1
|
Parker W, Taylor A, Razdan A, Escarce J, Crook N. Enabling technologies for in situ biomanufacturing using probiotic yeast. Adv Drug Deliv Rev 2025; 223:115605. [PMID: 40383233 DOI: 10.1016/j.addr.2025.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Saccharomyces boulardii (Sb) is a Generally Regarded As Safe (GRAS) probiotic yeast currently used to alleviate symptoms from various gastrointestinal diseases. Sb is a promising platform for probiotic and biotherapeutic engineering as it is the only probiotic eukaryote and carries with it a unique set of advantages compared to bacterial strains, including resistance to phage, high protein secretion abilities, and intrinsic resistance to antibiotics. While engineered Sb has not been studied as extensively as its close relative Saccharomyces cerevisiae (Sc), many genetic engineering tools developed for Sc have also shown promise in Sb. In this review, we address recent research to develop tools for genetic engineering, colonization modulation, biomarker sensing, and drug production in Sb. Ongoing efforts, especially those that overcome gut-specific challenges to engineered performance, are highlighted as they advance this chassis as a scalable platform for treating gastrointestinal diseases.
Collapse
Affiliation(s)
- William Parker
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda Taylor
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aryan Razdan
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose Escarce
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Gaspar BS, Roşu OA, Enache RM, Manciulea Profir M, Pavelescu LA, Creţoiu SM. Gut Mycobiome: Latest Findings and Current Knowledge Regarding Its Significance in Human Health and Disease. J Fungi (Basel) 2025; 11:333. [PMID: 40422666 DOI: 10.3390/jof11050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
The gut mycobiome, the fungal component of the gut microbiota, plays a crucial role in health and disease. Although fungi represent a small fraction of the gut ecosystem, they influence immune responses, gut homeostasis, and disease progression. The mycobiome's composition varies with age, diet, and host factors, and its imbalance has been linked to conditions such as inflammatory bowel disease (IBD) and metabolic disorders. Advances in sequencing have expanded our understanding of gut fungi, but challenges remain due to methodological limitations and high variability between individuals. Emerging therapeutic strategies, including antifungals, probiotics, fecal microbiota transplantation, and dietary interventions, show promise but require further study. This review highlights recent discoveries on the gut mycobiome, its interactions with bacteria, its role in disease, and potential clinical applications. A deeper understanding of fungal contributions to gut health will help develop targeted microbiome-based therapies.
Collapse
Affiliation(s)
- Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Monica Manciulea Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Soliman N, Kruithoff C, San Valentin EM, Gamal A, McCormick TS, Ghannoum M. Small Intestinal Bacterial and Fungal Overgrowth: Health Implications and Management Perspectives. Nutrients 2025; 17:1365. [PMID: 40284229 PMCID: PMC12030604 DOI: 10.3390/nu17081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Small Intestinal Bacterial Overgrowth (SIBO) and Small Intestinal Fungal Overgrowth (SIFO) are distinct yet often overlapping conditions characterized by an abnormal increase in microbial populations within the small intestine. SIBO results from an overgrowth of colonic bacteria, while SIFO is driven by fungal overgrowth, primarily involving Candida species. Both conditions present with nonspecific gastrointestinal (GI) symptoms such as bloating, abdominal pain, diarrhea, and malabsorption, making differentiation between SIBO and SIFO challenging. This review aims to elucidate the underlying mechanisms, risk factors, diagnostic challenges, and management strategies associated with SIBO and SIFO. METHODS A comprehensive review of current literature was conducted, focusing on the pathophysiology, diagnostic modalities, and therapeutic approaches for SIBO and SIFO. RESULTS SIBO is commonly associated with factors such as reduced gastric acid secretion, impaired gut motility, and structural abnormalities like bowel obstruction and diverticula. It is frequently diagnosed using jejunal aspirates (≥105 colony forming units (CFUs)/mL) or breath tests. In contrast, SIFO is linked to prolonged antibiotic use, immunosuppression, and gut microbiome dysbiosis, with diagnosis relying on fungal cultures from small intestinal aspirates due to the absence of standardized protocols. CONCLUSION The clinical overlap and frequent misdiagnosis of SIBO and SIFO highlight the need for improved diagnostic tools and a multidisciplinary approach to management. This review emphasizes the importance of understanding the mechanisms behind SIBO and SIFO, how they relate to other health outcomes, and potential management strategies to optimize patient care and therapeutic outcomes.
Collapse
Affiliation(s)
- Natalie Soliman
- Heritage College of Osteopathic Medicine, Ohio University, Cleveland, OH 44122, USA
| | - Caroline Kruithoff
- Heritage College of Osteopathic Medicine, Ohio University, Cleveland, OH 44122, USA
| | - Erin Marie San Valentin
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ahmed Gamal
- University Hospitals St. John Medical Center, Cleveland, OH 44145, USA
| | - Thomas S. McCormick
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Wang B, Tan H, Sun X, Lin Z, Chen X, Han H, Wang M, Wang Z, Chen X, Deng Y, Song S. Inhibition of Candida albicans virulence by moscatin from Dendrobium nobile lindl. Microb Pathog 2024; 197:107089. [PMID: 39477034 DOI: 10.1016/j.micpath.2024.107089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Candida albicans infection poses a significant global health threat. It is imperative to exploit new antifungal agents against C. albicans infections without leading to drug resistance, so that these potential agents can complement or combine with current medications to effectively treat diseases caused by C. albicans. We screened moscatin, and assessed the inhibitory effectiveness against C. albicans SC5314 on hyphae production and biofilm formation. It was revealed that moscatin exhibited significant effects on morphological transition and biofilm formation in C. albicans SC5314. It also lowered the pathogenicity of C. albicans SC5314 in a concentration-dependent way in both A549 cells and mice fungal infection models, but had no cytotoxicity to A549 cells. In addition, moscatin attenuated the virulence of clinical fluconazole-resistant C. albicans and exhibited synergistic activity with fluconazole. It could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. These findings indicate that these moscatin has great potential to be developed as a new therapeutic drug against C. albicans infection.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiuyun Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zizi Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Hongguang Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; Hunan Children's Hospital, Changsha 410007, China
| | - Xiangxiu Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Yousif D, Wu Y, Gonzales AA, Mathieu C, Zeng Y, Sample L, Terando S, Li T, Xiao J. Anti-Cariogenic Effects of S. cerevisiae and S. boulardii in S. mutans-C. albicans Cross-Kingdom In Vitro Models. Pharmaceutics 2024; 16:215. [PMID: 38399269 PMCID: PMC10891968 DOI: 10.3390/pharmaceutics16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the well-documented health benefits of the probiotic Saccharomyces, its application in oral health has not been comprehensively assessed. Dental caries is a transmissible disease initiated by acid production of cariogenic bacteria and yeast, such as Streptococcus mutans and Candida albicans, on tooth enamel and followed by subsequent enamel demineralization. Here, we investigated the effect of two Saccharomyces strains (Saccharomyces boulardii and Saccharomyces cerevisiae) on S. mutans-C. albicans cross-kingdom interactions using a cariogenic planktonic model. Viable cells, pH changes, and gene expression were measured. S. cerevisiae and S. boulardii inhibited the growth of C. albicans in dual- and multi-species conditions at 4, 6, and 20 h. Saccharomyces also inhibited C. albicans hyphal formation. Furthermore, Saccharomyces reduced the acidity of the culture medium, which usually plummeted below pH 5 when S. mutans and C. albicans were present in the model. The presence of Saccharomyces maintained the culture medium above 6 even after overnight incubation, demonstrating a protective potential against dental enamel demineralization. S. boulardii significantly down-regulated S. mutans atpD and eno gene expression. Overall, our results shed light on a new promising candidate, Saccharomyces, for dental caries prevention due to its potential to create a less cariogenic environment marked by a neutral pH and reduced growth of C. albicans.
