1
|
Bigey F, Menatong Tene X, Wessner M, Devillers H, Pradal M, Cruaud C, Aury JM, Neuvéglise C. Insights into the genomic and phenotypic diversity of Monosporozyma unispora strains isolated from anthropic environments. FEMS Yeast Res 2025; 25:foaf016. [PMID: 40121180 PMCID: PMC11974382 DOI: 10.1093/femsyr/foaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Food microorganisms have been employed for centuries for the processing of fermented foods, leading to adapted populations with phenotypic traits of interest. The yeast Monosporozyma unispora (formerly Kazachstania unispora) has been identified in a wide range of fermented foods and beverages. Here, we studied the genetic and phenotypic diversity of a collection of 53 strains primarily derived from cheese, kefir, and sourdough. The 12.7-Mb genome of the type strain CLIB 234T was sequenced and assembled into near-complete chromosomes and annotated at the structural and functional levels, with 5639 coding sequences predicted. Comparison of the pangenome and core genome revealed minimal differences. From the complete yeast collection, we gathered genetic data (diversity, phylogeny, and population structure) and phenotypic data (growth capacity on solid media). Population genomic analyses revealed a low level of nucleotide diversity and strong population structure, with the presence of two major clades corresponding to ecological origins (cheese and kefir vs. plant derivatives). A high prevalence of extensive loss of heterozygosity and a slow linkage disequilibrium decay suggested a predominantly clonal mode of reproduction. Phenotypic analyses revealed growth variation under stress conditions, including high salinity and low pH, but no definitive link between phenotypic traits and environmental adaptation was established.
Collapse
Affiliation(s)
- Frédéric Bigey
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Marc Wessner
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Hugo Devillers
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Cécile Neuvéglise
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
2
|
Johnson Z, Nadim F, Zubko MK. Enhanced Tolerance to Antifungals as a General Feature of Rho - Mutants in Yeast Species: Implications to Positive Selection of Respiratory Deficiency. Microorganisms 2025; 13:99. [PMID: 39858867 PMCID: PMC11767389 DOI: 10.3390/microorganisms13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Although the mitochondrial genome is an attribute of all eukaryotes, some yeast species (called petite-positive) can replicate without mitochondrial DNA (mtDNA). Strains without mtDNA (known as rho- mutants or petite mutants) are respiration-deficient and require fermentable carbon sources (such as glucose) for their metabolism. However, they are compromised in many aspects of fitness and competitiveness. Nevertheless, a few research groups have reported that some petite mutants of Candida glabrata and Saccharomyces cerevisiae manifested higher levels of tolerance to the antifungal fluconazole than their wild-type (WT) counterparts. In this study, we show that elevated tolerance to two or three out of four tested antifungals is a generic feature of at least five petite-positive species of yeasts including C. glabrata (higher tolerance of petites to clotrimazole and miconazole), S. bayanus (tolerance to clotrimazole, fluconazole, and miconazole), S. cerevisiae (tolerance to clotrimazole and fluconazole), S. paradoxus (tolerance to clotrimazole, fluconazole, and miconazole), and S. pastorianus (tolerance to clotrimazole and fluconazole). Comparing the levels of tolerance to the antifungals in WT and petite mutants was based on measuring the diameters of the zones of inhibition (ZOIs) using disc diffusion assays. The mode of inhibition in the majority of WT strains by all antifungals was fungicidal; most of the rho- mutants manifested fungistatic inhibition. We observed partial (not complete) inhibition in WT, with four different types of ZOI patterns that were species- and antifungal-specific. The partial inhibition was characterised by the presence of antifungal-tolerant colonies within ZOI areas. The inability of these colonies selected from ZOIs to grow on glycerol, as a single source of carbon, proved that they were rho- mutants spontaneously generated in the WT populations. The results on the elevated tolerance of petite strains to antifungals are discussed in terms of the prospective positive selection of respiratory-deficient mutants and the various implications of such selection.
Collapse
Affiliation(s)
| | | | - Mikhajlo K. Zubko
- Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK; (Z.J.); (F.N.)
| |
Collapse
|
3
|
Wang JJT, Steenwyk JL, Brem RB. Natural trait variation across Saccharomycotina species. FEMS Yeast Res 2024; 24:foae002. [PMID: 38218591 PMCID: PMC10833146 DOI: 10.1093/femsyr/foae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024] Open
Abstract
Among molecular biologists, the group of fungi called Saccharomycotina is famous for its yeasts. These yeasts in turn are famous for what they have in common-genetic, biochemical, and cell-biological characteristics that serve as models for plants and animals. But behind the apparent homogeneity of Saccharomycotina species lie a wealth of differences. In this review, we discuss traits that vary across the Saccharomycotina subphylum. We describe cases of bright pigmentation; a zoo of cell shapes; metabolic specialties; and species with unique rules of gene regulation. We discuss the genetics of this diversity and why it matters, including insights into basic evolutionary principles with relevance across Eukarya.
