1
|
Wang D, Zeng N, Li C, Li Z, Zhang N, Li B. Fungal biofilm formation and its regulatory mechanism. Heliyon 2024; 10:e32766. [PMID: 38988529 PMCID: PMC11233959 DOI: 10.1016/j.heliyon.2024.e32766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Fungal biofilm is a microbial community composed of fungal cells and extracellular polymeric substances (EPS). In recent years, fungal biofilms have played an increasingly important role in many fields. However, there are few studies on fungal biofilms and their related applications and development are still far from enough. Therefore, this review summarizes the composition and function of EPS in fungal biofilms, and improves and refines the formation process of fungal biofilms according to the latest viewpoints. Moreover, based on the study of Saccharomyces cerevisiae and Candida albicans, this review summarizes the gene regulation network of fungal biofilm synthesis, which is crucial for systematically understanding the molecular mechanism of fungal biofilm formation. It is of great significance to further develop effective methods at the molecular level to control harmful biofilms or enhance and regulate the formation of beneficial biofilms. Finally, the quorum sensing factors and mixed biofilms formed by fungi in the current research of fungal biofilms are summarized. These results will help to deepen the understanding of the formation process and internal regulation mechanism of fungal biofilm, provide reference for the study of EPS composition and structure, formation, regulation, group behavior and mixed biofilm formation of other fungal biofilms, and provide strategies and theoretical basis for the control, development and utilization of fungal biofilms.
Collapse
Affiliation(s)
- Dandan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, PR China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| |
Collapse
|
2
|
Si P, Wang G, Wu W, Hussain S, Guo L, Wu W, Yang Q, Xing F. SakA Regulates Morphological Development, Ochratoxin A Biosynthesis and Pathogenicity of Aspergillus westerdijkiae and the Response to Different Environmental Stresses. Toxins (Basel) 2023; 15:292. [PMID: 37104230 PMCID: PMC10141874 DOI: 10.3390/toxins15040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Ochratoxin A (OTA), as a common mycotoxin, has seriously harmful effects on agricultural products, livestock and humans. There are reports on the regulation of SakA in the MAPK pathway, which regulates the production of mycotoxins. However, the role of SakA in the regulation of Aspergillus westerdijkiae and OTA production is not clear. In this study, a SakA deletion mutant (ΔAwSakA) was constructed. The effects of different concentrations of D-sorbitol, NaCl, Congo red and H2O2 on the mycelia growth, conidia production and biosynthesis of OTA were investigated in A. westerdijkiae WT and ΔAwSakA. The results showed that 100 g/L NaCl and 3.6 M D-sorbitol significantly inhibited mycelium growth and that a concentration of 0.1% Congo red was sufficient to inhibit the mycelium growth. A reduction in mycelium development was observed in ΔAwSakA, especially in high concentrations of osmotic stress. A lack of AwSakA dramatically reduced OTA production by downregulating the expression of the biosynthetic genes otaA, otaY, otaB and otaD. However, otaC and the transcription factor otaR1 were slightly upregulated by 80 g/L NaCl and 2.4 M D-sorbitol, whereas they were downregulated by 0.1% Congo red and 2 mM H2O2. Furthermore, ΔAwSakA showed degenerative infection ability toward pears and grapes. These results suggest that AwSakA is involved in the regulation of fungal growth, OTA biosynthesis and the pathogenicity of A. westerdijkiae and could be influenced by specific environmental stresses.
Collapse
Affiliation(s)
- Peidong Si
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.S.); (W.W.); (Q.Y.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Gang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Wenqing Wu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Sarfaraz Hussain
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Ling Guo
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.S.); (W.W.); (Q.Y.)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.S.); (W.W.); (Q.Y.)
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (W.W.); (S.H.); (L.G.)
| |
Collapse
|
3
|
Brenes LR, Johnson AD, Lohse MB. Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates. PLoS One 2023; 18:e0280233. [PMID: 36662710 PMCID: PMC9858334 DOI: 10.1371/journal.pone.0280233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Candida albicans is a normal member of the human microbiome and an opportunistic fungal pathogen. This species undergoes several morphological transitions, and here we consider white-opaque switching. In this switching program, C. albicans reversibly alternates between two cell types, named "white" and "opaque," each of which is normally stable across thousands of cell divisions. Although switching under most conditions is stochastic and rare, certain environmental signals or genetic manipulations can dramatically increase the rate of switching. Here, we report the identification of two new inputs which affect white-to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1, increases white-to-opaque switching ten-fold. Combining these and other environmental inputs results in a variety of different switching rates, indicating that a given rate represents the integration of multiple inputs.
Collapse
Affiliation(s)
- Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
4
|
She X, Zhang P, Shi D, Peng J, Wang Q, Meng X, Jiang Y, Calderone R, Bellanti JA, Liu W, Li D. The mitochondrial complex I proteins of Candida albicans moderate phagocytosis and the production of pro-inflammatory cytokines in murine macrophages and dendritic cells. FASEB J 2022; 36:e22575. [PMID: 36208290 DOI: 10.1096/fj.202200275rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Loss of respiratory functions impairs Candida albicans colonization of host tissues and virulence in a murine model of candidiasis. Furthermore, it is known that respiratory inhibitors decrease mannan synthesis and glucan exposure and thereby promotes phagocytosis. To understand the impact of respiratory proteins of C. albicans on host innate immunity, we characterized cell wall defects in three mitochondrial complex I (CI) null mutants (nuo1Δ, nuo2Δ and ndh51Δ) and in one CI regulator mutant (goa1Δ), and we studied the corresponding effects of these mutants on phagocytosis, neutrophil killing and cytokine production by dendritic cells (DCs). We find that reductions of phosphopeptidomannan (PPM) in goa1Δ, nuo1Δ and phospholipomannan (PLM) in nuo2Δ lead to reductions of IL-2, IL-4, and IL-10 but increase of TNF-α in infected DCs. While PPM loss is a consequence of a reduced phospho-Cek1/2 MAPK that failed to promote phagocytosis and IL-22 production in goa1Δ and nuo1Δ, a 30% glucan reduction and a defective Mek1 MAPK response in ndh51Δ lead to only minor changes in phagocytosis and cytokine production. Glucan exposure and PLM abundance seem to remain sufficient to opsonize neutrophil killing perhaps via humoral immunity. The diversity of immune phenotypes in these mutants possessing divergent cell wall defects is further supported by their transcriptional profiles in each infected murine macrophage scenario. Since metabolic processes, oxidative stress-induced senescence, and apoptosis are differently affected in these scenarios, we speculate that during the early stages of infection, host immune cells coordinate their bioactivities based upon a mixture of signals generated during host-fungi interactions.
