1
|
Xu L, Bai X, Joong Oh E. Strategic approaches for designing yeast strains as protein secretion and display platforms. Crit Rev Biotechnol 2025; 45:491-508. [PMID: 39138023 DOI: 10.1080/07388551.2024.2385996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Aguiar-Cervera J, Visinoni F, Zhang P, Hollywood K, Vrhovsek U, Severn O, Delneri D. Effect of Hanseniaspora vineae and Saccharomyces cerevisiae co-fermentations on aroma compound production in beer. Food Microbiol 2024; 123:104585. [PMID: 39038891 DOI: 10.1016/j.fm.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024]
Abstract
In recent years, the boom of the craft beer industry refocused the biotech interest from ethanol production to diversification of beer aroma profiles. This study analyses the fermentative phenotype of a collection of non-conventional yeasts and examines their role in creating new flavours, particularly through co-fermentation with industrial Saccharomyces cerevisiae. High-throughput solid and liquid media fitness screening compared the ability of eight Saccharomyces and four non-Saccharomyces yeast strains to grow in wort. We determined the volatile profile of these yeast strains and found that Hanseniaspora vineae displayed a particularly high production of the desirable aroma compounds ethyl acetate and 2-phenethyl acetate. Given that H. vineae on its own can't ferment maltose and maltotriose, we carried out mixed wort co-fermentations with a S. cerevisiae brewing strain at different ratios. The two yeast strains were able to co-exist throughout the experiment, regardless of their initial inoculum, and the increase in the production of the esters observed in the H. vineae monoculture was maintained, alongside with a high ethanol production. Moreover, different inoculum ratios yielded different aroma profiles: the 50/50 S. cerevisiae/H. vineae ratio produced a more balanced profile, while the 10/90 ratio generated stronger floral aromas. Our findings show the potential of using different yeasts and different inoculum combinations to tailor the final aroma, thus offering new possibilities for a broader range of beer flavours and styles.
Collapse
Affiliation(s)
- Jose Aguiar-Cervera
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom; Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Federico Visinoni
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Penghan Zhang
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Katherine Hollywood
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Urska Vrhovsek
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Oliver Severn
- Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
3
|
Christensen KE, Duarte A, Ma Z, Edwards JL, Brem RB. Dissecting an ancient stress resistance trait syndrome in the compost yeast Kluyveromyces marxianus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572915. [PMID: 38187519 PMCID: PMC10769334 DOI: 10.1101/2023.12.21.572915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In the search to understand how evolution builds new traits, ancient events are often the hardest to dissect. Species-unique traits pose a particular challenge for geneticists-cases in which a character arose long ago and, in the modern day, is conserved within a species, distinguishing it from reproductively isolated relatives. In this work, we have developed the budding yeast genus Kluyveromyces as a model for mechanistic dissection of trait variation across species boundaries. Phenotypic profiling revealed robust heat and chemical-stress tolerance phenotypes that distinguished the compost yeast K. marxianus from the rest of the clade. We used culture-based, transcriptomic, and genetic approaches to characterize the metabolic requirements of the K. marxianus trait syndrome. We then generated a population-genomic resource for K. marxianus and harnessed it in molecular-evolution analyses, which found hundreds of housekeeping genes with evidence for adaptive protein variation unique to this species. Our data support a model in which, in the distant past, K. marxianus underwent a vastly complex remodeling of its proteome to achieve stress resistance. Such a polygenic architecture, involving nucleotide-level allelic variation on a massive scale, is consistent with theoretical models of the mechanisms of long-term adaptation, and suggests principles of broad relevance for interspecies trait genetics.
Collapse
Affiliation(s)
- Kaylee E. Christensen
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720
| | - Abel Duarte
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720
| | - Zhenzhen Ma
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720
- Current address: Department of Biology, Stanford University, Stanford, CA, 94305
| | - Judith L. Edwards
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720
| |
Collapse
|
4
|
Krause DJ. The evolution of anaerobic growth in Saccharomycotina yeasts. Yeast 2023; 40:395-400. [PMID: 37526396 DOI: 10.1002/yea.3890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.
Collapse
Affiliation(s)
- David J Krause
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
5
|
Ast T, Wang H, Marutani E, Nagashima F, Malhotra R, Ichinose F, Mootha VK. Continuous, but not intermittent, regimens of hypoxia prevent and reverse ataxia in a murine model of Friedreich's ataxia. Hum Mol Genet 2023; 32:2600-2610. [PMID: 37260376 PMCID: PMC10407700 DOI: 10.1093/hmg/ddad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Wang
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eizo Marutani
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumiaki Nagashima
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Wagner ER, Nightingale NM, Jen A, Overmyer KA, McGee M, Coon JJ, Gasch AP. PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae. PLoS Genet 2023; 19:e1010593. [PMID: 37410771 DOI: 10.1371/journal.pgen.1010593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Organisms have evolved elaborate physiological pathways that regulate growth, proliferation, metabolism, and stress response. These pathways must be properly coordinated to elicit the appropriate response to an ever-changing environment. While individual pathways have been well studied in a variety of model systems, there remains much to uncover about how pathways are integrated to produce systemic changes in a cell, especially in dynamic conditions. We previously showed that deletion of Protein Kinase A (PKA) regulatory subunit BCY1 can decouple growth and metabolism in Saccharomyces cerevisiae engineered for anaerobic xylose fermentation, allowing for robust fermentation in the absence of division. This provides an opportunity to understand how PKA signaling normally coordinates these processes. Here, we integrated transcriptomic, lipidomic, and phospho-proteomic responses upon a glucose to xylose shift across a series of strains with different genetic mutations promoting either coupled or decoupled xylose-dependent growth and metabolism. Together, results suggested that defects in lipid homeostasis limit growth in the bcy1Δ strain despite robust metabolism. To further understand this mechanism, we performed adaptive laboratory evolutions to re-evolve coupled growth and metabolism in the bcy1Δ parental strain. The evolved strain harbored mutations in PKA subunit TPK1 and lipid regulator OPI1, among other genes, and evolved changes in lipid profiles and gene expression. Deletion of the evolved opi1 gene partially reverted the strain's phenotype to the bcy1Δ parent, with reduced growth and robust xylose fermentation. We suggest several models for how cells coordinate growth, metabolism, and other responses in budding yeast and how restructuring these processes enables anaerobic xylose utilization.