Collapse
Affiliation(s)
- Johnson J -T Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob L Steenwyk
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Fuentes D, Cabrera N, Quinteros C, Ilkit M, Ünal N, Hilmioğlu-Polat S, Jabeen K, Zaka S, Desai JV, Lass-Flörl C, Shor E, Gabaldon T, Perlin DS. Overlooked Candida glabrata petites are echinocandin tolerant, induce host inflammatory responses, and display poor in vivo fitness. mBio 2023; 14:e0118023. [PMID: 37772846 PMCID: PMC10653939 DOI: 10.1128/mbio.01180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite." This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omics technologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and, therefore, are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, which can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego Fuentes
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nathaly Cabrera
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | | | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadaf Zaka
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Toni Gabaldon
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| |
Collapse
|
5
|
Krause DJ. The evolution of anaerobic growth in Saccharomycotina yeasts. Yeast 2023; 40:395-400. [PMID: 37526396 DOI: 10.1002/yea.3890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.
Collapse
Affiliation(s)
- David J Krause
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
6
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Fuentes D, Cabrera N, Quintin C, Ilkit M, Ünal N, Hilmioğlu-Polat S, Jabeen K, Zaka S, Desai JV, Lass-Flörl C, Shor E, Gabaldon T, Perlin DS. Overlooked Candida glabrata petites are echinocandin tolerant, induce host inflammatory responses, and display poor in vivo fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545195. [PMID: 37398397 PMCID: PMC10312775 DOI: 10.1101/2023.06.15.545195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Small colony variants (SCVs) are relatively common among some bacterial species and are associated with poor prognosis and recalcitrant infections. Similarly, Candida glabrata - a major intracellular fungal pathogen - produces small and slow-growing respiratory-deficient colonies, termed "petite." Despite reports of clinical petite C . glabrata strains, our understanding of petite behavior in the host remains obscure. Moreover, controversies exist regarding in-host petite fitness and its clinical relevance. Herein, we employed whole-genome sequencing (WGS), dual-RNAseq, and extensive ex vivo and in vivo studies to fill this knowledge gap. WGS identified multiple petite-specific mutations in nuclear and mitochondrially-encoded genes. Consistent with dual-RNAseq data, petite C . glabrata cells did not replicate inside host macrophages and were outcompeted by their non-petite parents in macrophages and in gut colonization and systemic infection mouse models. The intracellular petites showed hallmarks of drug tolerance and were relatively insensitive to the fungicidal activity of echinocandin drugs. Petite-infected macrophages exhibited a pro-inflammatory and type I IFN-skewed transcriptional program. Interrogation of international C . glabrata blood isolates ( n =1000) showed that petite prevalence varies by country, albeit at an overall low prevalence (0-3.5%). Collectively, our study sheds new light on the genetic basis, drug susceptibility, clinical prevalence, and host-pathogen responses of a clinically overlooked phenotype in a major fungal pathogen. Importance Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite". This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omicstechnologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and therefore are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex-vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam1012 WX, The Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego Fuentes
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nathaly Cabrera
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | | | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadaf Zaka
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | | | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Toni Gabaldon
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington DC 20057, USA
| |
Collapse
|
7
|
Hao W. From Genome Variation to Molecular Mechanisms: What we Have Learned From Yeast Mitochondrial Genomes? Front Microbiol 2022; 13:806575. [PMID: 35126340 PMCID: PMC8811140 DOI: 10.3389/fmicb.2022.806575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Analysis of genome variation provides insights into mechanisms in genome evolution. This is increasingly appreciated with the rapid growth of genomic data. Mitochondrial genomes (mitogenomes) are well known to vary substantially in many genomic aspects, such as genome size, sequence context, nucleotide base composition and substitution rate. Such substantial variation makes mitogenomes an excellent model system to study the mechanisms dictating mitogenome variation. Recent sequencing efforts have not only covered a rich number of yeast species but also generated genomes from abundant strains within the same species. The rich yeast genomic data have enabled detailed investigation from genome variation into molecular mechanisms in genome evolution. This mini-review highlights some recent progresses in yeast mitogenome studies.