Collapse
Affiliation(s)
- Dina Yousif
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Yan Wu
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430042, China
| | - Alexandria Azul Gonzales
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Christa Mathieu
- VCU College of Health Professions, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Lee Sample
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Sabrina Terando
- School of Arts & Sciences, University of Rochester, Rochester, NY 14627, USA;
| | - Ting Li
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| |
Collapse
|
6
|
Gowen R, Gamal A, Di Martino L, McCormick TS, Ghannoum MA. Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology 2023; 164:828-840. [PMID: 36702360 PMCID: PMC10152883 DOI: 10.1053/j.gastro.2023.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
The central role of the gut microbiota in the regulation of health and disease has been convincingly demonstrated. Polymicrobial interkingdom interactions between bacterial (the bacteriome) and fungal (the mycobiome) communities of the gut have become a prominent focus for development of potential therapeutic approaches. In addition to polymicrobial interactions, the complex gut ecosystem also mediates interactions between the host and the microbiota. These interactions are complex and bidirectional; microbiota composition can be influenced by host immune response, disease-specific therapeutics, antimicrobial drugs, and overall ecosystems. However, the gut microbiota also influences host immune response to a drug or therapy by potentially transforming the drug's structure and altering bioavailability, activity, or toxicity. This is especially true in cases where the gut microbiota has produced a biofilm. The negative ramifications of biofilm formation include alteration of gut permeability, enhanced antimicrobial resistance, and alteration of host immune response effectiveness. Natural modulation of the gut microbiota, using probiotic and prebiotic approaches, may also be used to affect the host microbiome, a type of "natural" modulation of the host microbiota composition. In this review, we discuss potential bidirectional interactions between microbes and host, and we describe the changes in gut microbiota induced by probiotic and prebiotic approaches as well as their potential clinical consequences, including biofilm formation. We outline a systematic approach to designing probiotics capable of altering the host microbiota in disease states, using Crohn's disease as a model chronic disease. Understanding how the effective changes in the microbiome may enhance treatment efficacy may unlock the possibility of modulating the gut microbiome to improve treatment using a natural approach.
Collapse
Affiliation(s)
- Rachael Gowen
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Luca Di Martino
- University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Digestive Health Research Institute, Case Western Reserve University, Cleveland Ohio
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
7
|
Ling H, Liu R, Sam QH, Shen H, Chai LYA, Chang MW. Engineering of a probiotic yeast for the production and secretion of medium-chain fatty acids antagonistic to an opportunistic pathogen Candida albicans. Front Bioeng Biotechnol 2023; 11:1090501. [PMID: 36923462 PMCID: PMC10008859 DOI: 10.3389/fbioe.2023.1090501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is an opportunistic pathogen, with its infection as one of the causes of morbidity or mortality. Notably, the probiotic yeast Saccharomyces cerevisiae var. boulardii has shown the potential to fight against Candida infections. In this study, we aimed to engineer a commercial boulardii strain to produce medium-chain fatty acids (MCFAs) with antagonistic effects against C. albicans. First, we identified and characterized a boulardii strain and created its auxotrophic strain Δura3. Next, we constructed and expressed a heterologous MCFA biosynthetic pathway under the control of inducible and constitutive promoters. Aside from examining MCFA production and secretion, we confirmed MCFAs' effects on C. albicans' anti-biofilm and anti-hyphal formations and the immunomodulatory effect of MCFA-containing supernatants on Caco-2 cells. We found that under constitutive promoters, the engineered boulardii strain constitutively produced and secreted a mixture of C6:0, C8:0, and C10:0. The secreted MCFAs then reduced biofilm and hyphal formations in C. albicans SC5314. We also confirmed that MCFAs upregulated the expression of virulence-related genes in SC5314. Furthermore, we found that the constitutively produced MCFAs in the supernatant induced the upregulation of immune response genes in Caco-2 cells co-cultured with SC5314, indicating MCFAs' roles in immunomodulation. Overall, the engineered boulardii strain produced and secreted MCFAs, as well as demonstrated antagonistic effects against C. albicans SC5314 and immune-modulatory effects in Caco-2. To our knowledge, this represents the first study tackling the metabolic engineering of a commercial probiotic yeast strain to constitutively produce and secrete MCFAs showing anti-Candida effects. Our study forms the basis of the potential development of a live biotherapeutics probiotic yeast against Candida infections through metabolic engineering strategies.
Collapse
Affiliation(s)
- Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| | - Ruirui Liu
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| | - Qi Hui Sam
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| | - Louis Yi Ann Chai
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Li H, Miao MX, Jia CL, Cao YB, Yan TH, Jiang YY, Yang F. Interactions between Candida albicans and the resident microbiota. Front Microbiol 2022; 13:930495. [PMID: 36204612 PMCID: PMC9531752 DOI: 10.3389/fmicb.2022.930495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a prevalent, opportunistic human fungal pathogen. It usually dwells in the human body as a commensal, however, once in its pathogenic state, it causes diseases ranging from debilitating superficial to life-threatening systemic infections. The switch from harmless colonizer to virulent pathogen is, in most cases, due to perturbation of the fungus-host-microbiota interplay. In this review, we focused on the interactions between C. albicans and the host microbiota in the mouth, gut, blood, and vagina. We also highlighted important future research directions. We expect that the evaluation of these interplays will help better our understanding of the etiology of fungal infections and shed new light on the therapeutic approaches.
