1
|
Liao B, Ye X, Chen X, Zhou Y, Cheng L, Zhou X, Ren B. The two-component signal transduction system and its regulation in Candida albicans. Virulence 2021; 12:1884-1899. [PMID: 34233595 PMCID: PMC8274445 DOI: 10.1080/21505594.2021.1949883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Candida albicans, which can cause superficial and life-threatening systemic infections, is the most common opportunistic fungal pathogen in the human microbiome. The two-component system is one of the most important C. albicans signal transduction pathways, regulating the response to oxidative and osmotic stresses, adhesion, morphogenesis, cell wall synthesis, virulence, drug resistance, and the host-pathogen interactions. Notably, some components of this signaling pathway have not been found in the human genome, indicating that the two-component system of C. albicans can be a potential target for new antifungal agents. Here, we summarize the composition, signal transduction, and regulation of the two-component system of C. albicans to emphasize its essential roles in the pathogenesis of C. albicans and the new therapeutic target for antifungal drugs.
Collapse
Affiliation(s)
- Biaoyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Shivarathri R, Jenull S, Stoiber A, Chauhan M, Mazumdar R, Singh A, Nogueira F, Kuchler K, Chowdhary A, Chauhan N. The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. mSphere 2020; 5:e00973-20. [PMID: 33055262 PMCID: PMC7565899 DOI: 10.1128/msphere.00973-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs.IMPORTANCECandida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.
Collapse
Affiliation(s)
- Raju Shivarathri
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sabrina Jenull
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anton Stoiber
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Rounik Mazumdar
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Ashutosh Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Filomena Nogueira
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
- CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
- Labdia-Labordiagnostik GmbH, Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
3
|
Lee SY, Chen HF, Yeh YC, Xue YP, Lan CY. The Transcription Factor Sfp1 Regulates the Oxidative Stress Response in Candida albicans. Microorganisms 2019; 7:E131. [PMID: 31091716 PMCID: PMC6560436 DOI: 10.3390/microorganisms7050131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a commensal that inhabits the skin and mucous membranes of humans. Because of the increasing immunocompromised population and the limited classes of antifungal drugs available, C. albicans has emerged as an important opportunistic pathogen with high mortality rates. During infection and therapy, C. albicans frequently encounters immune cells and antifungal drugs, many of which exert their antimicrobial activity by inducing the production of reactive oxygen species (ROS). Therefore, antioxidative capacity is important for the survival and pathogenesis of C. albicans. In this study, we characterized the roles of the zinc finger transcription factor Sfp1 in the oxidative stress response against C. albicans. A sfp1-deleted mutant was more resistant to oxidants and macrophage killing than wild-type C. albicans and processed an active oxidative stress response with the phosphorylation of the mitogen-activated protein kinase (MAPK) Hog1 and high CAP1 expression. Moreover, the sfp1-deleted mutant exhibited high expression levels of antioxidant genes in response to oxidative stress, resulting in a higher total antioxidant capacity, glutathione content, and glutathione peroxidase and superoxide dismutase enzyme activity than the wild-type C. albicans. Finally, the sfp1-deleted mutant was resistant to macrophage killing and ROS-generating antifungal drugs. Together, our findings provide a new understanding of the complex regulatory machinery in the C. albicans oxidative stress response.
Collapse
Affiliation(s)
- Shao-Yu Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hsueh-Fen Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ying-Chieh Yeh
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yao-Peng Xue
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
4
|
Chauhan N. Two-component phosphorelays in fungal mitochondria and beyond. Mitochondrion 2015; 22:60-5. [PMID: 25858273 DOI: 10.1016/j.mito.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
Abstract
Prokaryotes, eukaryotic microorganisms and plants utilize two-component signal transduction pathways to detect and respond to various environmental cues. These signaling cascades were acquired by eukaryotes via horizontal gene transfer events from ancestral bacteria. Recent exciting discoveries have identified two-component signaling systems in mitochondria and chloroplasts of several eukaryotic microorganisms and plants, therefore providing important clues to the evolutionary transition of these signaling cascades from prokaryotes to eukaryotes. This review will focus on the role of two-component signal transduction pathways in fungal pathogenesis and also discuss key new discoveries of presence of proteins participating in these signaling pathways in mitochondrion. Before addressing these issues, I first briefly describe the magnitude and the economic impact of the healthcare problems caused by fungal pathogens.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, United States; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, United States.