Collapse
Affiliation(s)
- Ellen R Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicole M Nightingale
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Annie Jen
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, United States of America
| | - Mick McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Lamas-Maceiras M, Vizoso-Vázquez Á, Barreiro-Alonso A, Cámara-Quílez M, Cerdán ME. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023; 11:microorganisms11040993. [PMID: 37110415 PMCID: PMC10142021 DOI: 10.3390/microorganisms11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Yeasts have been a part of human life since ancient times in the fermentation of many natural products used for food. In addition, in the 20th century, they became powerful tools to elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed. Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and regulation, and the cell division cycle have all been obtained through biochemistry and genetic analysis using different yeasts. In this review, we summarize the role that yeasts have had in biological discoveries, the use of yeasts as biological tools, as well as past and on-going research projects on HMGB proteins along the way from yeast to cancer.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Cámara-Quílez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Esperanza Cerdán
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
8
|
Sipiczki M, Hrabovszki V. Galactomyces candidus diversity in the complex mycobiota of cow-milk bryndza cheese comprising antagonistic and sensitive strains. Int J Food Microbiol 2023; 388:110088. [PMID: 36689829 DOI: 10.1016/j.ijfoodmicro.2023.110088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Galactomyces candidus (orthographic variant: Galactomyces candidum) is a heterogeneous species of Saccharomycetales that comprises dimorphic yeasts described previously under various names (e.g. Geotrichum, Dipodascus). Its strains are common components of the cheese surface mycobiota. This study identified genetically and physiologically heterogeneous G. candidus strains in the complex mycobiota of artisanal cow-milk bryndza samples. The traditional Slovak bryndza is a cheese produced from ewe's milk in cooler mountainous regions and from cow's milk in warmer low-land regions. The taxonomic analysis of the culturable yeasts of the latter version carried out in this study revealed considerable differences from the yeast biota previously described for ovine bryndza. However, the conventional D1/D2- and ITS-based barcode analyses could not assign unanimously all isolates to species because of the intragenomic barcode diversity in certain groups and the discordance between the D1/D2 and ITS results in other groups. The identified species and groups of isolates had different abilities to utilise the carbon and energy sources (lactose, lactate, lipids and proteins) available in milk and ripening cheese. The G. candidus strains did not metabolise lactose and lactate, hydrolysed milk proteins with diverse, usually moderate efficiency and only could grow on certain amino acids as only energy sources. Their preferred substrate was lipid. Under aerobic conditions, its hyphae penetrated the lipid droplets and degraded their content from inside by developing a dense internal mycelium. Sporulation and different MLST (multilocus sequence typing) patterns indicated that the Galactomyces strains could sexually interact and their genomes could recombine. The Galactomyces and Kluyveromyces isolates had antagonistic effects against other members of the mycobiota.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary.
| | | |
Collapse
|
9
|
de Valk SC, Bouwmeester SE, de Hulster E, Mans R. Engineering proton-coupled hexose uptake in Saccharomyces cerevisiae for improved ethanol yield. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:47. [PMID: 35524322 PMCID: PMC9077909 DOI: 10.1186/s13068-022-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
Background In the yeast Saccharomyces cerevisiae, which is widely applied for industrial bioethanol production, uptake of hexoses is mediated by transporters with a facilitated diffusion mechanism. In anaerobic cultures, a higher ethanol yield can be achieved when transport of hexoses is proton-coupled, because of the lower net ATP yield of sugar dissimilation. In this study, the facilitated diffusion transport system for hexose sugars of S. cerevisiae was replaced by hexose–proton symport. Results Introduction of heterologous glucose– or fructose–proton symporters in an hxt0 yeast background strain (derived from CEN.PK2-1C) restored growth on the corresponding sugar under aerobic conditions. After applying an evolutionary engineering strategy to enable anaerobic growth, the hexose–proton symporter-expressing strains were grown in anaerobic, hexose-limited chemostats on synthetic defined medium, which showed that the biomass yield of the resulting strains was decreased by 44.0-47.6%, whereas the ethanol yield had increased by up to 17.2% (from 1.51 to 1.77 mol mol hexose−1) compared to an isogenic strain expressing the hexose uniporter HXT5. To apply this strategy to increase the ethanol yield on sucrose, we constructed a platform strain in which all genes encoding hexose transporters, disaccharide transporters and disaccharide hydrolases were deleted, after which a combination of a glucose–proton symporter, fructose–proton symporter and extracellular invertase (SUC2) were introduced. After evolution, the resulting strain exhibited a 16.6% increased anaerobic ethanol yield (from 1.51 to 1.76 mol mol hexose equivalent−1) and 46.6% decreased biomass yield on sucrose. Conclusions This study provides a proof-of-concept for the replacement of the endogenous hexose transporters of S. cerevisiae by hexose-proton symport, and the concomitant decrease in ATP yield, to greatly improve the anaerobic yield of ethanol on sugar. Moreover, the sugar-negative platform strain constructed in this study acts as a valuable starting point for future studies on sugar transport or development of cell factories requiring specific sugar transport mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02145-7.
Collapse
|
10
|
Krause DJ, Hittinger CT. Functional Divergence in a Multi-gene Family Is a Key Evolutionary Innovation for Anaerobic Growth in Saccharomyces cerevisiae. Mol Biol Evol 2022; 39:6711080. [PMID: 36134526 PMCID: PMC9551191 DOI: 10.1093/molbev/msac202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The amplification and diversification of genes into large multi-gene families often mark key evolutionary innovations, but this process often creates genetic redundancy that hinders functional investigations. When the model budding yeast Saccharomyces cerevisiae transitions to anaerobic growth conditions, the cell massively induces the expression of seven serine/threonine-rich anaerobically-induced cell wall mannoproteins (anCWMPs): TIP1, TIR1, TIR2, TIR3, TIR4, DAN1, and DAN4. Here, we show that these genes likely derive evolutionarily from a single ancestral anCWMP locus, which was duplicated and translocated to new genomic contexts several times both prior to and following the budding yeast whole genome duplication (WGD) event. Based on synteny and their phylogeny, we separate the anCWMPs into four gene subfamilies. To resolve prior inconclusive genetic investigations of these genes, we constructed a set of combinatorial deletion mutants to determine their contributions toward anaerobic growth in S. cerevisiae. We found that two genes, TIR1 and TIR3, were together necessary and sufficient for the anCWMP contribution to anaerobic growth. Overexpressing either gene alone was insufficient for anaerobic growth, implying that they encode non-overlapping functional roles in the cell during anaerobic growth. We infer from the phylogeny of the anCWMP genes that these two important genes derive from an ancient duplication that predates the WGD event, whereas the TIR1 subfamily experienced gene family amplification after the WGD event. Taken together, the genetic and molecular evidence suggests that one key anCWMP gene duplication event, several auxiliary gene duplication events, and functional divergence underpin the evolution of anaerobic growth in budding yeasts.