Collapse
Affiliation(s)
- Xiaodong She
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Sport Science Research Center, Shandong Sport University, Jinan, China
| | - Dongmei Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Dermatology, Jining No. 1 People's Hospital, Jining, China
| | - Jingwen Peng
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qiong Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yong Jiang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Department of Dermatology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
5
|
Hidalgo-Vico S, Casas J, García C, Lillo MP, Alonso-Monge R, Román E, Pla J. Overexpression of the White Opaque Switching Master Regulator Wor1 Alters Lipid Metabolism and Mitochondrial Function in Candida albicans. J Fungi (Basel) 2022; 8:1028. [PMID: 36294593 PMCID: PMC9604646 DOI: 10.3390/jof8101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 02/26/2024] Open
Abstract
Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans; increased colonization of this yeast in this niche has implicated the master regulator of the white-opaque transition, Wor1, by mechanisms not completely understood. We have addressed the role that this transcription factor has on commensalism by the characterization of strains overexpressing this gene. We show that WOR1 overexpression causes an alteration of the total lipid content of the fungal cell and significantly alters the composition of structural and reserve molecular species lipids as determined by lipidomic analysis. These cells are hypersensitive to membrane-disturbing agents such as SDS, have increased tolerance to azoles, an augmented number of peroxisomes, and increased phospholipase activity. WOR1 overexpression also decreases mitochondrial activity and results in altered susceptibility to certain oxidants. All together, these changes reflect drastic alterations in the cellular physiology that facilitate adaptation to the gastrointestinal tract environment.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Instituto de Química Avanzada de Cataluña, Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Carolina García
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - M. Pilar Lillo
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
6
|
Chen S, Xu Z, Liu S, Duan W, Huang Y, Wei X. A possible mechanism of farnesol tolerance in C. albicans biofilms implemented by activating the PKC signalling pathway and stabilizing ROS levels. J Med Microbiol 2022; 71. [PMID: 35020583 DOI: 10.1099/jmm.0.001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Biofilms are the natural growth state for most microorganisms. C. albicans biofilms are composed of multiple cell types (round budding yeast-form cells, oval pseudohyphal cells, and elongated hyphal cells) encased in an extracellular matrix. C. albicans biofilms are notorious for resistance to antimicrobial treatments, a property that might be determined by complex mechanisms. Exogenous farnesol exerts a certain antifungal activity against C. albicans with medical implications. Different from other microbes, C. albicans biofilms can tolerate exogenous farnesol at high concentration with some cells still surviving and even maintaining proliferation, but the mechanism is unclear.Hypothesis. The study hypothesizes that C. albicans resists farnesol by activating the PKC signalling pathway.Aim. The study aims to discuss the molecular mechanism of C. albicans resistance to farnesol.Methodology. The ROS levels, the genes and proteins of the PKC pathway were compared between the farnesol-tolerant and non-tolerant groups using ROS levels assay, q-RT PCR and Western blot, respectively. Further, the mutant strains (pkc1Δ/Δ and mkc1Δ/Δ) were constructed, then the survival rates and ROS levels of biofilms exposed to farnesol were compared between mutant and wild strains. The morphological changes were observed using TEM.Results. The survival rates of C. albicans biofilms decreased rapidly under the lower concentration of farnesol (P<0.05), and kept stable (P>0.05) as the concentration rose up to 200 µM. The gene expression of the PKC pathway increased, while ROS levels remained stable and even decreased in the farnesol-tolerant biofilms, compared with those in the farnesol-nontolerant biofilms after farnesol treatment (P<0.05); pkc1 and mkc1 were significantly upregulated by C. albicans during the development of biofilm tolerance to farnesol. The cell wall and cytoplasm of pkc1Δ/Δ and mkc1Δ/Δ were damaged, and the ROS level increased (P<0.05); meanwhile, the survival rate of biofilms decreased compared with that of wild-type strain under the same farnesol concentrations (P<0.05). ROS inhibitors reversed these changes in pkc1Δ/Δ and mkc1Δ/Δ when the mutant strains exposed to farnesol.Conclusion. C. albicans biofilms can tolerate high concentrations of farnesol by activating pkc1 and mkc1 of the PKC pathway and stabilizing ROS levels. The pkc1 and mkc1 are two key genes regulated by C. albicans in the process of biofilm tolerance to farnesol.
Collapse
Affiliation(s)
- Shengyan Chen
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China.,Department of Oral Health Care, Jiangsu Women and Children Health Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zheng Xu
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Siqi Liu
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Wei Duan
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Yun Huang
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Xin Wei
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China.,Present address: Jiangsu Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
7
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
8
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
9
|
Abstract
In the last decades, Candida albicans has served as the leading causal agent of life-threatening invasive infections with mortality rates approaching 40% despite treatment. Candida albicans (C. albicans) exists in three biological phases: yeast, pseudohyphae, and hyphae. Hyphae, which represent an important phase in the disease process, can cause tissue damage by invading mucosal epithelial cells then leading to blood infection. In this review, we summarized recent results from different fields of fungal cell biology that are instrumental in understanding hyphal growth. This includes research on the differences among C. albicans phases; the regulatory mechanism of hyphal growth, extension, and maintaining cutting-edge polarity; cross regulations of hyphal development and the virulence factors that cause serious infection. With a better understanding of the mechanism on mycelium formation, this review provides a theoretical basis for the identification of targets in candidiasis treatment. It also gives some reference to the study of antifungal drugs.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Correia I, Wilson D, Hube B, Pla J. Characterization of a Candida albicans Mutant Defective in All MAPKs Highlights the Major Role of Hog1 in the MAPK Signaling Network. J Fungi (Basel) 2020; 6:jof6040230. [PMID: 33080787 PMCID: PMC7711971 DOI: 10.3390/jof6040230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
The success of Candida albicans as a pathogen relies on its ability to adapt and proliferate in different environmental niches. Pathways regulated by mitogen-activated protein kinases (MAPKs) are involved in sensing environmental conditions and developing an accurate adaptive response. Given the frequent cooperative roles of these routes in cellular functions, we have generated mutants defective in all combinations of the four described MAPKs in C. albicans and characterized its phenotype regarding sensitiveness to specific drugs, morphogenesis and interaction with host immune cells. We demonstrate that all MAPKs are dispensable in this yeast as a mutant defective in Cek1, Cek2, Mkc1 and Hog1 is viable although highly sensitive to oxidative and osmotic stress, displaying a specific pattern of sensitivity to antifungals. By comparing its phenotype with single, double and triple combinations of MAPK-deletion mutants we were able to unveil a Cek1-independent mechanism for Hog1 resistance to Congo red, and confirm the predominant effect of Hog1 on oxidative and osmotic adaptation. The quadruple mutant produces filaments under non-inducing conditions, but is unable to develop chlamydospores. Furthermore, cek1 cek2 mkc1 hog1 cells switch to the opaque state at high frequency, which is blocked by the ectopic expression of HOG1 suggesting a role of this kinase for phenotypic switching.
Collapse
Affiliation(s)
- Inês Correia
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal
- Correspondence: (I.C.); (J.P.); Tel.: +351-234-370-213 (I.C.); +34-913-941-617 (J.P.)
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter EX4 4QD, UK;
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany;
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (I.C.); (J.P.); Tel.: +351-234-370-213 (I.C.); +34-913-941-617 (J.P.)
| |
Collapse
|
11
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
12
|
Cooperative Role of MAPK Pathways in the Interaction of Candida albicans with the Host Epithelium. Microorganisms 2019; 8:microorganisms8010048. [PMID: 31881718 PMCID: PMC7023383 DOI: 10.3390/microorganisms8010048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is an important human fungal pathogen responsible for tens of millions of infections as well as hundreds of thousands of severe life-threatening infections each year. MAP kinase (MAPK) signal transduction pathways facilitate the sensing and adaptation to external stimuli and control the expression of key virulence factors such as the yeast-to-hypha transition, the biogenesis of the cell wall, and the interaction with the host. In the present study, we have combined molecular approaches and infection biology to analyse the role of C. albicans MAPK pathways during an epithelial invasion. Hog1 was found to be important for adhesion to abiotic surfaces but was dispensable for damage to epithelial cells. The Mkc1 cell wall integrity (CWI) and Cek1 pathways, on the other hand, were both required for oral epithelial damage. Analysis of the ability to penetrate nutrient-rich semi-solid media revealed a cooperative role for Cek1 and Mkc1 in this process. Finally, cek2Δ (as well as cek1Δ) but not mkc1Δ or hog1Δ mutants, exhibited elevated β-glucan unmasking as revealed by immunofluorescence studies. Therefore, the four MAPK pathways play distinct roles in adhesion, epithelial damage, invasion and cell wall remodelling that may contribute to the pathogenicity of C. albicans.
