1
|
Dias SR, Adami L, Batista NN, Martinez SJ, Bressani APP, Dias DR, Schwan RF. Metataxonomic, chemical, and sensory aspects of cocoa fermentation using single hybrids and combinations of hybrids and their effects on chocolate quality. Food Res Int 2025; 210:116410. [PMID: 40306807 DOI: 10.1016/j.foodres.2025.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/06/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Extensive research has been conducted on cocoa fermentation in single hybrids. However, comparisons between hybrid combinations and single hybrids are limited. This study investigated cacao fermentation using a hybrid combination (PS 1319, PH 16, BN 34, CEPEC 2002, SJ02, CCN 10, and Ipiranga) and SJ02 hybrid alone. Microbial diversity was determined by next-generation sequencing (NGS), organic acids, carbohydrates, and alcohols by HPLC, volatile compounds by GC/MS, and the sensory analysis by acceptance test and Check-All-That-Apply (CATA). The NGS analysis identified 64 fungal species and 60 bacterial species with Hanseniaspora uvarum, Hanseniaspora opuntiae, Pichia manshurica, Pichia kluyveri, and Saccharomyces sp. as the dominant yeasts. Carbohydrates were metabolized entirely in the hybrid combination by the end of fermentation. Higher ethanol concentrations were found in SJ02 at 72 h. As the fermentation progressed, citric acid concentrations decreased, while lactic and acetic acid concentrations increased by 72 h on SJ02 fermentation. Acetobacter sp. was strongly correlated with acetic acid production in hybrid combination fermentation. SJ02 showed higher concentrations of volatile compounds, with fatty acids being the most abundant class, followed by esters. The alcohol 2-nonanol was detected only in the hybrid combination fermentation. SJ02 chocolate was attributed to higher taste, texture, and overall score. The descriptors bitter and citric acidity were more perceived in chocolates from the hybrid combination, while the earthy descriptor was more evident in the SJ02 hybrid. Thus, fermentations using a hybrid combination and the SJ02 hybrid allow the production of fine chocolates with varied sensory profiles.
Collapse
Affiliation(s)
- Sandy Rodrigues Dias
- Department of Food Science, Federal University of Lavras, CEP, 37203-202, Lavras, MG, Brazil
| | - Luiza Adami
- Interdepartmental Genetics Program, Kansas State University, Manhattan, KS 66506; 785-532-1330 Kansas, United States; Department of Biology, Federal University of Lavras, CEP, 37203-202, Lavras, MG, Brazil
| | - Nádia Nara Batista
- Department of Biology, Federal University of Lavras, CEP, 37203-202, Lavras, MG, Brazil
| | | | | | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, CEP, 37203-202, Lavras, MG, Brazil.
| | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras, CEP, 37203-202, Lavras, MG, Brazil.
| |
Collapse
|
2
|
Siesto G, Pietrafesa R, Alberico G, Tedesco F, Cardinale M, Romano P, Capece A. Culturable yeast community associated with grape must and honey bees sampled from apiaries located in the vineyards. J Appl Microbiol 2024; 135:lxae160. [PMID: 38991988 DOI: 10.1093/jambio/lxae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
AIM In this study, we investigated culturable yeast community, present in grape must sampled from vineyards with apiaries on the borders, and in honey bees collected in these apiaries. METHODS AND RESULTS To this aim, yeasts isolated from spontaneously fermented grapes randomly collected in two vineyards (P1 and P2) with apiaries on the borders (A1 and A2) were compared to those isolated from spontaneously fermented grapes collected from a vineyard without apiary (P4). At the same time, yeast community was analyzed on bees collected in each apiary placed in the vineyards, in comparison to yeasts isolated from an apiary (A3) located far from the vineyards. The analysis was performed for two consecutive years (2021 and 2022). The isolated yeasts were identified by restriction analysis of amplified ITS region, followed by sequencing of ITS fragment.Our research showed that the presence of apiaries seems to increase yeast counts of grape must, in particular of Saccharomyces cerevisiae; furthermore, the permanence of apiaries in the vineyards allowed the recovering of these yeasts also from bees. CONCLUSIONS Our findings seem to corroborate the role of bees as vectors and reservoirs of oenologically relevant yeasts, such as a source of non-conventional yeasts with potential biotechnological applications.