Collapse
Affiliation(s)
- Hao Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: Tian-hua Yan,
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Yuan-ying Jiang,
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Feng Yang,
| |
Collapse
|
9
|
Lacotte PA, Simons A, Bouttier S, Malet-Villemagne J, Nicolas V, Janoir C. Inhibition of In Vitro Clostridioides difficile Biofilm Formation by the Probiotic Yeast Saccharomyces boulardii CNCM I-745 through Modification of the Extracellular Matrix Composition. Microorganisms 2022; 10:microorganisms10061082. [PMID: 35744599 PMCID: PMC9227484 DOI: 10.3390/microorganisms10061082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile is responsible for post-antibiotic diarrhea and most of the pseudomembranous colitis cases. Multiple recurrences, one of the major challenges faced in C. difficile infection (CDI) management, can be considered as chronic infections, and the role of biofilm formation in CDI recurrences is now widely considered. Therefore, we explored if the probiotic yeast Saccharomyces boulardii CNCM I-745 could impact the in vitro formation of C. difficile biofilm. Biomass staining and viable bacterial cell quantification showed that live S. boulardii exerts an antagonistic effect on the biofilm formation for the three C. difficile strains tested. Confocal laser scanning microscopy observation revealed a weakening and an average thickness reduction of the biofilm structure when C. difficile is co-incubated with S. boulardii, compared to the single-species bacterial biofilm structure. These effects, that were not detected with another genetically close yeast, S. cerevisiae, seemed to require direct contact between the probiotic yeast and the bacterium. Quantification of the extrapolymeric matrix components, as well as results obtained after DNase treatment, revealed a significant decrease of eDNA, an essential structural component of the C. difficile biofilm matrix, in the dual-species biofilm. This modification could explain the reduced cohesion and robustness of C. difficile biofilms formed in the presence of S. boulardii CNCM I-745 and be involved in S. boulardii clinical preventive effect against CDI recurrences.
Collapse
Affiliation(s)
- Pierre-Alexandre Lacotte
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
| | - Alexis Simons
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
- Laboratoire Eau, Environnement et Systèmes Urbains (Leesu), Université Paris-Est Créteil, École des Ponts ParisTech, 94010 Créteil, France
| | - Sylvie Bouttier
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
| | - Jeanne Malet-Villemagne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
| | - Valérie Nicolas
- Ingénierie et Plateformes au Service de l’Innovation (IPSIT), UMS IPSIT Université Paris-Saclay-US 31 INSERM-UAR 3679 CNRS, Plateforme d’Imagerie Cellulaire MIPSIT, 92290 Châtenay-Malabry, France;
| | - Claire Janoir
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, 92290 Châtenay-Malabry, France; (P.-A.L.); (A.S.); (S.B.); (J.M.-V.)
- Correspondence:
| |
Collapse
|
10
|
Koupaei M, Saderi H, Amin Marashi SM, Fathizadeh H, Owlia P. Evaluation of the effect of Saccharomyces cerevisiae on the expression of enterotoxin genes in Escherichia coli O157: H7 (EHEC) and Escherichia coli H10407 (ETEC). Microb Pathog 2022; 164:105450. [DOI: 10.1016/j.micpath.2022.105450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
|
11
|
Tomičić R, Tomičić Z, Raspor P. Influence of culture conditions on co-aggregation of probiotic yeast Saccharomyces boulardii with Candida spp. and their auto-aggregation. Folia Microbiol (Praha) 2022; 67:507-515. [PMID: 35169980 DOI: 10.1007/s12223-022-00956-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Systemic infections caused by pathogenic Candida species pose a significant threat to public health in the past decades due to increasing resistance to existing antifungal drugs. Given this scenario, probiotics have been suggested as an alternative approach for managing Candida infections. Hence, the purpose of this study was to evaluate whether probiotic yeast Saccharomyces boulardii co-aggregate with Candida spp. as well as to determine their auto-aggregation ability in dependence on temperature (28 °C, 37 °C, 42 °C) and pH (4.5, 7.0, 8.5) after 5 h and 24 h. Our results revealed that the aggregation of tested yeasts was lower in the first 5 h but increased significantly after 24 h. All strains were able to auto-aggregate in different degrees ranging from 47.46 to 95.95% assessed at 24 h of incubation. Among them the highest auto-aggregation values had C. albicans and C. krusei strains followed by probiotic strain S. boulardii, while the less were observed in C. glabrata strains. In addition, co-aggregation between probiotic and Candida strains was strain-specific. It was evident that S. boulardii significantly inhibited the aggregation of C. albicans ATCC 10261, C. krusei ATCC 6258, and C. glabrata ZIM 2369. However, in C. glabrata ZIM 2382, the aggregation was even enhanced. Temperature and pH also affected the ability to aggregate in a different way only after 5 h of incubation, with the highest cell aggregation evidenced at temperature 37 °C in most cases and pH 4.5. These findings may be of importance when trying to establish probiotic use against pathogenic Candida species.
Collapse
Affiliation(s)
- Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Peter Raspor
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Bohbot JM, Zhioua F. [The benefit of Saccharomyces boulardii CNCM I-745 in the management of vulvovaginal infections]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2021; 49:716-723. [PMID: 33933670 DOI: 10.1016/j.gofs.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 06/12/2023]
Affiliation(s)
- J-M Bohbot
- Institut Fournier, 25, boulevard Saint-Jacques, 75014 Paris, France.