Collapse
Affiliation(s)
- David J Krause
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
11
|
Betinova V, Toth Hervay N, Elias D, Horvathova A, Gbelska Y. The UPC2 gene in Kluyveromyces lactis stress adaptation. Folia Microbiol (Praha) 2022; 67:641-647. [PMID: 35352326 DOI: 10.1007/s12223-022-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
KlUpc2p, a transcription factor belonging to the fungal binuclear cluster family, is an important regulator of ergosterol biosynthesis and azole drug resistance in Kluyveromyces lactis. In this work, we show that the absence of KlUpc2p generates Rag- phenotype and modulates the K. lactis susceptibility to oxidants and calcofuor white. The KlUPC2 deletion leads to increased expression of KlMGA2 gene, encoding an important regulator of hypoxic and lipid biosynthetic genes in K. lactis and also KlHOG1 gene. The absence of KlUpc2p does not lead to statistically significant changes in glycerol, corroborating the expression of KlGPD1 gene, encoding NAD+-dependent glycerol-3-phosphate dehydrogenase, that is similar in both the deletion mutant and the parental wild-type strain. Increased sensitivity of Klupc2 mutant cells to brefeldin A accompanied with significant increase in KlARF2 gene expression point to the involvement of KlUpc2p in intracellular signaling. Our observations highlight the connections between ergosterol and fatty acid metabolism to modulate membrane properties and point to the possible involvement of KlUpc2p in K. lactis oxidative stress response.
Collapse
Affiliation(s)
- Veronika Betinova
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Nora Toth Hervay
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Daniel Elias
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Agnes Horvathova
- Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Yvetta Gbelska
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|
12
|
Dekker WJC, Ortiz-Merino RA, Kaljouw A, Battjes J, Wiering FW, Mooiman C, Torre PDL, Pronk JT. Engineering the thermotolerant industrial yeast Kluyveromyces marxianus for anaerobic growth. Metab Eng 2021; 67:347-364. [PMID: 34303845 DOI: 10.1016/j.ymben.2021.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Current large-scale, anaerobic industrial processes for ethanol production from renewable carbohydrates predominantly rely on the mesophilic yeast Saccharomyces cerevisiae. Use of thermotolerant, facultatively fermentative yeasts such as Kluyveromyces marxianus could confer significant economic benefits. However, in contrast to S. cerevisiae, these yeasts cannot grow in the absence of oxygen. Responses of K. marxianus and S. cerevisiae to different oxygen-limitation regimes were analyzed in chemostats. Genome and transcriptome analysis, physiological responses to sterol supplementation and sterol-uptake measurements identified absence of a functional sterol-uptake mechanism as a key factor underlying the oxygen requirement of K. marxianus. Heterologous expression of a squalene-tetrahymanol cyclase enabled oxygen-independent synthesis of the sterol surrogate tetrahymanol in K. marxianus. After a brief adaptation under oxygen-limited conditions, tetrahymanol-expressing K. marxianus strains grew anaerobically on glucose at temperatures of up to 45 °C. These results open up new directions in the development of thermotolerant yeast strains for anaerobic industrial applications.
Collapse
Affiliation(s)
- Wijbrand J C Dekker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Astrid Kaljouw
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Julius Battjes
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Frank W Wiering
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Pilar de la Torre
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ Delft, the Netherlands.
| |
Collapse
|
13
|
Mühlenhoff U, Braymer JJ, Christ S, Rietzschel N, Uzarska MA, Weiler BD, Lill R. Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biol Chem 2021; 401:1407-1428. [PMID: 33031050 DOI: 10.1515/hsz-2020-0237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
The physiological roles of the intracellular iron and redox regulatory systems are intimately linked. Iron is an essential trace element for most organisms, yet elevated cellular iron levels are a potent generator and amplifier of reactive oxygen species and redox stress. Proteins binding iron or iron-sulfur (Fe/S) clusters, are particularly sensitive to oxidative damage and require protection from the cellular oxidative stress protection systems. In addition, key components of these systems, most prominently glutathione and monothiol glutaredoxins are involved in the biogenesis of cellular Fe/S proteins. In this review, we address the biochemical role of glutathione and glutaredoxins in cellular Fe/S protein assembly in eukaryotic cells. We also summarize the recent developments in the role of cytosolic glutaredoxins in iron metabolism, in particular the regulation of fungal iron homeostasis. Finally, we discuss recent insights into the interplay of the cellular thiol redox balance and oxygen with that of Fe/S protein biogenesis in eukaryotes.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Stefan Christ
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Nicole Rietzschel
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Marta A Uzarska
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307Gdansk, Poland
| | - Benjamin D Weiler
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| |
Collapse
|
14
|
Mooiman C, Bouwknegt J, Dekker WJC, Wiersma SJ, Ortiz-Merino RA, de Hulster E, Pronk JT. Critical parameters and procedures for anaerobic cultivation of yeasts in bioreactors and anaerobic chambers. FEMS Yeast Res 2021; 21:foab035. [PMID: 34100921 PMCID: PMC8216787 DOI: 10.1093/femsyr/foab035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022] Open
Abstract
All known facultatively fermentative yeasts require molecular oxygen for growth. Only in a small number of yeast species, these requirements can be circumvented by supplementation of known anaerobic growth factors such as nicotinate, sterols and unsaturated fatty acids. Biosynthetic oxygen requirements of yeasts are typically small and, unless extensive precautions are taken to minimize inadvertent entry of trace amounts of oxygen, easily go unnoticed in small-scale laboratory cultivation systems. This paper discusses critical points in the design of anaerobic yeast cultivation experiments in anaerobic chambers and laboratory bioreactors. Serial transfer or continuous cultivation to dilute growth factors present in anaerobically pre-grown inocula, systematic inclusion of control strains and minimizing the impact of oxygen diffusion through tubing are identified as key elements in experimental design. Basic protocols are presented for anaerobic-chamber and bioreactor experiments.