Collapse
Affiliation(s)
- Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Grazia Alberico
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Tedesco
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP6 Lecce-Monteroni, 73100 Lecce, Italy
| | - Patrizia Romano
- Dipartimento di Economia, Universitas Mercatorum, 00186 Roma, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Streule S, Freimüller Leischtfeld S, Galler M, Motzer D, Poulose-Züst M, Miescher Schwenninger S. Variations in Ecuadorian Cocoa Fermentation and Drying at Two Locations: Implications for Quality and Sensory. Foods 2023; 13:137. [PMID: 38201165 PMCID: PMC10778537 DOI: 10.3390/foods13010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
In Ecuador, various processes are applied during cocoa post-harvesting. This study, therefore, explored fermentation parameters across two locations with 2-7 independent runs, focusing on temperature, microbial counts, pH during fermentation and drying, and their impact on cocoa bean quality. Factors including fermentation devices (jute bags, plastic bags, and wooden boxes), pre-drying, turning during fermentation, fermentation duration, and drying temperature were investigated. Fermenting in plastic bags without pre-drying or turning and fermenting in jute bags for only 40 ± 2.0 h yielded low maximal fermentation temperatures Tmax (31.1 ± 0.4 °C and 37.6 ± 1.8 °C), leading to bitter, astringent, woody, and earthy cocoa liquor. Longer fermentation (63 ± 6 h) in wooden boxes with turning (Wt) and in jute bags with pre-drying and turning (Jpt) achieved the highest Tmax of 46.5 ± 2.0 °C, and a more acidic cocoa liquor, particularly in Wt (both locations) and Jpt (location E). Therefore, it is recommended to ferment for a minimum duration from day 1 to 4 (63 ± 6 h), whether using plastic bags (with mandatory pre-drying) or jute bags (with or without pre-drying or turning). Furthermore, this study underscores the risks associated with excessively high drying temperatures (up to 95.2 ± 13.7 °C) and specific dryer types, which can falsify cut-tests and introduce unwanted burnt-roasted off-flavors in the cocoa liquor.
Collapse
Affiliation(s)
- Stefanie Streule
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Food Biotechnology Research Group, 8820 Wädenswil, Switzerland; (S.S.); (S.F.L.); (D.M.); (M.P.-Z.)
| | - Susette Freimüller Leischtfeld
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Food Biotechnology Research Group, 8820 Wädenswil, Switzerland; (S.S.); (S.F.L.); (D.M.); (M.P.-Z.)
| | - Martina Galler
- Lindt & Sprüngli, Seestrasse 204, 8802 Kilchberg, Switzerland;
| | - Dominik Motzer
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Food Biotechnology Research Group, 8820 Wädenswil, Switzerland; (S.S.); (S.F.L.); (D.M.); (M.P.-Z.)
| | - Monja Poulose-Züst
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Food Biotechnology Research Group, 8820 Wädenswil, Switzerland; (S.S.); (S.F.L.); (D.M.); (M.P.-Z.)
| | - Susanne Miescher Schwenninger
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Food Biotechnology Research Group, 8820 Wädenswil, Switzerland; (S.S.); (S.F.L.); (D.M.); (M.P.-Z.)
| |
Collapse
|
4
|
Van de Voorde D, Díaz-Muñoz C, Hernandez CE, Weckx S, De Vuyst L. Yeast strains do have an impact on the production of cured cocoa beans, as assessed with Costa Rican Trinitario cocoa fermentation processes and chocolates thereof. Front Microbiol 2023; 14:1232323. [PMID: 37621398 PMCID: PMC10445768 DOI: 10.3389/fmicb.2023.1232323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiological and metabolic outcomes of good cocoa fermentation practices can be standardized and influenced through the addition of starter culture mixtures composed of yeast and bacterial strains. The present study performed two spontaneous and 10 starter culture-initiated (SCI) cocoa fermentation processes (CFPs) in Costa Rica with local Trinitario cocoa. The yeast strains Saccharomyces cerevisiae IMDO 050523, Hanseniaspora opuntiae IMDO 020003, and Pichia kudriavzevii IMDO 060005 were used to compose starter culture mixtures in combination with the lactic acid bacterium strain Limosilactobacillus fermentum IMDO 0611222 and the acetic acid bacterium strain Acetobacter pasteurianus IMDO 0506386. The microbial community and metabolite dynamics of the cocoa pulp-bean mass fermentation, the metabolite dynamics of the drying cocoa beans, and the volatile organic compound (VOC) profiles of the chocolate production were assessed. An amplicon sequence variant approach based on full-length 16S rRNA gene sequencing instead of targeting the V4 region led to a highly accurate monitoring of the starter culture strains added, in particular the Liml. fermentum IMDO 0611222 strain. The latter strain always prevailed over the background lactic acid bacteria. A similar approach, based on the internal transcribed spacer (ITS1) region of the fungal rRNA transcribed unit, was used for yeast strain monitoring. The SCI CFPs evolved faster when compared to the spontaneous ones. Moreover, the yeast strains applied did have an impact. The presence of S. cerevisiae IMDO 050523 was necessary for successful fermentation of the cocoa pulp-bean mass, which was characterized by the production of higher alcohols and esters. In contrast, the inoculation of H. opuntiae IMDO 020003 as the sole yeast strain led to underfermentation and a poor VOC profile, mainly due to its low competitiveness. The P. kudriavzevii IMDO 060005 strain tested in the present study did not contribute to a richer VOC profile. Although differences in VOCs could be revealed in the cocoa liquors, no significant effect on the final chocolates could be obtained, mainly due to a great impact of cocoa liquor processing during chocolate-making. Hence, optimization of the starter culture mixture and cocoa liquor processing seem to be of pivotal importance.