Collapse
|
8
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
9
|
Xiao S, Nguyen DT, Wu B, Hao W. Genetic Drift and Indel Mutation in the Evolution of Yeast Mitochondrial Genome Size. Genome Biol Evol 2018; 9:3088-3099. [PMID: 29126284 PMCID: PMC5714193 DOI: 10.1093/gbe/evx232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) are remarkably diverse in genome size and organization, but the origins of dynamic mitogenome architectures are still poorly understood. For instance, the mutational burden hypothesis postulates that the drastic difference between large plant mitogenomes and streamlined animal mitogenomes can be driven by their different mutation rates. However, inconsistent trends between mitogenome sizes and mutation rates have been documented in several lineages. These conflicting results highlight the need of systematic and sophisticated investigations on the evolution and diversity of mitogenome architecture. This study took advantage of the strikingly variable mitogenome size among different yeast species and also among intraspecific strains, examined sequence dynamics of introns, GC-clusters, tandem repeats, mononucleotide repeats (homopolymers) and evaluated their contributions to genome size variation. The contributions of these sequence features to mitogenomic variation are dependent on the timescale, over which extant genomes evolved from their last common ancestor, perhaps due to a combination of different turnover rates of mobile sequences, variable insertion spaces, and functional constraints. We observed a positive correlation between mitogenome size and the level of genetic drift, suggesting that mitogenome expansion in yeast is likely driven by multiple types of sequence insertions in a primarily nonadaptive manner. Although these cannot be explained directly by the mutational burden hypothesis, our results support an important role of genetic drift in the evolution of yeast mitogenomes.
Collapse
Affiliation(s)
- Shujie Xiao
- Department of Biological Sciences, Wayne State University
| | - Duong T Nguyen
- Department of Biological Sciences, Wayne State University
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University.,Department of Biology, Clark University, Worcester, MA
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
10
|
Gabaldón T, Martin T, Marcet-Houben M, Durrens P, Bolotin-Fukuhara M, Lespinet O, Arnaise S, Boisnard S, Aguileta G, Atanasova R, Bouchier C, Couloux A, Creno S, Almeida Cruz J, Devillers H, Enache-Angoulvant A, Guitard J, Jaouen L, Ma L, Marck C, Neuvéglise C, Pelletier E, Pinard A, Poulain J, Recoquillay J, Westhof E, Wincker P, Dujon B, Hennequin C, Fairhead C. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics 2013; 14:623. [PMID: 24034898 PMCID: PMC3847288 DOI: 10.1186/1471-2164-14-623] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/31/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Candida glabrata follows C. albicans as the second or third most prevalent cause of candidemia worldwide. These two pathogenic yeasts are distantly related, C. glabrata being part of the Nakaseomyces, a group more closely related to Saccharomyces cerevisiae. Although C. glabrata was thought to be the only pathogenic Nakaseomyces, two new pathogens have recently been described within this group: C. nivariensis and C. bracarensis. To gain insight into the genomic changes underlying the emergence of virulence, we sequenced the genomes of these two, and three other non-pathogenic Nakaseomyces, and compared them to other sequenced yeasts. RESULTS Our results indicate that the two new pathogens are more closely related to the non-pathogenic N. delphensis than to C. glabrata. We uncover duplications and accelerated evolution that specifically affected genes in the lineage preceding the group containing N. delphensis and the three pathogens, which may provide clues to the higher propensity of this group to infect humans. Finally, the number of Epa-like adhesins is specifically enriched in the pathogens, particularly in C. glabrata. CONCLUSIONS Remarkably, some features thought to be the result of adaptation of C. glabrata to a pathogenic lifestyle, are present throughout the Nakaseomyces, indicating these are rather ancient adaptations to other environments. Phylogeny suggests that human pathogenesis evolved several times, independently within the clade. The expansion of the EPA gene family in pathogens establishes an evolutionary link between adhesion and virulence phenotypes. Our analyses thus shed light onto the relationships between virulence and the recent genomic changes that occurred within the Nakaseomyces. SEQUENCE ACCESSION NUMBERS Nakaseomyces delphensis: CAPT01000001 to CAPT01000179Candida bracarensis: CAPU01000001 to CAPU01000251Candida nivariensis: CAPV01000001 to CAPV01000123Candida castellii: CAPW01000001 to CAPW01000101Nakaseomyces bacillisporus: CAPX01000001 to CAPX01000186.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, Barcelona, 08003, Spain