| | - F Zhioua
- Unité de procréation médicalement assistée, Département de gynécologie et obstétrique, Hôpital Aziza Othmana, Tunis, Tunisie
| |
Collapse
|
13
|
DehghanZadeh Z, Koupaei M, Ghorbani Z, Saderi H, Marashi SMA, Owlia P. Inhibitory effect of Saccharomyces cerevisiae supernatant and lysate on expression of lasB and apl genes of Pseudomonas aeruginosa. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Abstract
A sparse number of available antifungal drugs, therapeutic side effects, and drug resistance are major challenges in current antifungal therapy to treat Candida albicans-associated infections. Here, we describe two food-derived yeasts, Saccharomyces cerevisiae and Issatchenkia occidentalis, that inhibit virulence traits of C. albicans, including hyphal morphogenesis, biofilm formation, and adhesion to intestinal epithelial cells. These yeasts also protect the model host Caenorhabditis elegans from C. albicans infection. We demonstrate that the protective activity is primarily retained in the secretome of the beneficial yeasts, and the protection they provide as a physical barrier is negligible. S. cerevisiae aro8 aro9 mutant analysis demonstrate that phenylethanol and tryptophol are necessary for protection, and experiments with commercially procured compounds indicate that they are sufficient to inhibit C. albicans virulence. We propose food-derived yeasts as an alternative or combination therapy to conventional antifungal therapy for C. albicans infection. IMPORTANCE The gut microbiome, primarily established by food, is complex and contributes to the health of the host. Molecular mechanisms that regulate microbial interactions and host health remain unclear. Here, we show that the pathogen C. albicans interacts with food-derived beneficial yeasts in the gut of the microscopic worm, C. elegans, forming a simple microbiome. C. albicans can colonize the worm gut, compromising the worm's health, and exposure to the food-derived yeasts ameliorates this effect protecting the nematode host. We identify small molecules from food-derived yeasts that are necessary and sufficient to inhibit multiple virulence traits of C. albicans and protect the nematode host. The nematode gut faithfully recapitulates a mammalian intestine. This could be an effective alternative or combination therapy for C. albicans infection.
Collapse
|
15
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
16
|
Marlida Y, Huda N, Harnentis, Shafan Nur Y, Mekar Lestari N, Adzitey F, Sulaiman MR. Potential probiotic yeast isolated from an Indonesian indigenous fermented fish (Ikan Budu). POTRAVINARSTVO 2021. [DOI: 10.5219/1544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Budu is a fermented food resulting from the activities of microorganisms like lactic acid bacteria and yeast. Budu, therefore, serves as a source of probiotics that can have beneficial effects on livestock and humans. Nonetheless, their selection has to be done with caution. The current study purposed to find out whether budu has desirable probiotic properties. This was done by determining its pH, bile acid tolerance, hydrophobicity, and inhibition of pathogens such as Staphylococcus aureus, Salmonella enteritidis, and Escherichia coli. An in vitro experiment was conducted using three Saccharomyces cerevisiae (coded as SC 11, SC 12, and SC 21) in the preparation of budu. The whole experiment was repeated four times. The budus were tested for their probiotic properties (low pH, bile salts, hydrophobicity, and inhibition of pathogenic bacteria). The results showed that the three Saccharomyces cerevisiae survived in gastric juice and bile acid, exhibited good hydrophobicity, and could inhibit pathogenic bacteria, both gram-positive and negative pathogens. They were able to survive at pH 2 for 3 h (40.70 to 55.1%), at pH 2 for 5 h (35.25 to 46.88%), in 0.3% bile acid incubated for 3 h (69.69 to 86.56%), in 0.3% bile acid incubated for 5 h (82.22 to 88.18%) and hydrophobicity ability of 97.0 to 98.1%. The inhibition activity against pathogenic bacteria, that is, Escherichia coli was 2.50 to 3.81 mm, Staphylococcus aureus was 1.66 to 3.71 mm, and Salmonella enteritidis was 1.20 to 2.64 mm.
Collapse
|
17
|
Jung P, Mischo CE, Gunaratnam G, Spengler C, Becker SL, Hube B, Jacobs K, Bischoff M. Candida albicans adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence 2020; 11:1453-1465. [PMID: 33108253 PMCID: PMC7595616 DOI: 10.1080/21505594.2020.1836902] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans-related bloodstream infections are often associated with infected central venous catheters (CVC) triggered by microbial adhesion and biofilm formation. We utilized single-cell force spectroscopy (SCFS) and flow chamber models to investigate the adhesion behavior of C. albicans yeast cells and germinated cells to naïve and human blood plasma (HBP)-coated CVC tubing. Germinated cells demonstrated up to 56.8-fold increased adhesion forces to CVC surfaces when compared to yeast cells. Coating of CVCs with HBP significantly increased the adhesion of 60-min germinated cells but not of yeast cells and 30-min germinated cells. Under flow conditions comparable to those in major human veins, germinated cells displayed a flow directional-orientated adhesion pattern to HBP-coated CVC material, suggesting the germ tip to serve as the major adhesive region. None of the above-reported phenotypes were observed with germinated cells of an als3Δ deletion mutant, which displayed similar adhesion forces to CVC surfaces as the isogenic yeast cells. Germinated cells of the als3Δ mutant also lacked a clear flow directional-orientated adhesion pattern on HBP-coated CVC material, indicating a central role for Als3 in the adhesion of germinated C. albicans cells to blood exposed CVC surfaces. In the common model of C. albicans, biofilm formation is thought to be mediated primarily by yeast cells, followed by surface-triggered the formation of hyphae. We suggest an extension of this model in which C. albicans germ tubes promote the initial adhesion to blood-exposed implanted medical devices via the germ tube-associated adhesion protein Als3.
Collapse
Affiliation(s)
- Philipp Jung
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Clara E Mischo
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Gubesh Gunaratnam
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | | | - Sören L Becker
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI) , Jena, Germany.,Institute of Microbiology, Friedrich Schiller University , Jena, Germany
| | - Karin Jacobs
- Experimental Physics, Saarland University , Saarbrücken, Germany.,Max Planck School Matter to Life , Heidelberg, Jahnstr. 29, D-69120, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| |
Collapse
|
18
|
The contest of microbial pigeon neighbors: Interspecies competition between Serratia marcescens and the human pathogen Cryptococcus neoformans. Fungal Biol 2020; 124:629-638. [PMID: 32540186 DOI: 10.1016/j.funbio.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
Abstract
In nature, microorganisms often exhibit competitive behavior for nutrients and limited space, allowing them to alter the virulence determinants of pathogens. The human pathogenic yeast Cryptococcus neoformans can be found organized in biofilms, a complex community composed of an extracellular matrix which confers protection against predation. The aim of this study was to evaluate and characterize antagonistic interactions between two cohabiting microorganisms: C. neoformans and the bacteria Serratia marcescens. The interaction of S. marcescens with C. neoformans expressed a negative effect on biofilm formation, polysaccharide capsule, production of urease, and melanization of the yeast. These findings evidence that competition in mixed communities can result in dominance by one species, with direct impact on the physiological modulation of virulence determinants. Such an approach is key for understating the response of communities to the presence of competitors and, ultimately, rationally designing communities to prevent and treat certain diseases.