Collapse
|
13
|
Chen T, Wagner AS, Tams RN, Eyer JE, Kauffman SJ, Gann ER, Fernandez EJ, Reynolds TB. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. mBio 2019; 10:e01767-19. [PMID: 31530671 PMCID: PMC6751057 DOI: 10.1128/mbio.01767-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew S Wagner
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Robert N Tams
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - James E Eyer
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J Kauffman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Abstract
The AGC signaling pathway represents a conserved distinct signaling pathway in regulation of fungal differentiation and virulence, while it has not been identified or characterized in the sugarcane smut fungus Sporisorium scitamineum. In this study, we identified a PAS domain-containing AGC kinase, SsAgc1, in S. scitamineum. Functional analysis revealed that SsAgc1 plays a regulatory role on the fungal dimorphic switch. Sporisorium scitamineum is the fungal pathogen causing severe sugarcane smut disease that leads to massive economic losses globally. S. scitamineum invades host cane by dikaryotic hyphae, formed after sexual mating of two haploid sporidia of opposite mating type. Therefore, mating/filamentation is critical for S. scitamineum pathogenicity, while its molecular mechanisms remain largely unknown. The AGC (cyclic AMP [cAMP]-dependent protein kinase 1 [protein kinase A {PKA}], cGMP-dependent protein kinase [PKG], and protein kinase C [PKC]) kinase family is a group of serine/threonine (Ser/Thr) protein kinases conserved among eukaryotic genomes, serving a variety of physiological functions, including cell growth, metabolism, differentiation, and cell death. In this study, we identified an AGC kinase, named SsAgc1 (for S. scitamineum Agc1), and characterized its function by reverse genetics. Our results showed that SsAgc1 is critical for S. scitamineum mating/filamentation and pathogenicity, and oxidative stress tolerance under some circumstances. Transcriptional profiling revealed that the SsAgc1 signaling pathway may control expression of the genes governing fungal mating/filamentation and tryptophan metabolism, especially for tryptophol production. We showed that tryptophan and tryptophol could at least partially restore ssagc1Δ mating/filamentation. Overall, our work revealed a signaling pathway mediated by AGC protein kinases to regulate fungal mating/filamentation, possibly through sensing and responding to tryptophol as signal molecules. IMPORTANCE The AGC signaling pathway represents a conserved distinct signaling pathway in regulation of fungal differentiation and virulence, while it has not been identified or characterized in the sugarcane smut fungus Sporisorium scitamineum. In this study, we identified a PAS domain-containing AGC kinase, SsAgc1, in S. scitamineum. Functional analysis revealed that SsAgc1 plays a regulatory role on the fungal dimorphic switch.
Collapse
|
15
|
Fraga JS, Sárkány Z, Silva A, Correia I, Pereira PJB, Macedo-Ribeiro S. Genetic code ambiguity modulates the activity of a C. albicans MAP kinase linked to cell wall remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:654-661. [PMID: 30797104 DOI: 10.1016/j.bbapap.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
The human fungal pathogen Candida albicans ambiguously decodes the universal leucine CUG codon predominantly as serine but also as leucine. C. albicans has a high capacity to survive and proliferate in adverse environments but the rate of leucine incorporation fluctuates in response to different stress conditions. C. albicans is adapted to tolerate this ambiguous translation through a mechanism that combines drastic decrease in CUG usage and reduction of CUG-encoded residues in conserved positions in the protein sequences. However, in a few proteins, the residues encoded by CUG codons are found in strictly conserved positions, suggesting that this genetic code alteration might have a functional impact. One such example is Cek1, a central signaling protein kinase that contains a single CUG-encoded residue at a conserved position, whose identity might regulate the correct flow of information across the MAPK cascade. Here we show that insertion of a leucine at the CUG-encoded position decreases the stability of Cek1, apparently without major structural alterations. In contrast, incorporation of a serine residue at the CUG position induces the autophosphorylation of the conserved tyrosine residue of the Cek1 231TEY233 motif, and increases its intrinsic kinase activity in vitro. These findings show that CUG ambiguity modulates the activity of Cek1, a key kinase directly linked to morphogenesis and virulence in C. albicans.
Collapse
Affiliation(s)
- Joana S Fraga
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Zsuzsa Sárkány
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Correia
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
16
|
Chen T, Jackson JW, Tams RN, Davis SE, Sparer TE, Reynolds TB. Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway. PLoS Genet 2019; 15:e1007892. [PMID: 30703081 PMCID: PMC6372213 DOI: 10.1371/journal.pgen.1007892] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/12/2019] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ. Candida albicans causes fungal infections in the oral cavities and bloodstreams of patients with weakened immune function, such as AIDS or cancer patients. The immune system detects fungal infections, in part, by detecting the antigenic cell wall polysaccharide β (1,3)-glucan. The ability to mask β (1,3)-glucan from immune detection is a virulence factor of C. albicans and a range of fungal pathogens. If synthesis of the phospholipid phosphatidylserine is disrupted in C. albicans (cho1Δ/Δ mutation), then cho1Δ/Δ exhibits significantly increased exposure of β (1,3)-glucan to immune detection compared to wild-type. Intracellular signaling cascades that regulate cell wall synthesis are upregulated in the cho1Δ/Δ mutant. It was hypothesized that upregulation of these pathways might be responsible for unmasking in this mutant. Genetic approaches were used to activate these pathways independently of the cho1Δ/Δ mutation. It was discovered that activation of one pathway, Cdc42-Cek1, leads to β (1,3)-glucan exposure. Thus, this pathway can cause β(1,3)-glucan exposure, and its upregulation may be the cause of unmasking in the cho1Δ/Δ mutant.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Joseph W. Jackson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N. Tams
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Sarah E. Davis
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
17
|
Deng YZ, Zhang B, Chang C, Wang Y, Lu S, Sun S, Zhang X, Chen B, Jiang Z. The MAP Kinase SsKpp2 Is Required for Mating/Filamentation in Sporisorium scitamineum. Front Microbiol 2018; 9:2555. [PMID: 30416495 PMCID: PMC6212578 DOI: 10.3389/fmicb.2018.02555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023] Open
Abstract
In the phytopathogenic fungus Sporisorium scitamineum, sexual mating between two compatible haploid cells and the subsequent formation of dikaryotic hyphae is essential for infection. This process was shown to be commonly regulated by a mitogen-activated protein kinase (MAPK) and a cAMP/PKA signaling pathway in the corn smut fungus Ustilago maydis but remains largely unknown in S. scitamineum. In this study, we identified a conserved putative MAP kinase Kpp2 in S. scitamineum and named it as SsKpp2. The sskpp2Δ mutant displayed significant reduction in mating/filamentation, which could be partially restored by addition of cAMP or tryptophol, a quorum-sensing molecule identified in budding yeast. Transcriptional profiling showed that genes governing S. scitamineum mating or tryptophol biosynthesis were significantly differentially regulated in the sskpp2Δ mutant compared to the WT, under mating condition. Our results demonstrate that the MAP kinase SsKpp2 is required for S. scitamineum mating/filamentation likely through regulating the conserved pheromone signal transduction pathway and tryptophol production.
