants can respond to pollinator declines by plastically adjusting their floral traits, we simulated declines by experimentally reducing pollinator access to Lobelia siphilitica plants and measuring two traits of early- and late-season flowers: (1) floral longevity; and (2) sex-phase duration. To test whether plasticity in these floral traits affected inflorescence traits, we measured daily display size and phenotypic gender. RESULTS We found that experimentally reducing pollination did not affect female-phase duration, but did extend the male-phase duration of early-season flowers by 13% and the longevity of late-season flowers by 12.8%. However, plants with an extended male phase did not have a more male-biased phenotypic gender, and plants with an extended floral longevity did not have a larger daily display. CONCLUSIONS Our results suggest that plants can respond to pollinator declines by plastically adjusting both the longevity and sex-phase duration of their flowers. If this plasticity increases the opportunity for outcross pollination, then it could be one mechanism by which pollinator-dependent plant species maintain seed production as pollinators decline.
Collapse
Affiliation(s)
- Kiana J Lee
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
4
|
Appiah-Madson HJ, Knox EB, Caruso CM, Case AL. Do Genetic Drift and Gene Flow Affect the Geographic Distribution of Female Plants in Gynodioecious Lobelia siphilitica? PLANTS (BASEL, SWITZERLAND) 2022; 11:825. [PMID: 35336707 PMCID: PMC8950786 DOI: 10.3390/plants11060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Variation in population sex ratio is particularly pronounced in gynodioecious angiosperms. Extremely high female frequencies in gynodioecious populations cannot be readily explained by selective forces alone. To assess the contributions of drift and gene flow to extreme sex-ratio variation, we documented sex ratio and population size in 92 populations of Lobelia siphilitica across its range and genotyped plants using plastid and nuclear genetic markers. Similarity in spatial patterns of genetic and demographic variables may suggest that drift and/or gene flow have contributed to population sex-ratio variation in L. siphilitica. We found strong spatial structuring of extremely high female frequencies: populations with >50% female plants are restricted to the south−central portion of the range. However, we did not detect any spatial structuring in population size nor metrics of genetic diversity, suggesting that extreme variation in female frequency is not strongly affected by drift or gene flow. Extreme sex-ratio variation is frequently observed in gynodioecious plants, but its causes are difficult to identify. Further investigation into mechanisms that create or maintain the spatial structure of sex ratios in gynodioecious species will provide much needed insight.
Collapse
Affiliation(s)
- Hannah J. Appiah-Madson
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant, MA 01908, USA
| | - Eric B. Knox
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Christina M. Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Andrea L. Case
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA;
| |
Collapse
|
5
|
Benoit AD, Caruso CM. A sit-and-wait predator, but not an active-pursuit predator, alters pollinator-mediated selection on floral traits. Ecology 2021; 102:e03506. [PMID: 34319595 DOI: 10.1002/ecy.3506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022]
Abstract
Indirect species interactions are ubiquitous in nature, often outnumbering direct species interactions. Yet despite evidence that indirect interactions have strong ecological effects, relatively little is known about whether they can shape adaptive evolution by altering the strength and/or direction of natural selection. We tested whether indirect interactions affect the strength and direction of pollinator-mediated selection on floral traits of the bumble-bee pollinated wildflower Lobelia siphilitica. We estimated the indirect effects of two pollinator predators with contrasting hunting modes: dragonflies (Aeshnidae and Corduliidae) and ambush bugs (Phymata americana, Reduviidae). Because dragonflies are active pursuit predators, we hypothesized that they would strengthen pollinator-mediated selection by weakening plant-pollinator interactions (i.e., a density-mediated indirect effect). In contrast, because ambush bugs are sit-and-wait predators, we hypothesized that they would weaken or reverse the direction of pollinator-mediated selection by altering pollinator foraging behavior (i.e., a trait-mediated indirect effect). Specifically, if ambush bugs hunt from plants with traits that attract pollinators (i.e., prey), then pollinators will spend less time visiting those plants, weakening or reversing the direction of selection on attractive floral traits. We did not find evidence that high dragonfly abundance strengthened selection on floral traits via a density-mediated indirect effect: neither pollen limitation (a proxy for the strength of plant-pollinator interactions) nor directional selection on floral traits of L. siphilitica differed significantly between high- and low-dragonfly abundance treatments. In contrast, we did find evidence that ambush bug presence affected selection on floral traits via a trait-mediated indirect effect: ambush bugs hunted from L. siphilitica plants with larger daily floral displays, reversing the direction of pollinator-mediated selection on daily display size. These results suggest that indirect species interactions have the potential to shape adaptive evolution by altering natural selection.