Collapse
|
19
|
Song S, Sun X, Meng L, Wu Q, Wang K, Deng Y. Antifungal activity of hypocrellin compounds and their synergistic effects with antimicrobial agents against Candida albicans. Microb Biotechnol 2020; 14:430-443. [PMID: 32510867 PMCID: PMC7936304 DOI: 10.1111/1751-7915.13601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a common human fungal pathogen. The previous study revealed that quinone compounds showed antimicrobial activity against C. albicans by inhibiting cell growth. However, it was unclear whether quinones have other antifungal effects against C. albicans in addition to fungicidal effects. In this study, we assessed the inhibitory activity of a total of 25 quinone compounds against C. albicans morphological transition, which is essential for the pathogenicity of C. albicans. Several quinones exhibited strong inhibition of mycelium formation by C. albicans SC5314. Three leading compounds, namely hypocrellins A, B and C, also exhibited marked attenuation of C. albicans SC5314 virulence in both human cell lines and mouse infection models. These three compounds significantly suppressed the proliferation of C. albicans SC5314 cells in a mouse mucosal infection model. Intriguingly, hypocrellins not only attenuated the cytotoxicity of a nystatin-resistant C. albicans strain but also showed excellent synergistic effects with antifungal agents against both wild-type C. albicans SC5314 and the drug-resistant mutant strains. In addition, hypocrellins A, B and C interfered with the biological functions and virulence of various clinical Candida species, suggesting the promising potential of these compounds for development as new therapeutic agents against infections caused by Candida pathogens.
Collapse
Affiliation(s)
- Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuyun Sun
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Meng
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qianhua Wu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ke Wang
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
20
|
Khalique A, Zeng D, Shoaib M, Wang H, Qing X, Rajput DS, Pan K, Ni X. Probiotics mitigating subclinical necrotic enteritis (SNE) as potential alternatives to antibiotics in poultry. AMB Express 2020; 10:50. [PMID: 32172398 PMCID: PMC7072080 DOI: 10.1186/s13568-020-00989-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Subclinical necrotic enteritis (SNE) caused by Clostridium perfringens (CP), is an important disease in chickens, which causes huge economic losses by damaging the intestinal mucosa, decreasing digestion and absorption of nutrients. Use of antibiotics at a sub-therapeutic level as antimicrobial growth promoters in poultry feed prevents the birds from SNE and improves growth. Due to the ban on the use of antibiotics in 2006 as antimicrobial growth promoters have led to the reemergence of the disease. Worldwide numerous studies have been carried out to investigate the alternatives to antibiotics for the prevention of SNE. Possible alternatives to control SNE include probiotics, prebiotics, bacteriophages, essential oils, organic acids, secondary metabolites and other microbial products. Currently, probiotics are most extensively used in poultry production as an alternative to antibiotics. This review summarizes recent insights and experimental evidence on the use of different microorganisms like Bacillus, Lactic acid bacteria, Bifidobacteria, Enterococcus, yeast, etc. as valuable probiotics for prevention of SNE and potential molecular mechanisms responsible for ameliorating effects of probiotics against SNE.
Collapse
|
21
|
Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res 2020; 29:1478-1494. [PMID: 31467028 PMCID: PMC6724677 DOI: 10.1101/gr.243147.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
The yeast Saccharomyces boulardii has been used worldwide as a popular, commercial probiotic, but the basis of its probiotic action remains obscure. It is considered conspecific with budding yeast Saccharomyces cerevisiae, which is generally used in classical food applications. They have an almost identical genome sequence, making the genetic basis of probiotic potency in S. boulardii puzzling. We now show that S. boulardii produces at 37°C unusually high levels of acetic acid, which is strongly inhibitory to bacterial growth in agar-well diffusion assays and could be vital for its unique application as a probiotic among yeasts. Using pooled-segregant whole-genome sequence analysis with S. boulardii and S. cerevisiae parent strains, we succeeded in mapping the underlying QTLs and identified mutant alleles of SDH1 and WHI2 as the causative alleles. Both genes contain a SNP unique to S. boulardii (sdh1F317Y and whi2S287*) and are fully responsible for its high acetic acid production. S. boulardii strains show different levels of acetic acid production, depending on the copy number of the whi2S287* allele. Our results offer the first molecular explanation as to why S. boulardii could exert probiotic action as opposed to S. cerevisiae. They reveal for the first time the molecular-genetic basis of a probiotic action-related trait in S. boulardii and show that antibacterial potency of a probiotic microorganism can be due to strain-specific mutations within the same species. We suggest that acquisition of antibacterial activity through medium acidification offered a selective advantage to S. boulardii in its ecological niche and for its application as a probiotic.
Collapse
|
22
|
Saccharomyces boulardii inhibits the expression of pro-inflammatory cytokines and inducible nitric oxide synthase genes in the colonic mucosa of rats experimentally-infected with Blastocystis subtype-3 cysts. Parasitology 2019; 146:1532-1540. [PMID: 31109390 DOI: 10.1017/s0031182019000696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Blastocystis spp. is the most frequent infectious unicellular, luminal parasite in all species of animals and humans. It has been linked to diarrhoea and irritable bowel syndrome. Saccharomyces boulardii (Sb) is a widely used probiotic that previously showed efficacy against several intestinal pathogens. The aim of this study was to investigate the therapeutic role of Sb on Blastocystis spp. Methods: Five groups of Blastocystis subtype-3 infected rats were treated with either live Sb alone, metronidazole (MTZ) alone, Sb extract, both Sb and MTZ, or placebo-treated besides the noninfected control group. Assessment of treatment effectiveness was done by study of parasitological cure rate, histopathological effect and analysis of the colonic mucosal level of mRNAs expressions for the proinflammatory cytokines interleukin-6 (IL-6), IL-8, tumour necrosis factor alpha (TNF-α) and Inducible nitric oxide synthase (iNOS) by real-time reverse transcription-polymerase chain reaction (real-time RT-PCR). Results showed that live Sb significantly improved the histological characteristics and decreased the cytokines and iNOS in the colonic mucosa. Co-administration of live Sb together with MTZ gave a better effect than other treatments and had early efficacy and revealed a 100% reduction of the parasite stages from both the stool and intestinal wash fluid.