Collapse
Affiliation(s)
- Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Cardoso Gimenes D, Ono MA, de Souza Suguiura IM, Macagnan R, Sartori D, Borsato D, Pelegrinelli Fungaro MH, Ono EYS. Yeasts as sustainable biocontrol agents against ochratoxigenic Aspergillus species and in vitro optimization of ochratoxin A detoxification. J Appl Microbiol 2023; 134:lxad174. [PMID: 37537147 DOI: 10.1093/jambio/lxad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
AIMS The aims of this study were to evaluate the potential of Hanseniaspora opuntiae, Meyerozyma caribbica, and Kluyveromyces marxianus for in vitro biocontrol of Aspergillus ochraceus, A. westerdijkiae, and A. carbonarius growth, the ochratoxin A (OTA) effect on yeast growth, and yeast in vitro OTA detoxification ability using an experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration. METHODS AND RESULTS Predictive models were developed using an incomplete Box-Behnken experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration on OTA detoxification by the yeasts. The yeasts were able to inhibit fungal growth from 13% to 86%. Kluyveromyces marxianus was the most efficient in inhibiting the three Aspergillus species. Furthermore, high OTA levels (100 ng ml-1) did not affect yeast growth over 72 h incubation. The models showed that the maximum OTA detoxification under optimum conditions was 86.8% (H. opuntiae), 79.3% (M. caribbica), and 73.7% (K. marxianus), with no significant difference (P > 0.05) between the values predicted and the results obtained experimentally. CONCLUSION The yeasts showed potential for biocontrol of ochratoxigenic fungi and OTA detoxification, and the models developed are important tools for predicting the best conditions for the application of these yeasts as detoxification agents.
Collapse
Affiliation(s)
- Danielle Cardoso Gimenes
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Mario Augusto Ono
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | | | - Rafaela Macagnan
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Daniele Sartori
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | - Dionisio Borsato
- Department of Chemistry, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| | | | - Elisabete Yurie Sataque Ono
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, PR, 86057-970, Brazil
| |
Collapse
|
6
|
Ghisolfi R, Bandini F, Vaccari F, Bellotti G, Bortolini C, Patrone V, Puglisi E, Morelli L. Bacterial and Fungal Communities Are Specifically Modulated by the Cocoa Bean Fermentation Method. Foods 2023; 12:foods12102024. [PMID: 37238842 DOI: 10.3390/foods12102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cocoa bean fermentation is carried out in different production areas following various methods. This study aimed to assess how the bacterial and fungal communities were affected by box, ground or jute fermentation methods, using high-throughput sequencing (HTS) of phylogenetic amplicons. Moreover, an evaluation of the preferable fermentation method was carried out based on the microbial dynamics observed. Box fermentation resulted in higher bacterial species diversity, while beans processed on the ground had a wider fungal community. Lactobacillus fermentum and Pichia kudriavzevii were observed in all three fermentation methods studied. Moreover, Acetobacter tropicalis dominated box fermentation and Pseudomonas fluorescens abounded in ground-fermented samples. Hanseniaspora opuntiae was the most important yeast in jute and box, while Saccharomyces cerevisiae prevailed in the box and ground fermentation. PICRUST analysis was performed to identify potential interesting pathways. In conclusion, there were noticeable differences between the three different fermentation methods. Due to its limited microbial diversity and the presence of microorganisms that guarantee good fermentation, the box method was found to be preferable. Moreover, the present study allowed us to thoroughly explore the microbiota of differently treated cocoa beans and to better understand the technological processes useful to obtain a standardized end-product.