Collapse
Affiliation(s)
- Amanda D Benoit
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
6
|
Zhao N, Li Z, Zhang L, Yang X, Mackenzie SA, Hu Z, Zhang M, Yang J. MutS HOMOLOG1 mediates fertility reversion from cytoplasmic male sterile Brassica juncea in response to environment. PLANT, CELL & ENVIRONMENT 2021; 44:234-246. [PMID: 32978825 DOI: 10.1111/pce.13895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/14/2020] [Indexed: 05/15/2023]
Abstract
Spontaneous fertility reversion has been documented in cytoplasmic male sterile (CMS) plants of several species, influenced in frequency by nuclear genetic background. In this study, we found that MutS HOMOLOG1 (MSH1) mediates fertility reversion via substoichiometric shifting (SSS) of the CMS-associated mitochondrial Open Reading Frame 220 (ORF220), a process that may be regulated by pollination signalling in Brassica juncea. We show that plants adjust their growth and development in response to unsuccessful pollination. Measurable decrease in MSH1 transcript levels and evidence of ORF220 SSS under non-pollination conditions suggest that this nuclear-mitochondrial interplay influences fertility reversion in CMS plants in response to physiological signals. Suppression of MSH1 expression induced higher frequency SSS in CMS plants than occurs normally. Transcriptional analysis of floral buds under pollination and non-pollination conditions, and the response of MSH1 expression to different sugars, supports the hypothesis that carbon flux is involved in the pollination signalling of fertility reversion in CMS plants. Our findings suggest that facultative gynodioecy as a reproductive strategy may incorporate environmentally responsive genes like MSH1 as an "on-off" switch for sterility-fertility transition under ecological conditions of reproductive isolation.
Collapse
Affiliation(s)
- Na Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Lili Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
7
|
Byers DL. Impact of prairie fragment size on proportion of females and reproductive success of Lobelia spicata Lam., a gynodioecious species. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:137-145. [PMID: 31618510 DOI: 10.1111/plb.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Due to ongoing human impacts, plant species increasingly occur in landscapes that are highly fragmented, with remaining natural habitats occupying small areas, resulting in populations that are smaller and more isolated than in previous time periods. This changed metapopulation structure is expected to have negative impacts on seed production. For example, the proportion of female plants within gynodioecious populations may be more volatile due to genetic drift in small populations associated with small habitat fragments, with concomitant impacts on seed production. My aims were to determine: (i) if variation in proportion of females is larger in smaller fragments; and (ii) if such changes in female frequency in small fragments result in reduced seed production. Thirty-two populations of Lobelia spicata Lam., a gynodioecious species, were surveyed in 2000, 2001 and 2009 in the tallgrass prairie region of Midwestern North America (Illinois and Indiana, USA). Data were collected for: proportion of female plants, total number of flowering plants (measure of population size), seed set per plant and prairie fragment size (another measure of population size). The proportion of females is more variable in smaller prairie fragments. Seed number per fruit decreases as the proportion of females increases in a population, but only significantly for female plants. The number of flowering plants is positively associated with fruit production for both genders. Populations within larger prairie fragments have higher seed production. The reproductive consequences of habitat fragmentation depend on the plant breeding system. While both sexes were negatively impacted, females were more adversely affected.
Collapse
Affiliation(s)
- D L Byers
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
8
|
Adhikari B, Caruso CM, Case AL. Beyond balancing selection: frequent mitochondrial recombination contributes to high-female frequencies in gynodioecious Lobelia siphilitica (Campanulaceae). THE NEW PHYTOLOGIST 2019; 224:1381-1393. [PMID: 31442304 DOI: 10.1111/nph.16136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Gynodioecy is a sexual system in which females and hermaphrodites co-occur. In most gynodioecious angiosperms, sex is determined by an interaction between mitochondrial male-sterility genes (CMS) that arise via recombination and nuclear restorer alleles that evolve to suppress them. In theory, gynodioecy occurs when multiple CMS types are maintained at equilibrium frequencies by balancing selection. However, some gynodioecious populations contain very high frequencies of females. High female frequencies are not expected under balancing selection, but could be explained by the repeated introduction of novel CMS types. To test for balancing selection and/or the repeated introduction of novel CMS, we characterised cytoplasmic haplotypes from 61 populations of Lobelia siphilitica that vary widely in female frequency. We confirmed that mitotype diversity and female frequency were positively correlated across populations, consistent with balancing selection. However, while low-female populations hosted mostly common mitotypes, high-female populations and female plants hosted mostly rare, recombinant mitotypes likely to carry novel CMS types. Our results suggest that balancing selection maintains established CMS types across this species, but extreme female frequencies result from frequent invasion by novel CMS types. We conclude that balancing selection alone cannot account for extreme population sex-ratio variation within a gynodioecious species.