Collapse
|
23
|
Czerucka D, Rampal P. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World J Gastroenterol 2019; 25:2188-2203. [PMID: 31143070 PMCID: PMC6526157 DOI: 10.3748/wjg.v25.i18.2188] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/21/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023] Open
Abstract
The yeast Saccharomyces boulardii CNCM I-745 is one of the probiotics recommended for the prevention of antibiotic-associated diarrhea. Studies conducted in vivo and in vitro demonstrated that in the case of infectious diseases there are two potential sites of action of Saccharomyces boulardii CNCM I-745: (1) An action on enteropathogenic microorganisms (adhesion of bacteria and their elimination or an effect on their virulence factors: Toxins, lipopolysaccharide, etc.); and (2) a direct action on the intestinal mucosa (trophic effects, effects on epithelial reconstitution, anti-secretory effects, anti-inflammatory, immunomodulators). Oral administration of Saccharomyces boulardii CNCM I-745 to healthy subjects does not alter their microbiota. However, in the case of diseases associated with the use of antibiotics or chronic diarrhea, Saccharomyces boulardii CNCM I-745 can restore the intestinal microbiota faster. The interaction of Saccharomyces boulardii CNCM I-745 with the innate immune system have been recently demonstrated thus opening up a new therapeutic potential of this yeast in the case of diseases associated with intestinal infections but also other pathologies associated with dysbiosis such as inflammatory diseases.
Collapse
Affiliation(s)
- Dorota Czerucka
- Department of Human Health, Division of Ecosystems and Immunity, Center Scientific of Monaco, Monaco MC98000, Monaco
| | | |
Collapse
|
24
|
Abstract
The effects of diversity of the gut microbiome on inflammation have centered mainly on bacterial flora. Recent research has implicated fungal species and their interactions with other organisms in the inflammatory process. New ways to restore microbial balance in the gut are being explored. Our goal was to identify beneficial probiotic strains that would antagonize these fungal and bacterial pathogens that are elevated in the inflamed gut, and which also have antibiofilm activity. Fungus-bacterium correlation analysis allowed us to identify candidate probiotic species that can antagonize microbial pathogens, which we subsequently incorporated into a novel probiotic formulation. Amylase, which is known to have some antibiofilm activity, was also added to the probiotic mixture. This novel probiotic may have utility for the management of inflammatory bowel diseases by disrupting polymicrobial biofilm formation. Dysbiosis of the gut microbiome has been implicated in inflammatory bowel diseases. We have shown that levels of Candida tropicalis, along with those of Escherichia coli and Serratia marcescens, are significantly elevated in Crohn’s disease (CD) patients. Here, we evaluated the ability of a novel probiotic to prevent and treat polymicrobial biofilms (PMB) formed by C. tropicalis with E. coli and S. marcescens. Since Candida albicans has been reported to be elevated in CD patients, we investigated the interactions of C. albicans with these bacterial species in biofilm formation. We determined whether the interaction between Candida spp. and bacteria is specific by using Trichosporon inkin and Saccharomyces fibuligera as comparators. Additionally, the effects of probiotics on C. albicans germination and biofilm formation were determined. To determine the ability of the probiotic to prevent or treat mature biofilms, probiotic filtrate was added to the PMB at early (prevention) and mature (treatment) phases. Biofilm thickness and architecture were assessed by confocal scanning laser microscopy. The effects of the probiotic on germination were evaluated in the presence of serum. Exposure of C. tropicalis PMB to probiotic filtrate reduced biofilm matrix, decreased thickness, and inhibited hyphal formation. We showed that C. albicans or C. tropicalis formed significantly thicker PMB than control biofilms, indicating that this interaction is Candida specific. Treatment with probiotic filtrate inhibited C. albicans germination and prevented/treated C. albicans PMB. The designed probiotic may have utility in the management of biofilm-associated gastrointestinal diseases such as Crohn’s and colorectal cancer.
Collapse
|
25
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
26
|
Lohith K, Anu-Appaiah KA. Antagonistic effect of Saccharomyces cerevisiae KTP and Issatchenkia occidentalis ApC on hyphal development and adhesion of Candida albicans. Med Mycol 2019; 56:1023-1032. [PMID: 29340656 DOI: 10.1093/mmy/myx156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
The morphological transition from yeast to a hyphal form, as well as the adhesion capability to the gastrointestinal tract, are implicated virulent determinant in Candida albicans and could be potential targets for prevention of the opportunistic pathogen. Based on this rationale, two yeast strains Saccharomyces cerevisiae KTP and Issatchenkia occidentalis ApC along with reference strain Saccharomyces boulardii NCDC 363 were screened for the probiotic potential. Characters like pH, temperature, bile, simulated gastrointestinal juice tolerance tests, and Caco-2 cell line adhesion assay were determined in the present study. Further, the evaluation of its impact on C. albicans morphological transition and adhesion was assessed using microtitre germ tube test. In terms of probiotic characteristics, both the strains were tolerant to pH 2.5 and the presence of bile (0.3 to 0.6%) with an optimum growth temperature of 37°C. The strain KTP was also resistant to simulated gastric and intestinal juices as compared to control (13% and 41%, respectively) and NCDC 363 (55% and 35%, respectively). In contrast, both the yeasts had reduced adhesiveness to Caco-2 monolayer. Candida virulence in in vitro systems indicated that treatment of live probiotic yeast cells (108 ml) effectively reduced the filamentation and adhesion of C. albicans. The S. cerevisiae KTP had a profound effect on the hyphal development and adhesion when compared to the ApC and NCDC 363. The strain significantly reduced (P < .05) the hyphal growth in co-cultivated (93% and 94%, respectively) and pre-existing hyphae (54% and 68%) of strains C. albicans 183 and 1151. Isolates KTP and ApC also reduced the adhesion (≈ 22% and 41%, respectively) and transition of blastoconidia at two hours of incubation in abiotic surface. This study provides knowledge on the effect of potential probiotic yeasts such as Saccharomyces and non- Saccharomyces strains against virulence characteristic of Candida albicans.
Collapse
Affiliation(s)
- K Lohith
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru-570020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Food Technological Research Institute (CFTRI), Mysuru-570020, India
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru-570020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Food Technological Research Institute (CFTRI), Mysuru-570020, India
| |
Collapse
|
27
|
Sam QH, Yew WS, Seneviratne CJ, Chang MW, Chai LYA. Immunomodulation as Therapy for Fungal Infection: Are We Closer? Front Microbiol 2018; 9:1612. [PMID: 30090091 PMCID: PMC6068232 DOI: 10.3389/fmicb.2018.01612] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal disease (IFD) causes significant morbidity in immunocompromised patients due to their weakened immune system. Immunomodulatory therapy, in synergy with existing antifungal therapy, is an attractive option to enhance their immune system and aid clearance of these opportunistic pathogens. From a scientific and clinical perspective, we explore the immunotherapeutic options to augment standard antifungal drugs for patients with an IFD. We discuss the range of immunomodulatory therapies being considered in IFD - from cytokines, including G-CSF, GM-CSF, M-CSF, IFN-γ, and cytokine agonists, to cellular therapies, consisting of granulocyte transfusion, adoptive T-cell, CAR T-cell, natural killer cell therapies, and monoclonal antibodies. Adjunct pharmaceutical agents which augment the immunity are also being considered. Lastly, we explore the likelihood of the use of probiotics and manipulation of the microbiome/mycobiome to enhance IFD treatment outcomes.