Collapse
Affiliation(s)
- Rebecca Ghisolfi
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Bandini
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Filippo Vaccari
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Bellotti
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Cristian Bortolini
- Soremartec srl (Ferrero Group), Piazzale P. Ferrero 1, 12051 Alba, Italy
| | - Vania Patrone
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
7
|
Nwaefuna AE, Boekhout T, Garcia-Aloy M, Vrhovsek U, Zhou N. Diversity of dung beetle-associated yeasts from pristine environments of Botswana. Yeast 2023; 40:182-196. [PMID: 37096317 DOI: 10.1002/yea.3852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Yeast-insect interactions are increasingly becoming an attractive source of discovery for previously unknown, unique, diverse, and industrially relevant yeast species. Despite a wealth of studies that have recently focused on yeasts in symbiotic association with Hymenopteran insects, yeasts associated with Coleopteran insects, such as lignocellulosic-rich dung-dependent beetles, remain poorly studied. Trends in yeast discovery suggest that species richness and diversity can be attributed to the ecological niche of the insect. Here, we considered the potential of dung beetles inhabiting the extreme environments of Botswana, characterized by desert-like conditions (semi-arid to arid and hot) as well as protected pristine environments, as possible attribute niches that can shape the extremophilic and diverse life history strategies of yeasts. We obtained a total of 97 phylogenetically diverse yeast isolates from six species of dung beetles from Botswana's unexplored environments, representing 19 species belonging to 11 genera. The findings suggest that the guts of dung beetles are a rich niche for non-Saccharomyces yeast species. Meyerozyma and Pichia were the most dominant genera associated with dung beetles, representing 55% (53 out of 97) of the yeast isolates in our study. Trichosporon and Cutaneotrichosporon genera represented 32% (31 out of 97) of the isolates. The remaining isolates belonged to Apiotrichum, Candida, Diutina, Naganishia, Rhodotorula, and Wickerhamiella genera (12 out of 97). We found out that about 62% (60 out of 97) of the isolates were potentially new species because of their low internal transcribed spacer (ITS) sequence similarity when compared to the most recent optimal species delineation threshold. A single isolate was unidentifiable using the ITS sequences. Using an in silico polymerase chain reaction-restriction fragment length polymorphism approach, we revealed that there was genetic diversity within isolates of the same species. Our results contribute to the knowledge and understanding of the diversity of dung beetle-associated yeasts.
Collapse
Affiliation(s)
- Anita E Nwaefuna
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Teun Boekhout
- Westerdijk Institute of Fungal Biodiversity, Utrecht, The Netherlands
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mar Garcia-Aloy
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
8
|
Díaz-Muñoz C, Van de Voorde D, Tuenter E, Lemarcq V, Van de Walle D, Soares Maio JP, Mencía A, Hernandez CE, Comasio A, Sioriki E, Weckx S, Pieters L, Dewettinck K, De Vuyst L. An in-depth multiphasic analysis of the chocolate production chain, from bean to bar, demonstrates the superiority of Saccharomyces cerevisiae over Hanseniaspora opuntiae as functional starter culture during cocoa fermentation. Food Microbiol 2023; 109:104115. [DOI: 10.1016/j.fm.2022.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
9
|
Screening of Yeasts Isolated from Baijiu Environments for Producing 3-Methylthio-1-propanol and Optimizing Production Conditions. Foods 2022; 11:foods11223616. [PMID: 36429207 PMCID: PMC9689521 DOI: 10.3390/foods11223616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
3-Methylthio-1-propanol (3-Met) is widely used as a flavoring substance and an essential aroma ingredient in many foods. Producing 3-Met by microbial transformation is green and eco-friendly. In the present study, one strain, YHM-G, which produced a high level of 3-Met, was isolated from the Baijiu-producing environment. Strain YHM-G was identified as Hyphopichia burtonii according to its morphological properties, physiological and biochemical characteristics, and ribosomal large subunit 26S rRNA gene D1/D2 domain sequence analysis. The optimal conditions for 3-Met production by YHM-G were obtained by single factor design, Plackett-Burman design, steepest ascent path design and response surface methodology as follows: 42.7 g/L glucose, pH 6, 0.9 g/L yeast extract, 6 g/L L-methionine (L-Met), culture temperature 28 °C, shaking speed 210 rpm, loading volume 50 mL/250 mL, inoculum size 0.5% (v/v), culturing period 48 h and 2.5 g/L Tween-80. Under these optimal conditions, the 3-Met production by strain YHM-G was 3.16 g/L, a value 88.1% higher than that before optimization. Strain YHM-G can also produce a variety of flavor compounds that are important for many foods. This strain thus has the potential to increase the abundance of 3-Met in some fermented foods and enhance their aroma profiles.
