1
|
Aldebert D, Suarez B, Bettega F, Boucher E, Garnaud C, Cornet M. Easy-to-use imaging-cytometry assay to analyze chitin patterns in yeasts. J Mycol Med 2024; 34:101493. [PMID: 38945044 DOI: 10.1016/j.mycmed.2024.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND & AIM Pathogenic fungi are a major threat to public health, and fungal infections are becoming increasingly common and treatment resistant. Chitin, a component of the fungal cell wall, modifies host immunity and contributes to antifungal resistance. Moreover, chitin content is regulated by chitin synthases and chitinases. However, the specific roles and mechanisms remain unclear. In this study, we developed a cytometric imaging assay to quantify chitin content and identify the distribution of chitin in the yeast cell wall. METHODS The Candida albicans SC5314 and Nakaseomyces glabratus (ex. C. glabrata) ATCC2001 reference strains, as well as 106 clinical isolates, were used. Chitin content, distribution, and morphological parameters were analysed in 12 yeast species. Moreover, machine learning statistical software was used to evaluate the ability of the cytometric imaging assay to predict yeast species using the values obtained for these parameters. RESULTS Our imaging-cytometry assay was repeatable, reproducible, and sensitive to variations in chitin content in C. albicans mutants or after antifungal stimulation. The evaluated parameters classified the yeast species into the correct clade with an accuracy of 85 %. CONCLUSION Our findings demonstrate that this easy-to-use assay is an effective tool for the exploration of chitin content in yeast species.
Collapse
Affiliation(s)
- Delphine Aldebert
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| | - Bastien Suarez
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - François Bettega
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Cecile Garnaud
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Muriel Cornet
- Univ. Grenoble Alpes, CNRS, UMR 5525, CHU Grenoble Alpes, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
2
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
3
|
Increased diversity in the genus Debaryomyces from Arctic glacier samples. Antonie van Leeuwenhoek 2014; 107:487-501. [DOI: 10.1007/s10482-014-0345-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/29/2014] [Indexed: 01/07/2023]
|
4
|
Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a019604. [PMID: 25081629 DOI: 10.1101/cshperspect.a019604] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
5
|
Fan Y, He H, Dong Y, Pan H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans. Mycopathologia 2013; 176:329-35. [PMID: 24002103 DOI: 10.1007/s11046-013-9684-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.
Collapse
Affiliation(s)
- Yan Fan
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | | | | | | |
Collapse
|
6
|
Bruzual I, Kumamoto CA. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains of Candida albicans. Mol Genet Genomics 2011; 286:347-57. [PMID: 21972105 DOI: 10.1007/s00438-011-0650-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 09/18/2011] [Indexed: 12/26/2022]
Abstract
In the opportunistic fungal pathogen Candida albicans, up-regulation of MDR1, encoding an efflux transporter, leads to increased resistance to the antifungal drug fluconazole. Antifungal resistance has been linked to several types of genetic change in C. albicans, including changes in genome structure, genetic alteration of the drug target, and overexpression of transporters. High-level over-expression of MDR1 is commonly mediated by mutation in a trans-acting factor, Mrr1p. This report describes a second mechanism that contributes to up-regulation of MDR1 expression. By analyzing the sequence of the MDR1 promoter region in fluconazole-resistant and fluconazole-susceptible strains, we identified sequence polymorphisms that defined two linkage groups, corresponding to the two alleles in the diploid genome. One of the alleles conferred higher MDR1 expression compared with the other allele. Strains in which both alleles were of the higher activity type were common in collections of clinically isolated strains while strains carrying only the less active allele were rare. As increased expression of MDR1 confers higher resistance to drugs, strains with the more active MDR1 promoter allele may grow or survive longer when exposed to drugs or other selective pressures, providing greater opportunity for mutations that confer high-level drug resistance to arise. Through this mechanism, higher activity alleles of the MDR1 promoter could promote the development of drug resistance.
Collapse
Affiliation(s)
- Igor Bruzual
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | | |
Collapse
|
7
|
Padovan ACB, Chaves GM, Colombo AL, Briones MRS. A novel allele of HWP1, isolated from a clinical strain of Candida albicans with defective hyphal growth and biofilm formation, has deletions of Gln/Pro and Ser/Thr repeats involved in cellular adhesion. Med Mycol 2010; 47:824-35. [PMID: 19184714 DOI: 10.3109/13693780802669574] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene HWP1 encodes a major Candida albicans hyphae cell wall protein which is a substrate of mammalian transglutaminases, promoting the cross-link of the fungus to epithelial cells. Here, we describe a novel HWP1 allele, isolated from C. albicans blood isolates. Analysis of the translated sequence shows that three important regions are absent in the novel allele, HWP1-2, relative to the previously described allele, HWP1-1. Regions 1 and 2 consist of 10 amino acid repeats important for functional conformation of peptide chains and attachment of C. albicans cells to the mammalian epithelia. Region 3 consists of 34 amino acid residues rich in threonine and serine, with O-glycosylation sites that promote the cross-linking with other proteins on C. albicans surface. The HWP1-2 homozygous strain L757 and the heterozygous strain L296 (HWP1-1/HWP1-2) have significantly lower levels of HWP1 expression during hyphal growth and biofilm formation compared to strain SC5314 (HWP1-1/HWP1-1). However, strain L296 properly forms hyphae and biofilms in vitro while strain L757 has reduced hyphal growth (40.4%) and biofilm formation (90.8%). Our results indicate that the HWP1 locus has biofilm specific allelic differential expression and suggest that the HWP1-2 encoded protein is less efficient to maintain cell-to-cell and cell-to-surface adhesion during biofilm formation. This is the first report of a natural variant of HWP1.
Collapse
Affiliation(s)
- Ana Carolina B Padovan
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
8
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|