Collapse
Affiliation(s)
- Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jonna Bouwknegt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wijb J C Dekker
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sanne J Wiersma
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Erik de Hulster
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
15
|
Pendón MD, Madeira JV, Romanin DE, Rumbo M, Gombert AK, Garrote GL. A biorefinery concept for the production of fuel ethanol, probiotic yeast, and whey protein from a by-product of the cheese industry. Appl Microbiol Biotechnol 2021; 105:3859-3871. [PMID: 33860834 DOI: 10.1007/s00253-021-11278-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Agroindustrial by-products and residues can be transformed into valuable compounds in biorefineries. Here, we present a new concept: production of fuel ethanol, whey protein, and probiotic yeast from cheese whey. An initial screening under industrially relevant conditions, involving thirty Kluyveromyces marxianus strains, was carried out using spot assays to evaluate their capacity to grow on cheese whey or on whey permeate (100 g lactose/L), under aerobic or anaerobic conditions, in the absence or presence of 5% ethanol, at pH 5.8 or pH 2.5. The four best growing K. marxianus strains were selected and further evaluated in a miniaturized industrial fermentation process using reconstituted whey permeate (100 g lactose/L) with cell recycling (involving sulfuric acid treatment). After five consecutive fermentation cycles, the ethanol yield on sugar reached 90% of the theoretical maximum in the best cases, with 90% cell viability. Cells harvested at this point displayed probiotic properties such as the capacity to survive the passage through the gastrointestinal tract and capacity to modulate the innate immune response of intestinal epithelium, both in vitro. Furthermore, the CIDCA 9121 strain was able to protect against histopathological damage in an animal model of acute colitis. Our findings demonstrate that K. marxianus CIDCA 9121 is capable of efficiently fermenting the lactose present in whey permeate to ethanol and that the remaining yeast biomass has probiotic properties, enabling an integrated process for the obtainment of whey protein (WP), fuel ethanol, and probiotics from cheese whey.Key points• K. marxianus-selected strains ferment whey permeate with 90% ethanol yield.• Industrial fermentation conditions do not affect selected yeast probiotic capacity.• Whey permeate, fuel ethanol, and probiotic biomass can be obtained in a biorefinery.
Collapse
Affiliation(s)
- María Dolores Pendón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CIDCA (UNLP-CONICET-CIC.PBA), La Plata, Argentina
| | - José V Madeira
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - David E Romanin
- Instituto de Estudios Inmunológicos y Fisiopatológicos, IIFP (UNLP-CONICET-CIC.PBA), La Plata, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, IIFP (UNLP-CONICET-CIC.PBA), La Plata, Argentina
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CIDCA (UNLP-CONICET-CIC.PBA), La Plata, Argentina.
| |
Collapse
|
16
|
Tesnière C, Pradal M, Legras JL. Sterol uptake analysis in Saccharomyces and non-Saccharomyces wine yeast species. FEMS Yeast Res 2021; 21:6225805. [PMID: 33852000 DOI: 10.1093/femsyr/foab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions. The sterol uptake efficiency of 39 strains was evaluated by flow cytometry (with 25-NBD Cholesterol, a fluorescent cholesterol probe introduced in the medium) and we found an important discrepancy between Saccharomyces and non-Saccharomyces wine yeast species that we correlated to a lower final cell population and a lower fermentation rate. A high uptake of sterol was observed in the various Saccharomyces strains. Spot tests performed on 13 of these strains confirmed the differences between Saccharomyces and non-Saccharomyces strains, suggesting that the presence of the sterol uptake transporters AUS1 and PDR11 could cause these discrepancies. Indeed, we could not find any homologue to these genes in the genome of Hanseniaspora uvarum, H. guillermondii, Lachancea thermotolerans, Torulaspora delbreueckii, Metschnikowia pulcherrima, or Starmarella bacillaris species. The specialization of sterol import function for post genome-duplication species may have favored growth under anaerobiosis.
Collapse
Affiliation(s)
- Catherine Tesnière
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France.,CIRM-Levures, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
17
|
Dekker WJC, Wiersma SJ, Bouwknegt J, Mooiman C, Pronk JT. Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids. FEMS Yeast Res 2020; 19:5551482. [PMID: 31425603 PMCID: PMC6750169 DOI: 10.1093/femsyr/foz060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anaerobic bioreactor cultivation of this yeast, we consistently observed growth of the laboratory strain S. cerevisiae CEN.PK113-7D in media that contained the anaerobic growth factor ergosterol, but lacked UFAs. To minimize oxygen contamination, additional experiments were performed in an anaerobic chamber. After anaerobic precultivation without ergosterol and Tween 80, strain CEN.PK113-7D and a congenic ole1Δ strain both grew during three consecutive batch-cultivation cycles on medium that contained ergosterol, but not Tween 80. During these three cycles, no UFAs were detected in biomass of cultures grown without Tween 80, while contents of C10 to C14 saturated fatty acids were higher than in biomass from Tween 80-supplemented cultures. In contrast to its UFA-independent anaerobic growth, aerobic growth of the ole1Δ strain strictly depended on Tween 80 supplementation. This study shows that the requirement of anaerobic cultures of S. cerevisiae for UFA supplementation is not absolute and provides a basis for further research on the effects of lipid composition on yeast viability and robustness.
Collapse
Affiliation(s)
- Wijb J C Dekker
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sanne J Wiersma
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jonna Bouwknegt
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christiaan Mooiman
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
Perli T, Wronska AK, Ortiz‐Merino RA, Pronk JT, Daran J. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283-304. [PMID: 31972058 PMCID: PMC7187267 DOI: 10.1002/yea.3461] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Collapse
Affiliation(s)
- Thomas Perli
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Anna K. Wronska
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Jack T. Pronk
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Jean‐Marc Daran
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
19
|
Leandro MJ, Marques S, Ribeiro B, Santos H, Fonseca C. Integrated Process for Bioenergy Production and Water Recycling in the Dairy Industry: Selection of Kluyveromyces Strains for Direct Conversion of Concentrated Lactose-Rich Streams into Bioethanol. Microorganisms 2019; 7:E545. [PMID: 31717512 PMCID: PMC6920800 DOI: 10.3390/microorganisms7110545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/03/2022] Open
Abstract
Dairy industries have a high environmental impact, with very high energy and water consumption and polluting effluents. To increase the sustainability of these industries it is urgent to implement technologies for wastewater treatment allowing water recycling and energy savings. In this study, dairy wastewater was processed by ultrafiltration and nanofiltration or ultrafiltration and reverse osmosis (UF/RO) and retentates from the second membrane separation processes were assessed for bioenergy production. Lactose-fermenting yeasts were tested in direct conversion of the retentates (lactose-rich streams) into bioethanol. Two Kluyveromyces strains efficiently fermented all the lactose, with ethanol yields higher than 90% (>0.47 g/g yield). Under severe oxygen-limiting conditions, the K. marxianus PYCC 3286 strain reached 70 g/L of ethanol, which is compatible with energy-efficient distillation processes. In turn, the RO permeate is suitable for recycling into the cleaning process. The proposed integrated process, using UF/RO membrane technology, could allow water recycling (RO permeate) and bioenergy production (from RO retentate) for a more sustainable dairy industry.