Collapse
|
10
|
Díaz-Muñoz C, Verce M, De Vuyst L, Weckx S. Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a West African fermented food population. iScience 2022; 25:105309. [PMID: 36304120 PMCID: PMC9593892 DOI: 10.1016/j.isci.2022.105309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Various yeast strains have been proposed as candidate starter cultures for cocoa fermentation, especially strains of Saccharomyces cerevisiae. In the current study, the genome of the cocoa strain S. cerevisiae IMDO 050523 was unraveled based on a combination of long- and short-read sequencing. It consisted of 16 nuclear chromosomes and a mitochondrial chromosome, which were organized in 20 contigs, with only two small gaps. A phylogenomic analysis of this genome together with another 105 S cerevisiae genomes, among which 20 from cocoa strains showed a geographical distribution of the latter, including S. cerevisiae IMDO 050523. Its genome clustered together with that of a West African fermented food population, indicating a wider adaptation to West African food niches than cocoa. Furthermore, S. cerevisiae IMDO 050523 contained genetic signatures involved in sucrose hydrolysis, pectin degradation, osmotolerance, and conserved amino acid changes in key ester-producing enzymes that could point toward specific niche adaptations.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium,Corresponding author
| |
Collapse
|
11
|
Taylor AJ, Cardenas-Torres E, Miller MJ, Zhao SD, Engeseth NJ. Microbes associated with spontaneous cacao fermentations - A systematic review and meta-analysis. Curr Res Food Sci 2022; 5:1452-1464. [PMID: 36119372 PMCID: PMC9478497 DOI: 10.1016/j.crfs.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chocolate is a product of the fermentation of cacao beans. Performed on-farm or at local cooperatives, these are spontaneous cacao fermentations (SCFs). To better understand SCFs, this study sought to identify SCF microbes, their interrelationships, and other key parameters that influence fermentation. This is important because differences in fermentation can have an impact on final product quality. In this study, a systematic data extraction was performed, searching for literature that identified microbes from SCFs. Each unique microbe, whether by location or by fermentation material, was extracted from the articles, along with parameters associated with fermentation. Data were collected and analyzed for three interactions: microbe-to-geography, microbe-to-fermentation method, and microbe-to-microbe. The goal was to attribute microbes to geographical locations, fermentation materials, or to other microbes. Statistically significant relationships will reveal target areas for future research. Over 1700 microbes (440 unique species) were identified across 60 articles. The top three countries represented are Brazil (22 articles, n = 612 microbes), the Ivory Coast (14 articles, n = 237), and Ghana (10 articles, n = 257). Several countries were far less, or never represented, and should be considered for future research. No specific relationship was identified with microbes to either geographical location or fermentation method. Using a Presence-Absence chart, 127 microbe-to-microbe interactions were identified as statistically significant. Data extraction into SCF research has revealed major gaps of knowledge for the cacao microbiome. By better understanding the cacao microbiome, researchers will be able to identify key microbes and fermentation parameters to better influence the fermentation.