Collapse
Affiliation(s)
- Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Bin Zhang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yixu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuquan Sun
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiaomeng Zhang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Fukui K, Nakamura K, Kuwashima H, Majima T. White-to-opaque switching is involved in the phospholipase B production of Candida dubliniensis on Price's egg yolk agar. Odontology 2018; 107:174-185. [PMID: 30083973 DOI: 10.1007/s10266-018-0382-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 01/12/2023]
Abstract
Measuring the production of Candida dubliniensis (C. dubliniensis) phospholipase B (PLase B) by the Price's method has long been considered to be unattainable because the levels of PLase produced are undetectable. In this study, C. dubliniensis, C. glabrata, C. guilliermondii, C. krusei, C. parapsilosis and C. tropicalis were shown to produce PLase B and form clear white zones around their colonies when peptone, a component of the original Price's egg yolk (OP) agar, is replaced with a yeast nitrogen base (YNB). This new medium is named modified Price's (MP) agar. Based on this finding, we propose a new modified Price's (NMP) agar containing 0.75% peptone and 0.25% YNB, which enabled measurement of PLase B production by C. dubliniensis and C. albicans with results consistent with those obtained for C. albicans grown on OP agar. We strongly believe that the MP and NMP agars are very useful for screening PLase B production by C. dubliniensis and non-albicans Candida spp. Moreover, the addition of several bioactive agents (the proteinase inhibitors pepstatin A and saquinavir, the calcineurin inhibitors cyclosporine A and tacrolimus, the cell-permeable cAMP analog dBcAMP, and the quorum-sensing molecule farnesol) to the OP agar enhanced PLase B production by C. dubliniensis. During the course of our study to clarify the reason why PLase B was not produced, we found that C. dubliniensis cells grown on OP agar undergo a white-to-opaque transition, which may explain why they showed minimal production of PLase B on this medium.
Collapse
Affiliation(s)
- Kayoko Fukui
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Kenjirou Nakamura
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Haruhiro Kuwashima
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Toshiro Majima
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
19
|
Koch B, Tucey TM, Lo TL, Novakovic S, Boag P, Traven A. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans. Front Microbiol 2017; 8:2555. [PMID: 29326680 PMCID: PMC5742345 DOI: 10.3389/fmicb.2017.02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing Network (ERMIONE) play important roles in adaptive responses in fungi, in particular cell surface-related mechanisms that drive invasive growth and stress responsive behaviors that support fungal pathogenicity.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stevan Novakovic
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Boag
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
McCarthy MW, Kontoyiannis DP, Cornely OA, Perfect JR, Walsh TJ. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J Infect Dis 2017; 216:S474-S483. [PMID: 28911042 DOI: 10.1093/infdis/jix130] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The emergence of drug-resistant fungi poses a major threat to human health. Despite advances in preventive, diagnostic, and therapeutic interventions, resistant fungal infections continue to cause significant morbidity and mortality in patients with compromised immunity, underscoring the urgent need for new antifungal agents. In this article, we review the challenges associated with identifying broad-spectrum antifungal drugs and highlight novel targets that could enhance the armamentarium of agents available to treat drug-resistant invasive fungal infections.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Division of General Internal Medicine, Weill Cornell Medicine, New York, New York
| | | | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Department I of Internal Medicine, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases, Duke University, Durham, North Carolina
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York
| |
Collapse
|
21
|
Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans – more than just communication. Crit Rev Microbiol 2017; 44:230-243. [DOI: 10.1080/1040841x.2017.1337711] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ines Leonhardt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
22
|
Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, López-Villaseñor I, Coria R. The yeasts phosphorelay systems: a comparative view. World J Microbiol Biotechnol 2017; 33:111. [PMID: 28470426 DOI: 10.1007/s11274-017-2272-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 12/23/2022]
Abstract
Cells contain signal transduction pathways that mediate communication between the extracellular environment and the cell interior. These pathways control transcriptional programs and posttranscriptional processes that modify cell metabolism in order to maintain homeostasis. One type of these signal transduction systems are the so-called Two Component Systems (TCS), which conduct the transfer of phosphate groups between specific and conserved histidine and aspartate residues present in at least two proteins; the first protein is a sensor kinase which autophosphorylates a histidine residue in response to a stimulus, this phosphate is then transferred to an aspartic residue located in a response regulator protein. There are classical and hybrid TCS, whose difference consists in the number of proteins and functional domains involved in the phosphorelay. The TCS are widespread in bacteria where the sensor and its response regulator are mostly specific for a given stimulus. In eukaryotic organisms such as fungi, slime molds, and plants, TCS are present as hybrid multistep phosphorelays, with a variety of arrangements (Stock et al. in Annu Rev Biochem 69:183-215, 2000; Wuichet et al. in Curr Opin Microbiol 292:1039-1050, 2010). In these multistep phosphorelay systems, several phosphotransfer events take place between different histidine and aspartate residues localized in specific domains present in more than two proteins (Thomason and Kay, in J Cell Sci 113:3141-3150, 2000; Robinson et al. in Nat Struct Biol 7:626-633, 2000). This review presents a brief and succinct description of the Two-component systems of model yeasts, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Cryptococcus neoformans and Kluyveromyces lactis. We have focused on the comparison of domain organization and functions of each component present in these phosphorelay systems.
Collapse
Affiliation(s)
- Griselda Salas-Delgado
- Departamento de Genética Molecular, Instituto de FisiologíaCelular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Laura Kawasaki-Watanabe
- Departamento de Genética Molecular, Instituto de FisiologíaCelular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Roberto Coria
- Departamento de Genética Molecular, Instituto de FisiologíaCelular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México.
| |
Collapse
|
23
|
Quorum sensing by farnesol revisited. Curr Genet 2017; 63:791-797. [DOI: 10.1007/s00294-017-0683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
24
|
Correia I, Alonso-Monge R, Pla J. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans. Front Microbiol 2017; 7:2133. [PMID: 28111572 PMCID: PMC5216027 DOI: 10.3389/fmicb.2016.02133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/19/2016] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative stress, and further participates in the cell size checkpoint during vegetative growth.