Collapse
Affiliation(s)
- Maria José Leandro
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P. (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (S.M.); (B.R.)
- Instituto de Tecnologia Química e Biológica António Xavier, Biology Division, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
| | - Susana Marques
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P. (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (S.M.); (B.R.)
| | - Belina Ribeiro
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P. (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (S.M.); (B.R.)
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Biology Division, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
| | - César Fonseca
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P. (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (S.M.); (B.R.)
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A. C. Meyers Vænge 15, 2450 Copenhagen, Denmark
| |
Collapse
|
20
|
da Costa BLV, Raghavendran V, Franco LFM, Chaves Filho ADB, Yoshinaga MY, Miyamoto S, Basso TO, Gombert AK. Forever panting and forever growing: physiology of Saccharomyces cerevisiae at extremely low oxygen availability in the absence of ergosterol and unsaturated fatty acids. FEMS Yeast Res 2019; 19:5551481. [DOI: 10.1093/femsyr/foz054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/02/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
We sought to investigate how far the growth of Saccharomyces cerevisiae under full anaerobiosis is dependent on the widely used anaerobic growth factors (AGF) ergosterol and oleic acid. A continuous cultivation setup was employed and, even forcing ultrapure N2 gas through an O2 trap upstream of the bioreactor, neither cells from S. cerevisiae CEN.PK113–7D (a lab strain) nor from PE-2 (an industrial strain) washed out after an aerobic-to-anaerobic switch in the absence of AGF. S. cerevisiae PE-2 seemed to cope better than the laboratory strain with this extremely low O2 availability, since it presented higher biomass yield, lower specific rates of glucose consumption and CO2 formation, and higher survival at low pH. Lipid (fatty acid and sterol) composition dramatically altered when cells were grown anaerobically without AGF: saturated fatty acid, squalene and lanosterol contents increased, when compared to either cells grown aerobically or anaerobically with AGF. We concluded that these lipid alterations negatively affect cell viability during exposure to low pH or high ethanol titers.
Collapse
Affiliation(s)
- Bruno Labate Vale da Costa
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas-SP, Brazil
- Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05424-970 São Paulo-SP, Brazil
| | - Vijayendran Raghavendran
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas-SP, Brazil
| | - Luís Fernando Mercier Franco
- Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05424-970 São Paulo-SP, Brazil
| | | | - Marcos Yukio Yoshinaga
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo-SP, Brazil
| | - Sayuri Miyamoto
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo-SP, Brazil
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05424-970 São Paulo-SP, Brazil
| | - Andreas Karoly Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas-SP, Brazil
| |
Collapse
|
21
|
Konecna A, Toth Hervay N, Bencova A, Morvova M, Sikurova L, Jancikova I, Gaskova D, Gbelska Y. Erg6 gene is essential for stress adaptation in Kluyveromyces lactis. FEMS Microbiol Lett 2018; 365:5162844. [PMID: 30398655 DOI: 10.1093/femsle/fny265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/05/2018] [Indexed: 01/20/2023] Open
Abstract
We investigated the effect of Kluyveromyces lactis ERG6 gene deletion on plasma membrane function and showed increased susceptibility of mutant cells to salt stress, cationic drugs and weak organic acids. Contrary to Saccharomyces cerevisiae, Klerg6 mutant cells exhibited increased tolerance to tunicamycin. The content of cell wall polysacharides did not significantly vary between wild-type and mutant cells. Although the expression of the NAD+-dependent glycerol 3-phosphate dehydrogenase (KlGPD1) in the Klerg6 mutant cells was only half of that in the parental strain, it was induced in the presence of calcofluor white. Also, cells exposed to this drug accumulated glycerol. The absence of KlErg6p led to plasma membrane hyperpolarization but had no statistically significant influence on the plasma membrane fluidity. We propose that the phenotype of Klerg6 mutant cells to a large extent was a result of the reduced activity of specific plasma membrane proteins that require proper lipid composition for full activity.
Collapse
Affiliation(s)
- Alexandra Konecna
- Faculty of Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Nora Toth Hervay
- Faculty of Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Alexandra Bencova
- Faculty of Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Marcela Morvova
- Faculty of Mathematics, Physics and Informatics F1, Comenius University in Bratislava, Mlynska dolina 6280, 842 48 Bratislava, Slovakia
| | - Libusa Sikurova
- Faculty of Mathematics, Physics and Informatics F1, Comenius University in Bratislava, Mlynska dolina 6280, 842 48 Bratislava, Slovakia
| | - Iva Jancikova
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 2027/3, 121 16 Prague, Czech Republic
| | - Dana Gaskova
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 2027/3, 121 16 Prague, Czech Republic
| | - Yvetta Gbelska
- Faculty of Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
22
|
Ward DM, Chen OS, Li L, Kaplan J, Bhuiyan SA, Natarajan SK, Bard M, Cox JE. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J Biol Chem 2018; 293:10782-10795. [PMID: 29773647 DOI: 10.1074/jbc.ra118.001781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/11/2018] [Indexed: 01/05/2023] Open
Abstract
Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.
Collapse
Affiliation(s)
- Diane M Ward
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Opal S Chen
- the DNA Sequencing Core, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Liangtao Li
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Jerry Kaplan
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Shah Alam Bhuiyan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Selvamuthu K Natarajan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Martin Bard
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - James E Cox
- the Department of Biochemistry and.,Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
23
|
Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability. Appl Microbiol Biotechnol 2018; 102:2101-2116. [DOI: 10.1007/s00253-017-8732-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
24
|
Gombert AK, Madeira JV, Cerdán ME, González-Siso MI. Kluyveromyces marxianus as a host for heterologous protein synthesis. Appl Microbiol Biotechnol 2016; 100:6193-6208. [PMID: 27260286 DOI: 10.1007/s00253-016-7645-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/22/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023]
Abstract
The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.