Collapse
Affiliation(s)
- Alexander J. Taylor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, USA
| | | | - Michael J. Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, USA
| | - Nicki J. Engeseth
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
12
|
Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8070331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the fermentation of cocoa beans, the yeasts produce volatile organic compounds (VOCs). Through reactions associated with amino acid metabolism, yeasts generate important aroma precursors as acetate esters and fatty acid ethyl esters are essential in developing fruity flavors and aromas in the final product (usually chocolate). In addition, some yeasts may have pectinolytic and antifungal activity, which is desirable in the post-harvest process of cocoa. The main yeast species in cocoa fermentation are Saccharomyces cerevisiae, Pichia kudriavzevii, and Hanseniaspora opuntiae. These produce higher alcohols and acetyl-CoA to make acetate–esters, compounds that produce floral and fruity notes. However, there are still controversies in scientific reports because some mention that there are no significant differences in the sensory characteristics of the final product. Others mention that the fermentation of cocoa by yeast has a significant influence on improving the sensory attributes of the final product. However, using yeasts as starter cultures for cocoa bean fermentation is recommended to homogenize sensory attributes such as notes and flavors in chocolate.
Collapse
|
13
|
Vermote L, Verce M, Mozzi F, De Vuyst L, Weckx S. Microbiomes Associated With the Surfaces of Northern Argentinian Fruits Show a Wide Species Diversity. Front Microbiol 2022; 13:872281. [PMID: 35898900 PMCID: PMC9309516 DOI: 10.3389/fmicb.2022.872281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The fiber, vitamin, and antioxidant contents of fruits contribute to a balanced human diet. In countries such as Argentina, several tropical fruits are witnessing a high yield in the harvest season, with a resulting surplus. Fruit fermentation using autochthonous starter cultures can provide a solution for food waste. However, limited knowledge exists about the microbiota present on the surfaces of fruits and the preceding flowers. In the present exploratory study, the microbiomes associated with the surfaces of tropical fruits from Northern Argentina, such as white guava, passion fruit and papaya were investigated using a shotgun metagenomic sequencing approach. Hereto, one sample composed of 14 white guava fruits, two samples of passion fruits with each two to three fruits representing the almost ripe and ripe stage of maturity, four samples of papaya with each two to three fruits representing the unripe, almost ripe, and ripe stage of maturity were processed, as well as a sample of closed and a sample of open Japanese medlar flowers. A considerable heterogeneity was found in the composition of the fruits’ surface microbiota at the genus and species level. While bacteria dominated the microbiota of the fruits and flowers, a small number of the metagenomic sequence reads corresponded with yeasts and filamentous fungi. A minimal abundance of bacterial species critical in lactic acid and acetic acid fermentations was found. A considerable fraction of the metagenomic sequence reads from the fruits’ surface microbiomes remained unidentified, which suggested that intrinsic species are to be sequenced or discovered.
Collapse
Affiliation(s)
- Louise Vermote
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Fernanda Mozzi
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Luc De Vuyst
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Stefan Weckx,
| |
Collapse
|
14
|
Ndoye B, Shafiei R, Sanaei NS, Cleenwerck I, Somda MK, Dicko MH, Tounkara LS, Guiro AT, Delvigne F, Thonart P. Acetobacter senegalensis Isolated from Mango Fruits: Its Polyphasic Characterization and Adaptation to Protect against Stressors in the Industrial Production of Vinegar: A Review. J Appl Microbiol 2022; 132:4130-4149. [PMID: 35182093 DOI: 10.1111/jam.15495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
It has been more than a decade since Acetobacter senegalensis was isolated, identified, and described as a thermotolerant strain of acetic acid bacteria. It was isolated from mango fruits in Senegal and used for industrial vinegar production in developing countries, mainly in sub-Saharan Africa. The strain was tested during several spirit vinegar fermentation processes at relatively high temperatures in accordance with African acclimation. The upstream fermentation process had significant stress factors, which are highlighted in this review so that the fermentation process can be better controlled. Due to its high industrial potential, this strain was extensively investigated by diverse industrial microbiologists worldwide; they concentrated on its microbiological, physiological, and genomic features. A research group based in Belgium proposed an important project for the investigation of the whole-genome sequence of A. senegalensis. It would use a 454-pyrosequencing technique to determine and corroborate features that could give this strain significant diverse bioindustrial applications. For instance, its application in cocoa bean fermentation has made it a more suitable acetic acid bacterium for the making of chocolate than Acetobacter pasteurianus. Therefore, in this paper, we present a review that summarizes the current research on A. senegalensis at its microbial and genomic levels and also its specific bioindustrial applications, which can provide economic opportunities for African agribusiness.