| |
Collapse
|
5
|
Wang ZL, Li F, Li C, Feng MG. Bbssk1, a response regulator required for conidiation, multi-stress tolerance, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2014; 98:5607-18. [PMID: 24633371 DOI: 10.1007/s00253-014-5644-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/18/2023]
Abstract
Ssk1-type response regulator proteins are the core elements of histidine-to-aspartate systems that mediate fungal stress tolerance, a determinant to the biocontrol potential of fungal entomopathogens. We characterized the functions of Beauveria bassiana Ssk1 (Bbssk1) by analyzing multi-phenotypic changes in ΔBbssk1 and differentially expressed genes in the digital gene expression (DGE) libraries of ΔBbssk1 and wild-type constructed under osmotic stress. The Bbssk1 disruption caused 25 % reductions in conidial yield and virulence to Spodoptera litura larvae and significant defects in tolerances to two osmotic salts (81-84 %), H2O2 oxidation (23 %), two fungicides (21-58 %), three cell wall biosynthesis inhibitors (25-36 %), and three metal ions (~8 %) during colony growth, respectively, but little changes in cell sensitivity to menadione oxidation and in conidial thermotolerance and UV-B resistance. RNA-seq analysis with the DGE libraries revealed differential expressions of 1,003 genes in the ΔBbssk1 genome. Of those, many associated with conidiation, stress response, xenobiotic transport, cell wall integrity, and protein/carbohydrate metabolism were remarkably down-regulated, including the genes involved in mitogen-activated protein kinase (MAPK) signal pathway that downstream of Bbssk1. Our results indicate that Bbssk1 regulates positively the expressions of the MAPK cascade in the pathway of B. bassiana and many more downstream genes associated with conidiation, multi-stress tolerance, and virulence.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China,
| | | | | | | |
Collapse
|
6
|
Abstract
Biofilm formation by Candida albicans on medically implanted devices poses a significant clinical challenge. Here, we compared biofilm-associated gene expression in two clinical C. albicans isolates, SC5314 and WO-1, to identify shared gene regulatory responses that may be functionally relevant. Among the 62 genes most highly expressed in biofilms relative to planktonic (suspension-grown) cells, we were able to recover insertion mutations in 25 genes. Twenty mutants had altered biofilm-related properties, including cell substrate adherence, cell-cell signaling, and azole susceptibility. We focused on one of the most highly upregulated genes in our biofilm proles, RHR2, which specifies the glycerol biosynthetic enzyme glycerol-3-phosphatase. Glycerol is 5-fold-more abundant in biofilm cells than in planktonic cells, and an rhr2Δ/Δ strain accumulates 2-fold-less biofilm glycerol than does the wild type. Under in vitro conditions, the rhr2Δ/Δ mutant has reduced biofilm biomass and reduced adherence to silicone. The rhr2Δ/Δ mutant is also severely defective in biofilm formation in vivo in a rat catheter infection model. Expression profiling indicates that the rhr2Δ/Δ mutant has reduced expression of cell surface adhesin genes ALS1, ALS3, and HWP1, as well as many other biofilm-upregulated genes. Reduced adhesin expression may be the cause of the rhr2Δ/Δ mutant biofilm defect, because overexpression of ALS1, ALS3, or HWP1 restores biofilm formation ability to the mutant in vitro and in vivo. Our findings indicate that internal glycerol has a regulatory role in biofilm gene expression and that adhesin genes are among the main functional Rhr2-regulated genes. Candida albicans is a major fungal pathogen, and infection can arise from the therapeutically intractable biofilms that it forms on medically implanted devices. It stands to reason that genes whose expression is induced during biofilm growth will function in the process, and our analysis of 25 such genes confirms that expectation. One gene is involved in synthesis of glycerol, a small metabolite that we find is abundant in biofilm cells. The impact of glycerol on biofilm formation is regulatory, not solely metabolic, because it is required for expression of numerous biofilm-associated genes. Restoration of expression of three of these genes that specify cell surface adhesins enables the glycerol-synthetic mutant to create a biofilm. Our findings emphasize the significance of metabolic pathways as therapeutic targets, because their disruption can have both physiological and regulatory consequences.