Collapse
Affiliation(s)
- Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - José Valdo Madeira
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
25
|
Gorietti D, Zanni E, Palleschi C, Delfini M, Uccelletti D, Saliola M, Puccetti C, Sobolev A, Mannina L, Miccheli A. 13C NMR based profiling unveils different α-ketoglutarate pools involved into glutamate and lysine synthesis in the milk yeast Kluyveromyces lactis. Biochim Biophys Acta Gen Subj 2015; 1850:2222-7. [DOI: 10.1016/j.bbagen.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/01/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022]
|
26
|
Yao W, Beckwith SL, Zheng T, Young T, Dinh VT, Ranjan A, Morrison AJ. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities. J Biol Chem 2015; 290:25700-9. [PMID: 26306040 DOI: 10.1074/jbc.m115.674887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement.
Collapse
Affiliation(s)
- Wei Yao
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Sean L Beckwith
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Tina Zheng
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Thomas Young
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Van T Dinh
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Anand Ranjan
- Laboratory of Biochemistry and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ashby J Morrison
- From the Department of Biology, Stanford University, Stanford California 94305 and
| |
Collapse
|
27
|
Evaluation of the performance of Torulaspora delbrueckii, Williopsis saturnus, and Kluyveromyces lactis in lychee wine fermentation. Int J Food Microbiol 2015; 206:45-50. [DOI: 10.1016/j.ijfoodmicro.2015.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/30/2015] [Accepted: 04/14/2015] [Indexed: 11/21/2022]
|
28
|
Paul VD, Mühlenhoff U, Stümpfig M, Seebacher J, Kugler KG, Renicke C, Taxis C, Gavin AC, Pierik AJ, Lill R. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. eLife 2015; 4:e08231. [PMID: 26182403 PMCID: PMC4523923 DOI: 10.7554/elife.08231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI:http://dx.doi.org/10.7554/eLife.08231.001 Many proteins depend on small molecules called cofactors to be able to perform their roles in cells. One class of proteins—the iron-sulfur proteins—contain cofactors that are made of clusters of iron and sulfide ions. In yeast, humans and other eukaryotes, the clusters are assembled and incorporated into their target proteins by a group of assembly factors called the CIA machinery. Several components of the CIA machinery have previously been identified and most of them appear to be core components that are needed to assemble many different proteins in cells. Since these iron-sulfur proteins are involved in important processes such as the production of proteins and the maintenance of DNA, losing of any of these CIA proteins tends to be lethal to the organism. Paul et al. used several ‘proteomic’ techniques to study the assembly of iron-sulfur proteins in yeast and identified two new proteins called Yae1 and Lto1 that are involved in this process. Unlike other CIA proteins, Yae1 and Lto1 are only required for the assembly of just one particular iron-sulfur protein called Rli1, which is essential for the production of proteins. Most newly made iron-sulfur proteins can bind directly to a group of CIA proteins called the CIA targeting complex, but Rli1 cannot. The experiments show that Lto1 binds to both the CIA targeting complex and to Yae1, which in turn recruits the Rli1 to the CIA complex. Paul et al. also show that humans have proteins that are very similar to Yae1 and Lto1. Inserting the human counterparts of Yae1 and Lto1 into yeast lacking these proteins could fully restore the assembly of iron-sulfur clusters into Rli1. This suggests that Yae1 and Lto1 proteins evolved in the common ancestors of fungi and humans and have changed little since. Taken together, Paul et al.'s findings reveal that Yae1 and Lto1 act as adaptors that link the rest of the CIA machinery to their specific target protein Rli1 in yeast and humans. A future challenge is to find out the three-dimensional structures of Yae1 and Lto1 to better understand how these proteins work and interact. DOI:http://dx.doi.org/10.7554/eLife.08231.002
Collapse
Affiliation(s)
- Viktoria Désirée Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Jan Seebacher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karl G Kugler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Renicke
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Christof Taxis
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio J Pierik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
29
|
Ottaviano D, Montanari A, De Angelis L, Santomartino R, Visca A, Brambilla L, Rinaldi T, Bello C, Reverberi M, Bianchi MM. Unsaturated fatty acids-dependent linkage between respiration and fermentation revealed by deletion of hypoxic regulatory KlMGA2 gene in the facultative anaerobe-respiratory yeast Kluyveromyces lactis. FEMS Yeast Res 2015; 15:fov028. [PMID: 26019145 DOI: 10.1093/femsyr/fov028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 01/03/2023] Open
Abstract
In the yeast Kluyveromyces lactis, the inactivation of structural or regulatory glycolytic and fermentative genes generates obligate respiratory mutants which can be characterized by sensitivity to the mitochondrial drug antimycin A on glucose medium (Rag(-) phenotype). Rag(-) mutations can occasionally be generated by the inactivation of genes not evidently related to glycolysis or fermentation. One such gene is the hypoxic regulatory gene KlMGA2. In this work, we report a study of the many defects, in addition to the Rag(-) phenotype, generated by KlMGA2 deletion. We analyzed the fermentative and respiratory metabolism, mitochondrial functioning and morphology in the Klmga2Δ strain. We also examined alterations in the regulation of the expression of lipid biosynthetic genes, in particular fatty acids, ergosterol and cardiolipin, under hypoxic and cold stress and the phenotypic suppression by unsaturated fatty acids of the deleted strain. Results indicate that, despite the fact that the deleted mutant strain had a typical glycolytic/fermentative phenotype and KlMGA2 is a hypoxic regulatory gene, the deletion of this gene generated defects linked to mitochondrial functions suggesting new roles of this protein in the general regulation and cellular fitness of K. lactis. Supplementation of unsaturated fatty acids suppressed or modified these defects suggesting that KlMga2 modulates membrane functioning or membrane-associated functions, both cytoplasmic and mitochondrial.