Collapse
Affiliation(s)
- Bassirou Ndoye
- University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN), BP, Kaolack, Senegal.,Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| | - Rasoul Shafiei
- Department of Cell, Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Shah Sanaei
- Department of Cell, Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marius K Somda
- Biochemistry, Biotechnology, Food Technology and Nutrition Laboratory, University Pr Joseph Ki Zerbo, PO, Ouagadougou, Burkina Faso
| | - Mamoudou Hama Dicko
- Biochemistry, Biotechnology, Food Technology and Nutrition Laboratory, University Pr Joseph Ki Zerbo, PO, Ouagadougou, Burkina Faso
| | | | - Amadou Tidiane Guiro
- University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN), BP, Kaolack, Senegal
| | - Frank Delvigne
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| | - Philippe Thonart
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| |
Collapse
|
15
|
Mendoza Salazar MM, Lizarazo-Medina PX. Assessment of the fungal community associated with cocoa bean fermentation from two regions in Colombia. Food Res Int 2021; 149:110670. [PMID: 34600672 DOI: 10.1016/j.foodres.2021.110670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
The quality of the cocoa seeds depends on various factors. Fermentation is among them because during this process flavor precursors are synthesized through the action of fungi and bacteria, whose diversity can change depending on the geographic location and the agricultural practices. This research aimed to characterize and compare the fungal community involved in spontaneous fermentations carried out under the same post-harvest agricultural practices in two farms located at completely different agro‑ecological zones by application of a high-throughput amplicon sequencing method. The results showed that the diversity of biological variants is different between regions. In the Magdalena Medio region, the fermentations were dominated by Hanseniaspora opuntiae, and Saccharomyces sp., while in Urabá region all the fermentation was characterized by an almost constant diversity and high abundance of H. opuntiae. In each site, unique biological variants of these two genera were detected. Additionally, differences were observed in the physicochemical parameters such as the pH and temperature of the fermentation mass, and the duration of the process. The analyses of these results allow concluding that the environmental conditions and indigenous microbiota of each cocoa-cultivation zone explained the differences found in this study.
Collapse
Affiliation(s)
- Marcelina María Mendoza Salazar
- Grupo de Investigación en Ecología Microbiana y Bioprospección, Faculty of Exact and Natural Sciences, Universidad de Antioquia, Calle 67 No. 53 - 108, Postal code 050010 Medellín, Antioquia, Colombia.
| | - Pilar Ximena Lizarazo-Medina
- Grupo de Investigación en Ecología Microbiana y Bioprospección, Faculty of Exact and Natural Sciences, Universidad de Antioquia, Calle 67 No. 53 - 108, Postal code 050010 Medellín, Antioquia, Colombia.
| |
Collapse
|
16
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Viesser JA, de Melo Pereira GV, de Carvalho Neto DP, Favero GR, de Carvalho JC, Goés-Neto A, Rogez H, Soccol CR. Global cocoa fermentation microbiome: revealing new taxa and microbial functions by next generation sequencing technologies. World J Microbiol Biotechnol 2021; 37:118. [PMID: 34131809 DOI: 10.1007/s11274-021-03079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
This review provides an overview of the application of next-generation sequencing (NGS) technologies for microbiome analysis of cocoa beans fermentation. The cocoa-producing regions where NGS has been applied include Brazil, Ghana, Ivory Coast, Cameroon, Nicaragua, and Colombia. The data collected were processed by principal component analysis (PCA) and Venn diagrams to perform a multivariate association between microbial diversity and cocoa-producing regions. NGS studies have confirmed the dominance of three major microbial groups revealed by culture-dependent approaches, i.e., lactic acid bacteria, acetic acid bacteria, and yeasts. However, a more complex microbial diversity has been revealed, comprising sub-dominant populations, late-growing species, and uncultivable microorganisms. A total of 99 microbial genera and species were for the first time reported in cocoa beans fermentation, such as Brevibacillus sp., Halomonas meridiana, Methylobacterium sp., Novosphingobium sp., and Paenibacillus pabuli. PCA and Venn diagrams showed that species composition is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies between different cocoa-producing regions. Understanding these differences will provide further directions for exploring the functional and metabolic activity of rare and abundant taxa, as well as their use as starter cultures to obtain high-quality cocoa beans.