Collapse
Affiliation(s)
- Qi Hui Sam
- Division of Infectious Diseases, University Medicine Cluster – National University Health System, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster – National University Health System, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
28
|
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2018; 1435:57-78. [DOI: 10.1111/nyas.13739] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry; Munich Germany
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
29
|
Effect of Saccharomyces boulardii Extract on SAP2 Gene Expression and Antifungal Susceptibility of Candida albicans. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.59891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Tomičić Z, Zupan J, Matos T, Raspor P. Probiotic yeast Saccharomyces boulardii (nom. nud.) modulates adhesive properties of Candida glabrata. Med Mycol 2016; 54:835-45. [PMID: 27250926 DOI: 10.1093/mmy/myw026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/20/2016] [Indexed: 12/13/2022] Open
Abstract
Following the widespread use of immunosuppressive therapy together with broad-spectrum antimycotic therapy, the frequency of mucosal and systemic infections caused by the pathogenic yeast Candida glabrata has increased in the past decades. Due to the resistance of C. glabrata to existing azole drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. In this study, we investigated the effect of the probiotic yeast Saccharomyces boulardii (nom. nud.) on C. glabrata adhesion at different temperatures, pH values, and in the presence of fluconazole, itraconazole and amphotericin B. We also studied the adhesion of C. glabrata co-culture with Candida krusei, Saccharomyces cerevisiae, two bacterial probiotics Lactobacillus rhamnosus and Lactobacillus casei The method used to assess adhesion was crystal violet staining. Our results showed that despite the nonadhesiveness of S. boulardii cells, this probiotic significantly affected the adherence ability of C. glabrata This effect was highly dependent on C. glabrata strain and was either antagonistic or synergistic. Regarding the extrinsic factors, temperature did not indicate any significant influence on this S. boulardii modulatory effect, while at high pH and at increased concentrations of antimycotics, S. boulardii did not manage to repress the adhesion of C. glabrata strains. The experiments of C. glabrata co-cultures with other species showed that the adhesiveness of two separate cultures could not be used to predict the adhesiveness of their co-culture.
Collapse
Affiliation(s)
- Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jure Zupan
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia (the university in the time of experiments)
| | - Tadeja Matos
- Institute of microbiology and immunology, Medical faculty, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Peter Raspor
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia (the university in the time of experiments)
| |
Collapse
|
31
|
Metabolic Engineering of Probiotic Saccharomyces boulardii. Appl Environ Microbiol 2016; 82:2280-2287. [PMID: 26850302 DOI: 10.1128/aem.00057-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 01/23/2023] Open
Abstract
Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii.
Collapse
|
32
|
Abstract
The prevalence of inflammatory bowel diseases (IBD) has been steadily increasing since 1960. They are widespread throughout Europe, North America, China, and Japan and are emerging as a global disease. The equilibrium among epithelial cells, the immune system, and the related microbiota seems to be paramount in ensuring the absence of these IBD. The role of bacteria in the setting of the gut microbiota has been thoroughly documented, but the role of fungi, which are less abundant, needs to be investigated. Our understanding of the fungal microbiota composition and its impact on IBD has greatly increased in the past 8 years. In this review, we compiled data obtained for the composition of fungal gut microbiota. Special attention was paid to the various effects of this microbial community on the IBD, i.e., the mechanisms and immune pathways involved in these interactions.
Collapse
|
33
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
34
|
Hirschfeld J. Dynamic interactions of neutrophils and biofilms. J Oral Microbiol 2014; 6:26102. [PMID: 25523872 PMCID: PMC4270880 DOI: 10.3402/jom.v6.26102] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. OBJECTIVE/DESIGN In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. RESULTS/CONCLUSION Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.
Collapse
Affiliation(s)
- Josefine Hirschfeld
- Center for Dental and Oral Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstraße, 17 D-53111 Bonn, Germany;
| |
Collapse
|
35
|
Pu L, Jingfan F, Kai C, Chao-an L, Yunjiang C. Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeastKloeckera apiculatafor the control of blue mold on citrus. FEMS Yeast Res 2014; 14:536-46. [DOI: 10.1111/1567-1364.12139] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liu Pu
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
- Key Laboratory of Pomology; Anhui Agricultural University; Hefei China
| | - Fang Jingfan
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| | - Chen Kai
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| | - Long Chao-an
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| | - Cheng Yunjiang
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
36
|
A. Ishijima S, Hayama K, Ninomiya K, Iwasa M, Yamazaki M, Abe S. Protection of Mice from Oral Candidiasis by Heat-killed Enterococcus faecalis, possibly through its Direct Binding to Candida albicans. Med Mycol J 2014; 55:E9-E19. [DOI: 10.3314/mmj.55.e9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Abstract
OBJECTIVES To compare the prevalence of candidemia and candiduria before and after the introduction of routine use of probiotics in children who received broad-spectrum antibiotics in a PICU. DESIGN Retrospective "before and after" study. SETTING A 12-bed PICU of a teaching hospital in India. PATIENTS Children 3 months to 12 years old, admitted to the PICU over two 9 months' time periods, who received broad-spectrum antibiotics for more than 48 hours. INTERVENTIONS Three hundred forty-four patients enrolled between November 2008 and July 2009 after the introduction of routine use of probiotics served as the "probiotic group"; they had received one sachet twice a day of a probiotic mix (EUGI [Wallace Pharma, Goa, India] containing Lactobacillus acidophillus, Lactobacillus rhamnosum, Bifidobacterium longum, Bifidobacterium bifidum, Saccharomyces boulardii, and Streptococcus thermophilus) for 7 days. Three hundred seventy-six children enrolled between February 2007 and October 2007 served as "controls." Blood was sent for bacterial and fungal cultures if clinically indicated and urine catheter/bag specimen was submitted for bacterial and fungal culture twice a week as per unit's protocol. MEASUREMENTS AND MAIN RESULTS Primary outcome was growth of Candida in blood (candidemia), and secondary outcomes were growth of Candida in urine (candiduria), nosocomial bloodstream infections, and urinary tract infections. Data were retrieved from the case records. Candidemia was seen in four of 344 patients (1.2%) in the probiotic group and in 14 of 376 (3.7%) in the control group (relative risk, 0.31; 95% CI, 0.10-0.94; p = 0.03). Candiduria was noted in 37 of 344 patients (10.7%) in the probiotic group and 83 of 376 (22%) in the control group (relative risk, 0.48; 95% CI, 0.34-0.7; p = 0.0001). The prevalence of nosocomial bloodstream infection and urinary tract infection in the probiotic and control groups was 20.3% and 26% (p = 0.07) and 14.2% and 19.1% (p = 0.08), respectively. CONCLUSIONS Routine use of a mix of probiotics in patients who receive broad-spectrum antibiotics could be a useful strategy to reduce the prevalence of candidemia and candiduria in the PICU.