Collapse
Affiliation(s)
- Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
25
|
Polke M, Sprenger M, Scherlach K, Albán-Proaño MC, Martin R, Hertweck C, Hube B, Jacobsen ID. A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol Microbiol 2016; 103:595-617. [PMID: 27623739 DOI: 10.1111/mmi.13526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 01/04/2023]
Abstract
Morphogenesis in Candida albicans requires hyphal initiation and maintenance, and both processes are regulated by the fungal quorum sensing molecule (QSM) farnesol. We show that deletion of C. albicans EED1, which is crucial for hyphal extension and maintenance, led to a dramatically increased sensitivity to farnesol, and thus identified the first mutant hypersensitive to farnesol. Furthermore, farnesol decreased the transient filamentation of an eed1Δ strain without inducing cell death, indicating that two separate mechanisms mediate quorum sensing and cell lysis by farnesol. To analyze the cause of farnesol hypersensitivity we constructed either hyperactive or deletion mutants of factors involved in farnesol signaling, by introducing the hyperactive RAS1G13V or pADH1-CYR1CAT allele, or deleting CZF1 or NRG1 respectively. Neither of the constructs nor the exogenous addition of dB-cAMP was able to rescue the farnesol hypersensitivity, highlighting that farnesol mediates its effects not only via the cAMP pathway. Interestingly, the eed1Δ strain also displayed increased farnesol production. When eed1Δ was grown under continuous medium flow conditions, to remove accumulating QSMs from the supernatant, maintenance of eed1Δ filamentation, although not restored, was significantly prolonged, indicating a link between farnesol sensitivity, production, and the hyphal maintenance-defect in the eed1Δ mutant strain.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - María Cristina Albán-Proaño
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ronny Martin
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| |
Collapse
|
26
|
Román E, Prieto D, Martin R, Correia I, Mesa Arango AC, Alonso-Monge R, Zaragoza O, Pla J. Role of catalase overproduction in drug resistance and virulence in Candida albicans. Future Microbiol 2016; 11:1279-1297. [DOI: 10.2217/fmb-2016-0067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of Cat1 overproduction in Candida albicans. Materials & methods: Strains overproducing the CAT1 gene were constructed. Results: Cells overproducing CAT1 were found to be more resistant to some oxidants and mammalian phagocytic cells. They also showed reduced intracellular reactive oxygen species generated by amphotericin B or ciclopirox olamine. CAT1 overproduction did not change the minimum inhibitory concentration of fungal cells to fungistatic or fungicidal azoles nor to amphotericin B although increased twofold the minimum inhibitory concentration to caspofungin. The role of Cat1 overproduction in virulence and colonization was also analyzed in mouse models. Conclusion: The overproduction of Cat1 protects against oxidants, phagocytes and certain antifungals at subinhibitory concentration but does not increase virulence in a systemic infection mouse model.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Ry Martin
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
27
|
Román E, Correia I, Salazin A, Fradin C, Jouault T, Poulain D, Liu FT, Pla J. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition. Virulence 2016; 7:558-77. [PMID: 27191378 DOI: 10.1080/21505594.2016.1163458] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cek1 MAP kinase (MAPK) mediates vegetative growth and cell wall biogenesis in the fungal pathogen Candida albicans. Alterations in the fungal cell wall caused by a defective Cek1‑mediated signaling pathway leads to increased β‑1,3‑glucan exposure influencing dectin‑1 fungal recognition by immune cells. We show here that cek1 cells also display an increased exposure of α‑1,2 and β‑1,2‑mannosides (α‑M and β‑M), a phenotype shared by strains defective in the activating MAPKK Hst7, suggesting a general defect in cell wall assembly. cek1 cells display walls with loosely bound material as revealed by transmission electron microscopy and are sensitive to tunicamycin, an inhibitor of N‑glycosylation. Transcriptomal analysis of tunicamycin treated cells revealed a differential pattern between cek1 and wild type cells which involved mainly cell wall and stress related genes. Mapping α‑M and β‑M epitopes in the mannoproteins of different cell wall fractions (CWMP) revealed an important shift in the molecular weight of the mannan derived from mutants defective in this MAPK pathway. We have also assessed the role of galectin‑3, a member of a β‑galactoside‑binding protein family shown to bind to and kill C. albicans through β‑M recognition, in the infection caused by cek1 mutants. Increased binding of cek1 to murine macrophages was shown to be partially blocked by lactose. Galectin-3(-/-) mice showed increased resistance to fungal infection, although galectin-3 did not account for the reduced virulence of cek1 mutants in a mouse model of systemic infection. All these data support a role for the Cek1‑mediated pathway in fungal cell wall maintenance, virulence and antifungal discovery.
Collapse
Affiliation(s)
- E Román
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - I Correia
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - A Salazin
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - C Fradin
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - T Jouault
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - D Poulain
- b Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center , Lille , France
| | - F-T Liu
- c Department of Dermatology , University of California, Davis, School of Medicine , Sacramento , CA , USA.,d Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - J Pla
- a Departamento de Microbiología II , Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
28
|
Correia I, Román E, Prieto D, Eisman B, Pla J. Complementary roles of the Cek1 and Cek2 MAP kinases in Candida albicans cell-wall biogenesis. Future Microbiol 2015; 11:51-67. [PMID: 26682470 DOI: 10.2217/fmb.15.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS To investigate whether Cek2 (as Cek1) is involved in the biogenesis of the fungal cell wall and to uncover differences and similitudes between both proteins. MATERIALS & METHODS We used molecular genetics to characterize the role of Cek2 in MTL-heterozygous cells. RESULTS Deletion of CEK2 (similar to CEK1) renders cells sensitive to cell-wall-interfering drugs and, when overexpressed, Cek2 can become phosphorylated upon the same stimuli that activate Cek1. This is dependent on elements of the sterile-vegetative growth (SVG) pathway. Cek2, contrary to Cek1, mediates a transcriptional activity in a C. albicans-adapted two-hybrid system that is essential for Cek1-Cek2 interaction. CONCLUSION Cek2 has a cryptic role in cell-wall biogenesis and its role is not entirely redundant to Cek1.
Collapse
Affiliation(s)
- Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Blanca Eisman
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain.,Present address: Medical Affairs, Merck Sharp & Dohme de España, Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
29
|
Abstract
The cell wall integrity pathway (CWI) plays an important role in the biogenesis of the cell wall in Candida albicans and other fungi. In the present work, the C. albicans MKK2 gene that encodes the putative MAPKK of this pathway was deleted in different backgrounds and the phenotypes of the resultant mutants were characterised. We show here that Mkk2 mediates the phosphorylation of the Mkc1 MAPK in response to cell wall assembly interfering agents such as zymolyase or tunicamycin and also to oxidative stress. Remarkably, mkk2 and mkc1 mutants display related but distinguishable- cell wall associated phenotypes and differ in the pattern of MAPK phosphorylation under different stress conditions. mkk2 and mkc1 mutants display an altered expression of GSC1, CEK1 and CRH11 genes at different temperatures. Combined deletion of MKK2 with HST7 supports a cooperative role for the Cek1-mediated and CWI pathways in regulating cell wall architecture under vegetative growth. However, and in contrast to Mkc1, Mkk2 does not seem to play a role in the virulence of C. albicans in the mouse systemic model or the Galleria mellonella model of infection.
Collapse
|
30
|
Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans. Antimicrob Agents Chemother 2015. [PMID: 26195510 DOI: 10.1128/aac.00726-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs.
Collapse
|
31
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
32
|
Wartenberg A, Linde J, Martin R, Schreiner M, Horn F, Jacobsen ID, Jenull S, Wolf T, Kuchler K, Guthke R, Kurzai O, Forche A, d'Enfert C, Brunke S, Hube B. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant. PLoS Genet 2014; 10:e1004824. [PMID: 25474009 PMCID: PMC4256171 DOI: 10.1371/journal.pgen.1004824] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022] Open
Abstract
Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure. Pathogenic microbes often evolve complex traits to adapt to their respective hosts, and this evolution is ongoing: for example, microorganisms are developing resistance to antimicrobial compounds in the clinical setting. The ability of the common human pathogenic fungus, Candida albicans, to switch from yeast to hyphal (filamentous) growth is considered a central virulence attribute. For example, hyphal formation allows C. albicans to escape from macrophages following phagocytosis. A well-investigated signaling network integrates different environmental cues to induce and maintain hyphal growth. In fact, deletion of two central transcription factors in this network results in a mutant that is both nonfilamentous and avirulent. We used experimental evolution to study the adaptation capability of this mutant by continuous co-incubation within macrophages. We found that this selection regime led to a relatively rapid re-connection of signaling between environmental cues and the hyphal growth program. Indeed, the evolved mutant regained the ability to filament and its virulence in vivo. This bypass of central transcription factors was based on a single nucleotide exchange in a gene encoding a component of the general transcription regulation machinery. Our results show that even a complex regulatory network, such as the transcriptional network which governs hyphal growth, can be remodeled via microevolution.