- Comparative Genomics Group, CRG-Centre for Genomic Regulation, Doctor Aiguader, 88, Barcelona, 08003, Spain
| | - Tiphaine Martin
- Université de Bordeaux 1, LaBRI, INRIA Bordeaux Sud-Ouest (MAGNOME), Talence, F-33405, France
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, Barcelona, 08003, Spain
| | - Pascal Durrens
- Université de Bordeaux 1, LaBRI, INRIA Bordeaux Sud-Ouest (MAGNOME), Talence, F-33405, France
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Olivier Lespinet
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Sylvie Arnaise
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Stéphanie Boisnard
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, Barcelona, 08003, Spain
| | - Ralitsa Atanasova
- APHP, Hôpital St Antoine, Service de Parasitologie-Mycologie, and UMR S945, Inserm, Université P. M. Curie, Paris, France
| | - Christiane Bouchier
- Département Génomes et Génétique, Institut Pasteur, Plate-forme Génomique, rue du Dr. Roux, Paris, F-75015, France
| | - Arnaud Couloux
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Sophie Creno
- Département Génomes et Génétique, Institut Pasteur, Plate-forme Génomique, rue du Dr. Roux, Paris, F-75015, France
| | - Jose Almeida Cruz
- Architecture et Réactivité de l‘ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg Cedex, F-67084, France
- Present adress: Champalimaud Foundation, Av. Brasília, Lisboa, 1400-038, Portugal
| | - Hugo Devillers
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Adela Enache-Angoulvant
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
- APHP, Hôpital Bicêtre, Service de Microbiologie, Paris, France
| | - Juliette Guitard
- APHP, Hôpital St Antoine, Service de Parasitologie-Mycologie, and UMR S945, Inserm, Université P. M. Curie, Paris, France
| | - Laure Jaouen
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Laurence Ma
- Département Génomes et Génétique, Institut Pasteur, Plate-forme Génomique, rue du Dr. Roux, Paris, F-75015, France
| | - Christian Marck
- Institut de biologie et technologies de Saclay (iBiTec-S), Gif-sur-Yvette cedex, 91191, France
| | | | - Eric Pelletier
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Amélie Pinard
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Julie Poulain
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Julien Recoquillay
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| | - Eric Westhof
- Architecture et Réactivité de l‘ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg Cedex, F-67084, France
| | - Patrick Wincker
- CEA, IG, DSV, Genoscope, 2 rue Gaston Crémieux, Evry Cedex, 91057, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique moléculaires des levures, UMR3525 CNRS, UFR927, Université P. M. Curie, 25 rue du Docteur Roux, Paris Cedex15, F75724, France
| | - Christophe Hennequin
- APHP, Hôpital St Antoine, Service de Parasitologie-Mycologie, and UMR S945, Inserm, Université P. M. Curie, Paris, France
| | - Cécile Fairhead
- Institut de Génétique et Microbiologie, UMR8621 CNRS-Université Paris Sud, Bât 400, UFR des Sciences, Orsay Cedex, F 91405, France
| |
Collapse
|
11
|
Bhattacharya I, Yan S, Yadav JSS, Tyagi RD, Surampalli RY. Saccharomyces unisporus: Biotechnological Potential and Present Status. Compr Rev Food Sci Food Saf 2013; 12:353-363. [PMID: 33412685 DOI: 10.1111/1541-4337.12016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
The yeast species of the Saccharomyces genus have a long history of traditional applications and beneficial effects. Among these presence of the Saccharomyces unisporus has been documented in various dairy products and has become a subject of interest and great importance. S. unisporus has shown a significant role in the ripening of cheese and production of fermented milk products such as kefir and koumiss. The absence of pseudohyphae during the life cycle of S. unisporus is an indication of nonpathogenicity. Significance has been laid on the presence of S. unisporus in food-grade products and a close proximity of S. unisporus to S. florentinus and both of these species are accepted by the International Dairy Federation and the European Food and Feed Cultures Association for food and feed applications. Since over the years, S. unisporus has already become a part of various dairy products, S. unisporus can be considered as a potential candidate for generally regarded as safe status. S. unisporus has the capacity to convert ketoisophorone to levodione, which is an important pharmaceutical precursor. S. unisporus are considered as the potential producers of farnesol which eventually controls filamentation of pathogenic microorganisms. Apart from that, S. unisporus produces certain omega unsaturated fatty acids which combat diseases. Henceforth, the areas which S. unisporus can be possibly exploited for its useful intermediates are the enzymes and fatty acids it produces. In this context, this review attempts to describe and discuss the ubiquity of S. unisporus in food products, cellular composition, regulatory pathways, and its synthesis of fatty acids and enzymes.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Song Yan