Collapse
Affiliation(s)
- Binaya Adhikari
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, 23909, USA
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andrea L Case
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
9
|
Abstract
The evolutionary processes that transitioned plants to land-based habitats also incorporated a multiplicity of strategies to enhance resilience to the greater environmental variation encountered on land. The sensing of light, its quality, quantity, and duration, is central to plant survival and, as such, serves as a central network hub. Similarly, plants as sessile organisms that can encounter isolation must continually assess their reproductive options, requiring plasticity in propagation by self- and cross-pollination or asexual strategies. Irregular fluctuations and intermittent extremes in temperature, soil fertility, and moisture conditions have given impetus to genetic specializations for network resiliency, protein neofunctionalization, and internal mechanisms to accelerate their evolution. We review some of the current advancements made in understanding plant resiliency and phenotypic plasticity mechanisms. These mechanisms incorporate unusual nuclear-cytoplasmic interactions, various transposable element (TE) activities, and epigenetic plasticity of central gene networks that are broadly pleiotropic to influence resiliency phenotypes.
Collapse
Affiliation(s)
- Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
10
|
Varga S, Kytöviita MM. Light availability affects sex lability in a gynodioecious plant. AMERICAN JOURNAL OF BOTANY 2016; 103:1928-1936. [PMID: 27864260 DOI: 10.3732/ajb.1600158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Sex lability (i.e., gender diphasy) in plants is classically linked to the larger resource needs associated with the female sexual function (i.e., seed production) compared to the male function (i.e., pollen production). Sex lability in response to the environment is extensively documented in dioecious species, but has been largely overlooked in gynodioecious plants. METHODS Here, we tested whether environmental conditions induce sex lability in the gynodioecious Geranium sylvaticum. We conducted a transplantation experiment in the field where plants with different sex expression were reciprocally transplanted between high light and low light habitats. We measured plants' reproductive output and sex expression over four years. KEY RESULTS Our results show that sex expression was labile over the study period. The light level at the destination habitat had a significant effect on sexual expression and reproductive output, because plants decreased their reproductive output when transplanted to the low light habitat. Transplantation origin did not affect any parameter measured. CONCLUSIONS This study shows that sex expression in Geranium sylvaticum is labile and related to light availability. Sexually labile plants did not produce more seeds or pollen, and thus, there was no apparent fitness gain in sexually labile individuals. Sex lability in gynodioecious plants may be more common than previously believed because detection of sex lability necessitates data on the same individuals over time, which is rare in sexually dimorphic herbaceous plants.
Collapse
Affiliation(s)
- Sandra Varga
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35 40014 Jyvaskyla, Finland
| | - Minna-Maarit Kytöviita
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35 40014 Jyvaskyla, Finland
| |
Collapse
|
11
|
Ashman TL, Tennessen JA, Dalton RM, Govindarajulu R, Koski MH, Liston A. Multilocus Sex Determination Revealed in Two Populations of Gynodioecious Wild Strawberry, Fragaria vesca subsp. bracteata. G3 (BETHESDA, MD.) 2015; 5:2759-73. [PMID: 26483011 PMCID: PMC4683647 DOI: 10.1534/g3.115.023358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022]
Abstract
Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria.
Collapse
Affiliation(s)
- Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Jacob A Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331
| | - Rebecca M Dalton
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | | - Matthew H Koski
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
12
|
Rivkin LR, Case AL, Caruso CM. Frequency-dependent fitness in gynodioecious Lobelia siphilitica. Evolution 2015; 69:1232-43. [PMID: 25824809 DOI: 10.1111/evo.12654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 03/19/2015] [Indexed: 12/30/2022]
Abstract
Selection is frequency dependent when an individual's fitness depends on the frequency of its phenotype. Frequency-dependent selection should be common in gynodioecious plants, where individuals are female or hermaphroditic; if the fitness of females is limited by the availability of pollen to fertilize their ovules, then they should have higher fitness when rare than when common. To test whether the fitness of females is frequency dependent, we manipulated the sex ratio in arrays of gynodioecious Lobelia siphilitica. To test whether fitness was frequency dependent because of variation in pollen availability, we compared open-pollinated and supplemental hand-pollinated plants. Open-pollinated females produced more seeds when they were rare than when they were common, as expected if fitness is negatively frequency dependent. However, hand-pollinated females also produced more seeds when they were rare, indicating that variation in pollen availability was not the cause of frequency-dependent fitness. Instead, fitness was frequency dependent because both hand- and open-pollinated females opened more flowers when they were rare than when they were common. This plasticity in the rate of anthesis could cause fitness to be frequency dependent even when reproduction is not pollen limited, and thus expand the conditions under which frequency-dependent selection operates in gynodioecious species.
Collapse
Affiliation(s)
- L Ruth Rivkin
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Andrea L Case
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|