Collapse
Affiliation(s)
- Anja Wartenberg
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology –Hans Knoell Institute, Jena, Germany
| | - Maria Schreiner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Fabian Horn
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Ilse D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Sabrina Jenull
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Thomas Wolf
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Karl Kuchler
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Reinhard Guthke
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology –Hans Knoell Institute, Jena, Germany
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
- Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
- Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
33
|
Katragkou A, McCarthy M, Alexander EL, Antachopoulos C, Meletiadis J, Jabra-Rizk MA, Petraitis V, Roilides E, Walsh TJ. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J Antimicrob Chemother 2014; 70:470-8. [PMID: 25288679 DOI: 10.1093/jac/dku374] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Biofilm formation by Candida albicans poses an important therapeutic challenge in human diseases. Typically, conventional antifungal agents encounter difficulty in treating and fully eradicating biofilm-related infections. Novel therapeutic approaches are needed to treat recalcitrant Candida biofilms. Farnesol is a quorum-sensing molecule, which induces apoptosis, inhibits Ras protein pathways and profoundly affects the morphogenesis of C. albicans. We therefore investigated the interactions between farnesol and different classes of antifungal agents. METHODS The combined antifungal effects of triazoles (fluconazole), polyenes (amphotericin B) and echinocandins (micafungin) with farnesol against C. albicans biofilms were assessed in vitro. Antifungal activity was determined by the XTT metabolic assay and confocal microscopy. The nature and the intensity of the interactions were assessed using the Loewe additivity model [fractional inhibitory concentration (FIC) index] and the Bliss independence (BI) model. RESULTS Significant synergy was found between each of the three antifungal agents and farnesol, while antagonism was not observed for any of the combinations tested. The greatest synergistic effect was found with the farnesol/micafungin combination, for which the BI-based model showed the observed effects as being 39%-52% higher than expected if the drugs had been acting independently. The FIC indices ranged from 0.49 to 0.79, indicating synergism for farnesol/micafungin and farnesol/fluconazole and no interaction for farnesol/amphotericin B. Structural changes in the biofilm correlated well with the efficacies of these combinations. The maximum combined effect was dependent on the farnesol concentration for micafungin and amphotericin B. CONCLUSIONS Farnesol exerts a synergistic or additive interaction with micafungin, fluconazole and amphotericin B against C. albicans biofilms, thus warranting further in vivo study.
Collapse
Affiliation(s)
- Aspasia Katragkou
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Matthew McCarthy
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA
| | | | - Charalampos Antachopoulos
- Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, University of Maryland, Baltimore, MD, USA Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
34
|
Herrero-de-Dios C, Alonso-Monge R, Pla J. The lack of upstream elements of the Cek1 and Hog1 mediated pathways leads to a synthetic lethal phenotype upon osmotic stress in Candida albicans. Fungal Genet Biol 2014; 69:31-42. [PMID: 24905535 DOI: 10.1016/j.fgb.2014.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/19/2014] [Accepted: 05/25/2014] [Indexed: 11/27/2022]
Abstract
Different signal transduction pathways mediated by MAP kinases have been described in Candida albicans. These pathways sense different stimuli and, therefore, elaborate specific responses. Hog1 was identified as the MAPK that is primarily involved in stress response and virulence, while Cek1 was more specific to cell wall biogenesis, mating and biofilm formation. In the present work, mutants defective in both pathways have been characterized under osmotic stress. Both routes are required for a full response against high osmotic challenge, since mutants defective in both pathways displayed aberrant morphology, cell polarity defects and abnormal chitin deposition, which correlate with loss of viability and appearance of apoptotic markers. These alterations occurred in spite of proper Hog1 and Cek1 phosphorylation and increased intra-cellular glycerol accumulation. The relevance of both routes in virulence is shown as ssk1 msb2 sho1 opy2 mutants are avirulent in a mouse systemic model of infection and display reduced virulence in the Galleria mellonella model.
Collapse
Affiliation(s)
- Carmen Herrero-de-Dios
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom(1)
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain.
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
35
|
Feldman M, Al-Quntar A, Polacheck I, Friedman M, Steinberg D. Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans. PLoS One 2014; 9:e93225. [PMID: 24796422 PMCID: PMC4010395 DOI: 10.1371/journal.pone.0093225] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/28/2014] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is known as a commensal microorganism but it is also the most common fungal pathogen in humans, causing both mucosal and systemic infections. Biofilm-associated C. albicans infections present clinically important features due to their high levels of resistance to traditional antifungal agents. Quorum sensing is closely associated with biofilm formation and increasing fungal pathogenicity. We investigated the ability of the novel bacterial quorum sensing quencher thiazolidinedione-8 (S-8) to inhibit the formation of, and eradication of mature C. albicans biofilms. In addition, the capability of S-8 to alter fungal adhesion to mammalian cells was checked. S-8 exhibited specific antibiofilm and antiadhesion activities against C. albicans, at four- to eightfold lower concentrations than the minimum inhibitory concentration (MIC). Using fluorescence microscopy, we observed that S-8 dose-dependently reduces C. albicans–GFP binding to RAW macrophages. S-8 at sub-MICs also interfered with fungal morphogenesis by inhibiting the yeast-to-hyphal form transition. In addition, the tested agent strongly affected fungal cell wall characteristics by modulating its hydrophobicity. We evaluated the molecular mode of S-8 antibiofilm and antiadhesion activities using real-time RT-PCR. The expression levels of genes associated with biofilm formation, adhesion and filamentation, HWP1, ALS3 and EAP1, respectively, were dose-dependently downregulated by S-8. Transcript levels of UME6, responsible for long-term hyphal maintenance, were also significantly decreased by the tested agent. Both signaling pathways of hyphal formation-cAMP-PKA and MAPK-were interrupted by S-8. Their upstream general regulator RAS1 was markedly suppressed by S-8. In addition, the expression levels of MAPK cascade components CST20, HST7 and CPH1 were downregulated by S-8. Finally, transcriptional repressors of filament formation, TUP1 and NRG1, were dramatically upregulated by our compound. Our results indicate that S-8 holds a novel antibiofilm therapeutic mean in the treatment and prevention of biofilm-associated C. albicans infections.