Collapse
Affiliation(s)
- Daniela Ottaviano
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo De Angelis
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Rosa Santomartino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Visca
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Luca Brambilla
- Department of Biotechnology and Biosciences, Bicocca University of Milan, p.zza Della Scienza 2, 20126 Milan, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy Pasteur Institut Cenci-Bolognetti Foundation, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristiano Bello
- Departement of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Massimo Reverberi
- Departement of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Michele M Bianchi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
30
|
Drozdíková E, Garaiová M, Csáky Z, Obernauerová M, Hapala I. Production of squalene by lactose-fermenting yeast Kluyveromyces lactis
with reduced squalene epoxidase activity. Lett Appl Microbiol 2015; 61:77-84. [DOI: 10.1111/lam.12425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- E. Drozdíková
- Department of Microbiology and Virology; Faculty of Sciences; Comenius University; Bratislava Slovakia
| | - M. Garaiová
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - Z. Csáky
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - M. Obernauerová
- Department of Microbiology and Virology; Faculty of Sciences; Comenius University; Bratislava Slovakia
| | - I. Hapala
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| |
Collapse
|
31
|
Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, Fujimoto N, Tsuchikane K, Limtong S, Fujita N, Yamada M. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:47. [PMID: 25834639 PMCID: PMC4381506 DOI: 10.1186/s13068-015-0227-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/19/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND High-temperature fermentation technology with thermotolerant microbes has been expected to reduce the cost of bioconversion of cellulosic biomass to fuels or chemicals. Thermotolerant Kluyveromyces marxianus possesses intrinsic abilities to ferment and assimilate a wide variety of substrates including xylose and to efficiently produce proteins. These capabilities have been found to exceed those of the traditional ethanol producer Saccharomyces cerevisiae or lignocellulose-bioconvertible ethanologenic Scheffersomyces stipitis. RESULTS The complete genome sequence of K. marxianus DMKU 3-1042 as one of the most thermotolerant strains in the same species has been determined. A comparison of its genomic information with those of other yeasts and transcriptome analysis revealed that the yeast bears beneficial properties of temperature resistance, wide-range bioconversion ability, and production of recombinant proteins. The transcriptome analysis clarified distinctive metabolic pathways under three different growth conditions, static culture, high temperature, and xylose medium, in comparison to the control condition of glucose medium under a shaking condition at 30°C. Interestingly, the yeast appears to overcome the issue of reactive oxygen species, which tend to accumulate under all three conditions. CONCLUSIONS This study reveals many gene resources for the ability to assimilate various sugars in addition to species-specific genes in K. marxianus, and the molecular basis of its attractive traits for industrial applications including high-temperature fermentation. Especially, the thermotolerance trait may be achieved by an integrated mechanism consisting of various strategies. Gene resources and transcriptome data of the yeast are particularly useful for fundamental and applied researches for innovative applications.
Collapse
Affiliation(s)
- Noppon Lertwattanasakul
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
- />Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Tomoyuki Kosaka
- />Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Akira Hosoyama
- />National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066 Japan
| | - Yutaka Suzuki
- />Department of Medical Genome Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Nadchanok Rodrussamee
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
- />Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Minenosuke Matsutani
- />Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Masayuki Murata
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Naoko Fujimoto
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Keiko Tsuchikane
- />National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066 Japan
| | - Savitree Limtong
- />Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nobuyuki Fujita
- />National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066 Japan
| | - Mamoru Yamada
- />Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
- />Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515 Japan
| |
Collapse
|
32
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
33
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
34
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
35
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
36
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
37
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
38
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
39
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014; 15:552. [PMID: 24993029 PMCID: PMC4099481 DOI: 10.1186/1471-2164-15-552] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/27/2014] [Indexed: 12/21/2022] Open
Abstract
Background Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast’s adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L−1 total sugar. Results Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole’s role in ion homeostasis and pH regulation, through vacuole acidification. Conclusion We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, ‘stuck’ fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of null mutants described in the Saccharomyces Genome Database. The 93-gene set is collectively referred to as the ‘Fermentome’. The fact that 10 genes highlighted in this study have not previously been linked to fermentation-related stresses, supports our experimental rationale. These findings, together with investigations of the genetic diversity of industrial strains, are crucial for understanding the mechanisms behind yeast’s response and adaptation to stresses imposed during high-sugar fermentations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-552) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vladimir Jiranek
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
40
|
Dias O, Pereira R, Gombert AK, Ferreira EC, Rocha I. iOD907, the first genome-scale metabolic model for the milk yeastKluyveromyces lactis. Biotechnol J 2014; 9:776-90. [DOI: 10.1002/biot.201300242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/07/2014] [Accepted: 04/23/2014] [Indexed: 11/08/2022]
|
41
|
Moretti-Almeida G, Netto LES, Monteiro G. The essential gene YMR134W from Saccharomyces cerevisiae is important for appropriate mitochondrial iron utilization and the ergosterol biosynthetic pathway. FEBS Lett 2013; 587:3008-13. [PMID: 23892078 DOI: 10.1016/j.febslet.2013.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
A thermosensitive strain (YMR134W(ts)) of the essential gene YMR134W presented up to 40% less ergosterol, threefold lower oxygen consumption and impaired growth on respiratory conditions. The iron content in the mitochondrial fraction of YMR134W(ts) cells was considerably low, despite these cells uptake and accumulate more iron from the culture media than wild-type cells. YMR134W(ts) cells were also more susceptible to oxidative stress. The results suggest that Ymr134wp is essential to aerobic growth due to its function in ergosterol biosynthesis, playing a role in maintaining mitochondrial and plasma membrane integrity and consequently impacting the iron homeostasis, respiratory metabolism and antioxidant response.
Collapse
Affiliation(s)
- Gabriel Moretti-Almeida
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, Brazil.
| | | | | |
Collapse
|
42
|
Hagman A, Säll T, Compagno C, Piskur J. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 2013; 8:e68734. [PMID: 23869229 PMCID: PMC3711898 DOI: 10.1371/journal.pone.0068734] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker’s yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.