Collapse
|
7
|
Desai C, Mavrianos J, Chauhan N. Candida albicans SRR1, a putative two-component response regulator gene, is required for stress adaptation, morphogenesis, and virulence. EUKARYOTIC CELL 2011; 10:1370-4. [PMID: 21841121 PMCID: PMC3187061 DOI: 10.1128/ec.05188-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
Abstract
We report here the identification and characterization of a previously uncharacterized, two-component response regulator gene (orf19.5843) from Candida albicans. Because of its apparent functions in stress adaptation, we have named this gene SRR1 (stress response regulator 1). Disruption of SRR1 causes defects in hyphal development, reduced resistance to stress, and severe virulence attenuation in the mouse model of disseminated candidiasis.
Collapse
Affiliation(s)
| | - John Mavrianos
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, New Jersey 07103
| | - Neeraj Chauhan
- Public Health Research Institute
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, New Jersey 07103
| |
Collapse
|
8
|
Oh J, Fung E, Schlecht U, Davis RW, Giaever G, St. Onge RP, Deutschbauer A, Nislow C. Gene annotation and drug target discovery in Candida albicans with a tagged transposon mutant collection. PLoS Pathog 2010; 6:e1001140. [PMID: 20949076 PMCID: PMC2951378 DOI: 10.1371/journal.ppat.1001140] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/08/2010] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification. Candida albicans is a normal inhabitant in our bodies, yet it can become pathogenic and cause infections that range from the superficial in healthy individuals to deadly in the immunocompromised. Comprehensive genetic analysis of C. albicans to identify mechanisms of virulence and new treatment strategies has been hampered by limited, publically accessible genomic resources. By combining the principles of Saccharomyces cerevisiae strain tagging with transposon mutagenesis to generate individually tagged mutants, we created the first entirely public resource that allows simultaneous measurement of strain fitness of ∼60% of the genome in a wide range of experimental treatments. By identifying genes that confer a fitness or growth defect when reduced in copy number, we uncovered genes whose protein products represent potential antifungal targets. Moreover, screening this strain collection with chemical compounds allowed us to identify anticandidal chemicals while concurrently gaining insight into their cellular mechanism of action. This resource, combined with straightforward screening methodology, provides powerful tools to generate hypotheses for functional annotation of the genome, and our results highlight the value of direct versus model-based pathogen studies.
Collapse
Affiliation(s)
- Julia Oh
- Department of Genetics, Stanford University, Palo Alto, California, United States of America
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Eula Fung
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Ronald W. Davis
- Department of Genetics, Stanford University, Palo Alto, California, United States of America
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelley Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Robert P. St. Onge
- Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Adam Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- Virtual Institute for Microbial Stress and Survival, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Corey Nislow
- Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelley Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Kabir MA, Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Expert Rev Anti Infect Ther 2009; 7:121-34. [PMID: 19622061 DOI: 10.1586/14787210.7.1.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen and is responsible for candidiasis. Owing to the improvement in healthcare, the number of immunocompromised patients in hospitals has increased worldwide and these individuals are susceptible to infections caused by many pathogenic microbes, among which C. albicans is one of the major players. Currently, the complete genome sequence of this pathogen is available and the size of this was estimated to be of 16 Mb. Annotation of C. albicans genome revealed that there are 6114 open reading frames (ORFs), of which 774 are specific to C. albicans. This poses a challenge as well as an opportunity to the Candida community to understand the functions of the unknown genes, especially those specific to C. albicans. Efforts have been made by the Candida community to systematically delete the ORFs and assign the functions. This will, in turn, help in understanding the biology of C. albicans and its interactions with animals as well as humans, and better drugs can be developed to treat Candida infections. In this article, we review updates on the Candida biology in the context of the availability of the genome sequence, its functional analysis and anti-Candida therapy. Finally, in the light of present trends in Candida research and current challenges, various opportunities are identified and suggestions are made.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biotechnology, PA College of Engineering, Kairangala, Mangalore-574153, Karnataka, India.
| | | |
Collapse
|
10
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Two-component signal transduction proteins as potential drug targets in medically important fungi. Infect Immun 2008; 76:4795-803. [PMID: 18765727 DOI: 10.1128/iai.00834-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|