Collapse
Affiliation(s)
- Mark Feldman
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Al-Quntar
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itzhak Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Friedman
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
36
|
Prieto D, Román E, Correia I, Pla J. The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans. PLoS One 2014; 9:e87128. [PMID: 24475243 PMCID: PMC3903619 DOI: 10.1371/journal.pone.0087128] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/20/2013] [Indexed: 01/29/2023] Open
Abstract
The opportunistic pathogen Candida albicans is a frequent inhabitant of the human gastrointestinal tract where it usually behaves as a harmless commensal. In this particular niche, it needs to adapt to the different micro environments that challenge its survival within the host. In order to determine those factors involved in gut adaptation, we have used a gastrointestinal model of colonization in mouse to trace the behaviour of fungal cells. We have developed a genetic labelling system based on the complementary spectral properties of the fluorescent proteins GFP and a new C. albicans codon-adapted RFP (dTOM2) that allow a precise quantification of the fungal population in the gut via standard in vitro cultures or flow cytometry. This methodology has allowed us to determine the role of the three MAP kinase pathways of C. albicans (mediated by the MAPK Mkc1, Cek1 or Hog1) in mouse gut colonization via competitive assays with MAPK pathway mutants and their isogenic wild type strain. This approach reveals the signalling through HOG pathway as a critical factor influencing the establishment of C. albicans in the mouse gut. Less pronounced effects for mkc1 or cek1 mutants were found, only evident after 2-3 weeks of colonization. We have also seen that hog1 mutants is defective in adhesion to the gut mucosa and sensitive to bile salts. Finally, we have developed a genetic strategy for the in vivo excision (tetracycline-dependent) of any specific gene during the course of colonization in this particular niche, allowing the analysis of its role during gut colonization.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, Spain
| | - Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, Spain
| | - Jesus Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, Spain
| |
Collapse
|
37
|
Calmodulin binding to Dfi1p promotes invasiveness of Candida albicans. PLoS One 2013; 8:e76239. [PMID: 24155896 PMCID: PMC3796530 DOI: 10.1371/journal.pone.0076239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023] Open
Abstract
Candida albicans, a dimorphic fungus, undergoes hyphal development in response to many different environmental cues, including growth in contact with a semi-solid matrix. C. albicans forms hyphae that invade agar when cells are embedded in or grown on the surface of agar, and the integral membrane protein Dfi1p is required for this activity. In addition, Dfi1p is required for full activation of mitogen activated protein kinase Cek1p during growth on agar. In this study, we identified a putative calmodulin binding motif in the C-terminal tail of Dfi1p. This region of Dfi1p bound to calmodulin in vitro, and mutations that affected this region affected both calmodulin binding in vitro and invasive filamentation when incorporated into the full length Dfi1p protein. Moreover, increasing intracellular calcium levels led to calcium-dependent, Dfi1p-dependent Cek1p activation. We propose that conformational changes in Dfi1p in response to environmental conditions encountered during growth allow the protein to bind calmodulin and initiate a signaling cascade that activates Cek1p.
Collapse
|
38
|
Candida albicans Czf1 and Efg1 coordinate the response to farnesol during quorum sensing, white-opaque thermal dimorphism, and cell death. EUKARYOTIC CELL 2013; 12:1281-92. [PMID: 23873867 DOI: 10.1128/ec.00311-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quorum sensing by farnesol in Candida albicans inhibits filamentation and may be directly related to its ability to cause both mucosal and systemic diseases. The Ras1-cyclic AMP signaling pathway is a target for farnesol inhibition. However, a clear understanding of the downstream effectors of the morphological farnesol response has yet to be unraveled. To address this issue, we screened a library for mutants that fail to respond to farnesol. Six mutants were identified, and the czf1Δ/czf1Δ mutant was selected for further characterization. Czf1 is a transcription factor that regulates filamentation in embedded agar and also white-to-opaque switching. We found that Czf1 is required for filament inhibition by farnesol under at least three distinct environmental conditions: on agar surfaces, in liquid medium, and when embedded in a semisolid agar matrix. Since Efg1 is a transcription factor of the Ras1-cyclic AMP signaling pathway that interacts with and regulates Czf1, an efg1Δ/efg1Δ czf1Δ/czf1Δ mutant was tested for filament inhibition by farnesol. It exhibited an opaque-cell-like temperature-dependent morphology, and it was killed by low farnesol levels that are sublethal to wild-type cells and both efg1Δ/efg1Δ and czf1Δ/czf1Δ single mutants. These results highlight a new role for Czf1 as a downstream effector of the morphological response to farnesol, and along with Efg1, Czf1 is involved in the control of farnesol-mediated cell death in C. albicans.
Collapse
|
39
|
Hsu CC, Lai WL, Chuang KC, Lee MH, Tsai YC. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med Mycol 2012; 51:473-82. [PMID: 23210679 DOI: 10.3109/13693786.2012.743051] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Candida spp. are part of the natural human microbiota, but they also represent important opportunistic human pathogens. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. In this study, we investigated the ability of linalool to inhibit the formation of C. albicans biofilms and reduce existing C. albicans biofilms. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration (MIC) of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture composition of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways, respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator, Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because it interferes with the morphological switch and biofilm formation of C. albicans.
Collapse
Affiliation(s)
- Chih-Chieh Hsu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Herrero de Dios C, Román E, Diez C, Alonso-Monge R, Pla J. The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans. Fungal Genet Biol 2012; 50:21-32. [PMID: 23149115 DOI: 10.1016/j.fgb.2012.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/06/2023]
Abstract
MAPK pathways are conserved and complex mechanisms of signaling in eukaryotic cells. These pathways mediate adaptation to different stress conditions by a core kinase cascade that perceives changes in the environment by different upstream elements and mediates adaptation through transcription factors. In the present work, the transmembrane protein Opy2 has been identified and functionally characterized in Candida albicans. This protein is required to trigger Cek1 phosphorylation by different stimuli such as the resumption of growth from stationary phase or the addition of the cell wall disturbing compounds zymolyase and tunicamycin. opy2 mutants display susceptibility to cell wall disturbing compounds like Congo red. However, it does not play a role in the adaptation to high osmolarity or oxidative stress, in close contrast with the situation for the homologous protein in Saccharomyces cerevisiae. The over-expression of Opy2 in a S. cerevisiae opy2ssk1 mutant partially complemented the osmosensitivity on solid medium by a Hog1-independent mechanism as well as the abnormal morphology observed in this mutant under high osmolarity. The electrophoretic pattern of CaOpy2 tagged version in S. cerevisiae suggested similar post-translational modification in both microorganisms. This protein is also involved in pathogenesis as revealed by the fact that opy2 mutants displayed a significantly reduced virulence in the Galleria mellonella model.
Collapse
Affiliation(s)
- Carmen Herrero de Dios
- Departamento de Microbiología II, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Puri S, Kumar R, Chadha S, Tati S, Conti HR, Hube B, Cullen PJ, Edgerton M. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLoS One 2012; 7:e46020. [PMID: 23139737 PMCID: PMC3491010 DOI: 10.1371/journal.pone.0046020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.
Collapse
Affiliation(s)
- Sumant Puri
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, Brown AJP, Hube B. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS One 2012; 7:e38584. [PMID: 22685587 PMCID: PMC3369842 DOI: 10.1371/journal.pone.0038584] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 01/01/2023] Open
Abstract
Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen.