Collapse
Affiliation(s)
- Arne Hagman
- Department of Biology, Molecular Cell Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
43
|
Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013; 30:165-77. [PMID: 23576126 DOI: 10.1002/yea.2954] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022] Open
Abstract
The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
44
|
The function of ORAOV1/LTO1, a gene that is overexpressed frequently in cancer: essential roles in the function and biogenesis of the ribosome. Oncogene 2013; 33:484-94. [PMID: 23318452 DOI: 10.1038/onc.2012.604] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/09/2022]
Abstract
ORAOV1 (oral cancer overexpressed) is overexpressed in many solid tumours, making a key contribution to the development of cancer, but the cellular role of ORAOV1 is unknown. The yeast orthologue of this protein is encoded by the hitherto uncharacterized essential gene, YNL260c. Expression of ORAOV1 restores viability to yeast cells lacking YNL260c. Under nonpermissive conditions, our conditional mutants of YNL260c are defective in the maturation of the 60S ribosomal subunit, whereas maturation of the 40S subunit is unaffected. Also, initiation of translation is abrogated when YNL260c function is lost. YNL260c is indispensible for life in oxygen, but is nonessential under anaerobic conditions. Consequently, the toxic affects of aerobic metabolism on biogenesis and function of the ribosome are alleviated by YNL260c, hence, we rename YNL260c as LTO1; required for biogenesis of the large ribosomal subunit and initiation of translation in oxygen. Lto1 is found in a complex with Rli1/ABCE1, an ATP-binding cassette (ABC)-ATPase bearing N-terminal [4Fe-4S] clusters. Like Lto1, the Rli1/ABCE1 [4Fe-4S] clusters are not required for viability under anaerobic conditions, but are essential in the presence of oxygen. Loss of Lto1 function renders cells susceptible to hydroperoxide pro-oxidants, though this type of sensitivity is specific to certain types of oxidative stress as the lto1 mutants are not sensitive to an agent that oxidizes thiols. These findings reflect a functional interaction between Lto1 and the Rli1/ABCE1 [4Fe-4S] clusters, as part of a complex, which relieves the toxic effects of reactive oxygen species (ROS) on biogenesis and function of the ribosome. This complex also includes Yae1, which bridges the interaction between Lto1 and Rli1/ABCE1. Interactions between members of this complex were demonstrated both in vivo and in vitro. An increased generation of ROS is a feature shared by many cancers. The ORAOV1 complex could prevent ROS-induced ribosomal damage, explaining why overexpression of ORAOV1 is so common in solid tumours.
Collapse
|
45
|
Dias O, Gombert AK, Ferreira EC, Rocha I. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis. BMC Genomics 2012; 13:517. [PMID: 23025710 PMCID: PMC3508617 DOI: 10.1186/1471-2164-13-517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. RESULTS In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG's annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. CONCLUSIONS The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.
Collapse
Affiliation(s)
- Oscar Dias
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | |
Collapse
|
46
|
dos Santos VC, Bragança CRS, Passos FJV, Passos FML. Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3. Antonie van Leeuwenhoek 2012; 103:153-61. [PMID: 22965752 DOI: 10.1007/s10482-012-9794-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
Abstract
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L(-1) glucose/20 g L(-1) xylose and 20 g L(-1) glucose/20 g L(-1) xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L(-1)) and cell mass concentration (4.42 g L(-1)) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L(-1) glucose/20 g L(-1) xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.
Collapse
Affiliation(s)
- Valdilene Canazart dos Santos
- Department of Microbiology, Institute for Biotechnology Applied to Agriculture and Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | |
Collapse
|
47
|
Kluyveromyces lactis: a suitable yeast model to study cellular defense mechanisms against hypoxia-induced oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:634674. [PMID: 22928082 PMCID: PMC3425888 DOI: 10.1155/2012/634674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022]
Abstract
Studies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress response in yeast. We focus on the differential characteristics between S. cerevisiae and the respiratory yeast Kluyveromyces lactis, a complementary emerging model, in reference to multicellular eukaryotes.
Collapse
|
48
|
Micolonghi C, Ottaviano D, Di Silvio E, Damato G, Heipieper HJ, Bianchi MM. A dual signalling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of the KlMGA2 gene in Kluyveromyces lactis. MICROBIOLOGY-SGM 2012; 158:1734-1744. [PMID: 22516223 DOI: 10.1099/mic.0.059402-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the respiratory yeast Kluyveromyces lactis, little is known about the factors regulating the metabolic response to oxygen shortage. After searching for homologues of characterized Saccharomyces cerevisiae regulators of the hypoxic response, we identified a gene that we named KlMGA2, which is homologous to MGA2. The deletion of KlMGA2 strongly reduced both the fermentative and respiratory growth rate and altered fatty acid composition and the unsaturation index of membranes. The reciprocal heterologous expression of MGA2 and KlMGA2 in the corresponding deletion mutant strains suggested that Mga2 and KlMga2 are functional homologues. KlMGA2 transcription was induced by hypoxia and the glucose sensor Rag4 mediated the hypoxic induction of KlMGA2. Transcription of lipid biosynthetic genes KlOLE1, KlERG1, KlFAS1 and KlATF1 was induced by hypoxia and was dependent on KlMga2, except for KlOLE1. Rag4 was required for hypoxic induction of transcription for both KlMga2-dependent (KlERG1) and KlMga2-independent (KlOLE1) structural genes.
Collapse
Affiliation(s)
- Chiara Micolonghi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Ottaviano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Eva Di Silvio
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe Damato
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Michele M Bianchi
- Pasteur Institut Cenci-Bolognetti Foundation, Sapienza University of Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
49
|
Rodríguez Torres AM, Lamas Maceiras M, Rodríguez Belmonte E, Núñez Naveira L, Blanco Calvo M, Cerdán ME. KlRox1p contributes to yeast resistance to metals and is necessary for KlYCF1 expression in the presence of cadmium. Gene 2012; 497:27-37. [DOI: 10.1016/j.gene.2012.01.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/21/2012] [Indexed: 11/29/2022]
|
50
|
Hickman MJ, Petti AA, Ho-Shing O, Silverman SJ, McIsaac RS, Lee TA, Botstein D. Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Mol Biol Cell 2011; 22:4192-204. [PMID: 21900497 PMCID: PMC3204079 DOI: 10.1091/mbc.e11-05-0467] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The sulfur assimilation and phospholipid biosynthesis pathways interact metabolically and transcriptionally. Genetic analysis, genome-wide sequencing, and expression microarrays show that regulators of these pathways, Met4p and Opi1p, control cellular methylation capacity that can limit the growth rate. A yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency. To identify the suppressor mutations, we used genome-wide single-nucleotide polymorphism and standard genetic analyses. The most common suppressors were loss-of-function mutations in OPI1, encoding a transcriptional repressor of phospholipid metabolism. Using a new system that allows rapid and specific degradation of Met4p, we could study the dynamic expression of all genes following loss of Met4p. Experiments using this system with and without Opi1p showed that Met4 activates and Opi1p represses genes that maintain levels of S-adenosylmethionine (SAM), the substrate for most methyltransferase reactions. Cells lacking Met4p grow normally when either SAM is added to the media or one of the SAM synthetase genes is overexpressed. SAM is used as a methyl donor in three Opi1p-regulated reactions to create the abundant membrane phospholipid, phosphatidylcholine. Our results show that rapidly growing cells require significant methylation, likely for the biosynthesis of phospholipids.
Collapse
Affiliation(s)
- Mark J Hickman
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | | | |
Collapse
|