Collapse
|
38
|
Tian J, Weng LX, Zhang YQ, Wang LH. BDSF inhibits Candida albicans adherence to urinary catheters. Microb Pathog 2013; 64:33-8. [DOI: 10.1016/j.micpath.2013.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
|
39
|
Demirel G, Celik IH, Erdeve O, Saygan S, Dilmen U, Canpolat FE. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants. Eur J Pediatr 2013; 172:1321-6. [PMID: 23703468 DOI: 10.1007/s00431-013-2041-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/09/2013] [Indexed: 12/30/2022]
Abstract
AIM This study aims to compare the efficacy of orally administered Saccharomyces boulardii versus nystatin in prevention of fungal colonization and invasive fungal infections in very low birth weight infants. METHOD A prospective, randomized comparative study was conducted in preterm infants with a gestational age of ≤ 32 weeks and birth weight of ≤ 1,500 g. They were randomized into two groups, to receive S. boulardii or nystatin. Skin and stool cultures were performed for colonization and blood cultures for invasive infections, weekly. RESULTS A total of 181 infants were enrolled (S. boulardii group, n = 91; nystatin group, n = 90). Fungal colonization of the skin (15.4 vs 18.9 %, p = 0.532) and the stool (32.2 vs 27 %, p = 0.441) were not different between the probiotic and nystatin groups. Two patients had Candida-positive blood culture in the nystatin group whereas none in the probiotic group. Feeding intolerance, clinical sepsis, and number of sepsis attacks were significantly lower in the probiotics group than in the nystatin group. CONCLUSION Prophylactic S. boulardii supplementation is as effective as nystatin in reducing fungal colonization and invasive fungal infection, more effective in reducing the incidence of clinical sepsis and number of sepsis attacks and has favorable effect on feeding intolerance.
Collapse
Affiliation(s)
- Gamze Demirel
- Division of Neonatology, Samsun Maternity and Child Health Hospital, Samsun, Turkey,
| | | | | | | | | | | |
Collapse
|
40
|
Chemical composition of the cell wall of probiotic and brewer’s yeast in response to cultivation medium with glycerol as a carbon source. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2016-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Kumar S, Singhi S. Role of probiotics in prevention of Candida infection in critically ill children. Mycoses 2012; 56:204-11. [PMID: 23176162 DOI: 10.1111/myc.12021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Candidiasis accounts for 10-20% of bloodstream infections in paediatric intensive care units (PICUs) and a significant increase in morbidity, mortality, and length of hospital stay. Enteric colonisation by Candida species is one of the most important risk factor for invasive candidiasis. The local defence mechanisms may be altered in critically ill patients, thus facilitating Candida overgrowth and candidiasis. Systemic antifungals have been proven to be effective in reducing fungal colonisation and invasive fungal infections, but their use is not without harms. Early restoration or maintenance of intestinal microbial flora using probiotics could be one of the important tools for reducing Candida infection. A few studies have demonstrated that probiotics are able to prevent Candida growth and colonisation in neonates, whereas their role in preventing invasive candidiasis in such patients is still unclear. Moreover, there are no published data on role of probiotics supplementation in the prevention of candidiasis in critically ill children beyond neonatal period. There are gap in our knowledge regarding efficacy, cost effectiveness, risk-benefit potential, optimum dose, frequency and duration of treatment of probiotics in prevention of fungal infections in critically ill children. Studies exploring and evaluating the role of probiotics in prevention of Candida infection in critically ill children are needed.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
42
|
Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp. Appl Microbiol Biotechnol 2012; 97:3141-8. [DOI: 10.1007/s00253-012-4549-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
43
|
Modulation of morphogenesis in Candida albicans by various small molecules. EUKARYOTIC CELL 2011; 10:1004-12. [PMID: 21642508 DOI: 10.1128/ec.05030-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections.
Collapse
|
44
|
Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 2010; 5:e12050. [PMID: 20706577 PMCID: PMC2919387 DOI: 10.1371/journal.pone.0012050] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/10/2010] [Indexed: 12/11/2022] Open
Abstract
Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation.
Collapse
|
45
|
Murzyn A, Krasowska A, Augustyniak D, Majkowska-Skrobek G, Łukaszewicz M, Dziadkowiec D. The effect of Saccharomyces boulardii on Candida albicans-infected human intestinal cell lines Caco-2 and Intestin 407. FEMS Microbiol Lett 2010; 310:17-23. [PMID: 20629753 DOI: 10.1111/j.1574-6968.2010.02037.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Saccharomyces boulardii is a probiotic strain that confers many benefits to human enterocolopathies and is used against a number of enteric pathogens. Candida albicans is an opportunistic pathogen that causes intestinal infections in immunocompromised patients, and after translocation into the bloodstream, is responsible for serious systemic candidiasis. In this study, we investigated the influence of S. boulardii cells and its culture extract on C. albicans adhesion to Caco-2 and Intestin 407 cell lines. We also tested the proinflammatory IL-1beta, IL-6 and IL-8 cytokine expression by C. albicans-infected Caco-2 cells, using real-time RT-PCR. We found that both S. boulardii and its extract significantly inhibited C. albicans adhesion to epithelial cell lines. The IL-8 gene expression by C. albicans-infected Caco-2 cells was suppressed by the addition of S. boulardii extract. Our results indicate that S. boulardii affects C. albicans adhesion and reduces cytokine-mediated inflammatory host response.
Collapse
Affiliation(s)
- Anna Murzyn
- Faculty of Biotechnology, University of Wrocław, ul. Przybyszewskiego 63-77, Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
46
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|