Collapse
Affiliation(s)
- François L. Mayer
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Duncan Wilson
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Pedro Miramón
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Silvia Slesiona
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
- Department of Microbial Biochemistry and Physiology, Hans-Knoell-Institute, Jena, Germany
| | - Iryna M. Bohovych
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
- Center for Sepsis Control and Care, Universitätsklinikum Jena, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
43
|
Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. EUKARYOTIC CELL 2011; 10:1473-84. [PMID: 21908593 DOI: 10.1128/ec.05153-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many Ras GTPases localize to membranes via C-terminal farnesylation and palmitoylation, and localization regulates function. In Candida albicans, a fungal pathogen of humans, Ras1 links environmental cues to morphogenesis. Here, we report the localization and membrane dynamics of Ras1, and we characterize the roles of conserved C-terminal cysteine residues, C287 and C288, which are predicted sites of palmitoylation and farnesylation, respectively. GFP-Ras1 is localized uniformly to plasma membranes in both yeast and hyphae, yet Ras1 plasma membrane mobility was reduced in hyphae compared to that in yeast. Ras1-C288S was mislocalized to the cytoplasm and could not support hyphal development. Ras1-C287S was present primarily on endomembranes, and strains expressing ras1-C287S were delayed or defective in hyphal induction depending on the medium used. Cells bearing constitutively activated Ras1-C287S or Ras1-C288S, due to a G13V substitution, showed increased filamentation, suggesting that lipid modifications are differentially important for Ras1 activation and effector interactions. The C. albicans autoregulatory molecule, farnesol, inhibits Ras1 signaling through adenylate cyclase and bears structural similarities to the farnesyl molecule that modifies Ras1. At lower concentrations of farnesol, hyphal growth was inhibited but Ras1 plasma membrane association was not altered; higher concentrations of farnesol led to mislocalization of Ras1 and another G protein, Rac1. Furthermore, farnesol inhibited hyphal growth mediated by cytosolic Ras1-C288SG13V, suggesting that farnesol does not act through mechanisms that depend on Ras1 farnesylation. Our findings imply that Ras1 is farnesylated and palmitoylated, and that the Ras1 stimulation of adenylate cyclase-dependent phenotypes can occur in the absence of these lipid modifications.
Collapse
|
44
|
Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen. Proc Natl Acad Sci U S A 2011; 108:14091-6. [PMID: 21825144 DOI: 10.1073/pnas.1102835108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a restricted group of opportunistic fungal pathogens the universal leucine CUG codon is translated both as serine (97%) and leucine (3%), challenging the concept that translational ambiguity has a negative impact in living organisms. To elucidate the molecular mechanisms underlying the in vivo tolerance to a nonconserved genetic code alteration, we have undertaken an extensive structural analysis of proteins containing CUG-encoded residues and solved the crystal structures of the two natural isoforms of Candida albicans seryl-tRNA synthetase. We show that codon reassignment resulted in a nonrandom genome-wide CUG redistribution tailored to minimize protein misfolding events induced by the large-scale leucine-to-serine replacement within the CTG clade. Leucine or serine incorporation at the CUG position in C. albicans seryl-tRNA synthetase induces only local structural changes and, although both isoforms display tRNA serylation activity, the leucine-containing isoform is more active. Similarly, codon ambiguity is predicted to shape the function of C. albicans proteins containing CUG-encoded residues in functionally relevant positions, some of which have a key role in signaling cascades associated with morphological changes and pathogenesis. This study provides a first detailed analysis on natural reassignment of codon identity, unveiling a highly dynamic evolutionary pattern of thousands of fungal CUG codons to confer an optimized balance between protein structural robustness and functional plasticity.
Collapse
|
45
|
Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, Sanglard D, Levin LR, Buck J, Mühlschlegel FA. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. EUKARYOTIC CELL 2011; 10:1034-42. [PMID: 21666074 PMCID: PMC3165441 DOI: 10.1128/ec.05060-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 05/31/2011] [Indexed: 01/18/2023]
Abstract
Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C(12)-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C(12)-homoserine lactone, may be used by other quorum-sensing molecules.
Collapse
Affiliation(s)
- Rebecca A Hall
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Han TL, Cannon RD, Villas-Bôas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011; 48:747-63. [DOI: 10.1016/j.fgb.2011.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
|
47
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
48
|
Colabardini AC, De Castro PA, De Gouvêa PF, Savoldi M, Malavazi I, Goldman MHS, Goldman GH. Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. Mol Microbiol 2010; 78:1259-79. [PMID: 21091509 DOI: 10.1111/j.1365-2958.2010.07403.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previously, we demonstrated that the Aspergillus nidulans calC2 mutation in protein kinase C pkcA was able to confer tolerance to farnesol (FOH), an isoprenoid that has been shown to inhibit proliferation and induce apoptosis. Here, we investigate in more detail the role played by A. nidulans pkcA in FOH tolerance. We demonstrate that pkcA overexpression during FOH exposure causes increased cell death. FOH is also able to activate several markers of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Our results suggest an intense cross-talk between PkcA and the UPR during FOH-induced cell death. Furthermore, the overexpression of pkcA increases both mRNA accumulation and metacaspases activity, and there is a genetic interaction between PkcA and the caspase-like protein CasA. Mutant analyses imply that MAP kinases are involved in the signal transduction in response to the effects caused by FOH.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Li D, Agrellos OA, Calderone R. Histidine kinases keep fungi safe and vigorous. Curr Opin Microbiol 2010; 13:424-30. [PMID: 20542727 DOI: 10.1016/j.mib.2010.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 01/10/2023]
Abstract
Signal transduction in human pathogenic fungi, like in other microorganisms, regulates a number of adaptive transcriptional responses to a variety of environmental cues. Among signal relay proteins, sensor, histidine kinase proteins (HK) are auto-phosphorylated upon perception of an environmental cue, and initiate a phosphorelay that results in transcriptional regulation of genes associated with specific stress signals or multiple stress cues. Human pathogenic fungi utilize HK proteins to adapt to stress, grow, sporulate, undergo morphogenesis, mate, sense anti-fungal drugs, and cause disease. While much is known about HK and RR proteins functionally, the MAPK pathways and downstream transcription factors and gene targets are largely unstudied in human pathogenic fungi. However, as HK proteins are broadly conserved and not apparently in humans, we suggest that they offer exploitation as new targets in anti-fungal drug discovery.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
50
|
Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. EUKARYOTIC CELL 2010; 9:569-77. [PMID: 20118211 DOI: 10.1128/ec.00321-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Farnesol, a Candida albicans cell-cell signaling molecule that participates in the control of morphology, has an additional role in protection of the fungus against oxidative stress. In this report, we show that although farnesol induces the accumulation of intracellular reactive oxygen species (ROS), ROS generation is not necessary for the induction of catalase (Cat1)-mediated oxidative-stress resistance. Two antioxidants, alpha-tocopherol and, to a lesser extent, ascorbic acid effectively reduced intracellular ROS generation by farnesol but did not alter farnesol-induced oxidative-stress resistance. Farnesol inhibits the Ras1-adenylate cyclase (Cyr1) signaling pathway to achieve its effects on morphology under hypha-inducing conditions, and we demonstrate that farnesol induces oxidative-stress resistance by a similar mechanism. Strains lacking either Ras1 or Cyr1 no longer exhibited increased protection against hydrogen peroxide upon preincubation with farnesol. While we also observed the previously reported increase in the phosphorylation level of Hog1, a known regulator of oxidative-stress resistance, in the presence of farnesol, the hog1/hog1 mutant did not differ from wild-type strains in terms of farnesol-induced oxidative-stress resistance. Analysis of Hog1 levels and its phosphorylation states in different mutant backgrounds indicated that mutation of the components of the Ras1-adenylate cyclase pathway was sufficient to cause an increase of Hog1 phosphorylation even in the absence of farnesol or other exogenous sources of oxidative stress. This finding indicates the presence of unknown links between these signaling pathways. Our results suggest that farnesol effects on the Ras-adenylate cyclase cascade are responsible for many of the observed activities of this fungal signaling molecule.
Collapse
|