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Jay Shankar Singh Yadav
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - R D Tyagi
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - R Y Surampalli
- U.S. Environmental Protection Agency (USEPA), P. O. Box 17-2141, Kansas City, KS 66117, U.S.A
| |
Collapse
|
12
|
Lin Z, Li WH. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol Biol Evol 2010; 28:131-42. [PMID: 20660490 DOI: 10.1093/molbev/msq184] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genetic basis of organisms' adaptation to different environments is a central issue of molecular evolution. The budding yeast Saccharomyces cerevisiae and its relatives predominantly ferment glucose into ethanol even in the presence of oxygen. This was suggested to be an adaptation to glucose-rich habitats, but the underlying genetic basis of the evolution of aerobic fermentation remains unclear. In S. cerevisiae, the first step of glucose metabolism is transporting glucose across the plasma membrane, which is carried out by hexose transporter proteins. Although several studies have recognized that the rate of glucose uptake can affect how glucose is metabolized, the role of HXT genes in the evolution of aerobic fermentation has not been fully explored. In this study, we identified all members of the HXT gene family in 23 fully sequenced fungal genomes, reconstructed their evolutionary history to pinpoint gene gain and loss events, and evaluated their adaptive significance in the evolution of aerobic fermentation. We found that the HXT genes have been extensively amplified in the two fungal lineages that have independently evolved aerobic fermentation. In contrast, reduction of the number of HXT genes has occurred in aerobic respiratory species. Our study reveals a strong positive correlation between the copy number of HXT genes and the strength of aerobic fermentation, suggesting that HXT gene expansion has facilitated the evolution of aerobic fermentation.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, USA
| | | |
Collapse
|
13
|
Chen H, Xu L, Gu Z. Regulation dynamics of WGD genes during yeast metabolic oscillation. Mol Biol Evol 2008; 25:2513-6. [PMID: 18815125 DOI: 10.1093/molbev/msn212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae and its close relatives are characterized by their propensity to ferment even in the presence of oxygen. It was hypothesized that whole-genome duplication (WGD) led to the development of this efficient fermentative lifestyle (WGD-fermentation hypothesis, Piskur 2001. In this study, we found that a significantly higher proportion of WGD genes than non-WGD genes are dynamically regulated during metabolic oscillation in response to oxygen change. The same data set also shows that the WGD genes, as compared with the smaller scale duplicate genes, are enriched with pairs where both copies have cyclic expression during the metabolic oscillation (either with the same or different phases). These results provide new evidences for the WGD-fermentation hypothesis and new insights into the relationship between the genome duplication and the evolution of new lifestyles in eukaryotic organisms.
Collapse
|
14
|
Jiang H, Guan W, Pinney D, Wang W, Gu Z. Relaxation of yeast mitochondrial functions after whole-genome duplication. Genes Dev 2008; 18:1466-71. [PMID: 18669479 PMCID: PMC2527710 DOI: 10.1101/gr.074674.107] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 05/14/2008] [Indexed: 12/20/2022]
Abstract
Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can survive without a functional mitochondrial genome. In this study, we show that the rate of evolution for the nuclear-encoded mitochondrial genes was greater in post-WGD species than pre-WGD species. Furthermore, codon usage bias was relaxed for these genes in post-WGD yeast species. The codon usage pattern and the distribution of a particular transcription regulatory element suggest that the change to an efficient aerobic fermentation lifestyle in this lineage might have emerged after WGD between the divergence of Kluyveromyces polysporus and Saccharomyces castellii from their common ancestor. This new energy production strategy could have led to the relaxation of mitochondrial function in the relevant yeast species.
Collapse
Affiliation(s)
- Huifeng Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan 650223, People’s Republic of China
- Graduate School of Chinese Academy Sciences, Beijing 100039, People’s Republic of China
| | - Wenjun Guan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
- Zhejiang University, College of Life Sciences, Hangzhou 310058, People’s Republic of China
| | - David Pinney
- Department of Mathematics, Cornell University, Ithaca, New York 14853, USA
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan 650223, People’s Republic of China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|