Collapse
Affiliation(s)
- Jéssica A Viesser
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Gilberto V de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Gabriel R Favero
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Aristóteles Goés-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Hervé Rogez
- Centre for Valorisation of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, Belém, PA, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
18
|
De Vuyst L, Leroy F. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev 2021; 44:432-453. [PMID: 32420601 DOI: 10.1093/femsre/fuaa014] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Cured cocoa beans are obtained through a post-harvest, batchwise process of fermentation and drying carried out on farms in the equatorial zone. Fermentation of cocoa pulp-bean mass is performed mainly in heaps or boxes. It is made possible by a succession of yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) activities. Yeasts ferment the glucose of the cocoa pulp into ethanol, perform pectinolysis and produce flavour compounds, such as (higher) alcohols, aldehydes, organic acids and esters. LAB ferment the glucose, fructose and citric acid of the cocoa pulp into lactic acid, acetic acid, mannitol and pyruvate, generate a microbiologically stable fermentation environment, provide lactate as carbon source for the indispensable growth of AAB, and contribute to the cocoa and chocolate flavours by the production of sugar alcohols, organic acids, (higher) alcohols and aldehydes. AAB oxidize the ethanol into acetic acid, which penetrates into the bean cotyledons to prevent seed germination. Destruction of the subcellular seed structure in turn initiates enzymatic and non-enzymatic conversions inside the cocoa beans, which provides the necessary colour and flavour precursor molecules (hydrophilic peptides, hydrophobic amino acids and reducing sugars) for later roasting of the cured cocoa beans, the first step of the chocolate-making.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
19
|
Verce M, Schoonejans J, Hernandez Aguirre C, Molina-Bravo R, De Vuyst L, Weckx S. A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Front Microbiol 2021; 12:641185. [PMID: 33664725 PMCID: PMC7920976 DOI: 10.3389/fmicb.2021.641185] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cocoa fermentation is the first step in the post-harvest processing chain of cocoa and is important for the removal of the cocoa pulp surrounding the beans and the development of flavor and color precursors. In the present study, metagenomic and metatranscriptomic sequencing were applied to Costa Rican cocoa fermentation processes to unravel the microbial diversity and assess the function and transcription of their genes, thereby increasing the knowledge of this spontaneous fermentation process. Among 97 genera found in these fermentation processes, the major ones were Acetobacter, Komagataeibacter, Limosilactobacillus, Liquorilactobacillus, Lactiplantibacillus, Leuconostoc, Paucilactobacillus, Hanseniaspora, and Saccharomyces. The most prominent species were Limosilactobacillus fermentum, Liquorilactobacillus cacaonum, and Lactiplantibacillus plantarum among the LAB, Acetobacter pasteurianus and Acetobacter ghanensis among the AAB, and Hanseniaspora opuntiae and Saccharomyces cerevisiae among the yeasts. Consumption of glucose, fructose, and citric acid, and the production of ethanol, lactic acid, acetic acid, and mannitol were linked to the major species through metagenomic binning and the application of metatranscriptomic sequencing. By using this approach, it was also found that Lacp. plantarum consumed mannitol and oxidized lactic acid, that A. pasteurianus degraded oxalate, and that species such as Cellvibrio sp., Pectobacterium spp., and Paucilactobacillus vaccinostercus could contribute to pectin degradation. The data generated and results presented in this study could enhance the ability to select and develop appropriate starter cultures to steer the cocoa fermentation process toward a desired course.
Collapse
Affiliation(s)
- Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Jorn Schoonejans
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Ramón Molina-Bravo
- Laboratory of Molecular Biology, School of Agrarian Sciences, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
20
|
Díaz-Muñoz C, Van de Voorde D, Comasio A, Verce M, Hernandez CE, Weckx S, De Vuyst L. Curing of Cocoa Beans: Fine-Scale Monitoring of the Starter Cultures Applied and Metabolomics of the Fermentation and Drying Steps. Front Microbiol 2021; 11:616875. [PMID: 33505385 PMCID: PMC7829357 DOI: 10.3389/fmicb.2020.616875] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Starter culture-initiated cocoa fermentation processes can be applied to improve the quality of cured cocoa beans. However, an accurate monitoring of the microbial strains inoculated in fresh cocoa pulp-bean mass to assess their contribution to the cocoa bean curing process is still lacking. In the present study, eight different cocoa fermentation processes were carried out with Trinitario cocoa in vessels in Costa Rica to assess the contribution of two candidate yeast starter culture strains, namely Saccharomyces cerevisiae IMDO 050523 and Pichia kudriavzevii IMDO 020508, inoculated in combination with Limosilactobacillus fermentum IMDO 0611222 and Acetobacter pasteurianus IMDO 0506386. A multiphasic approach, consisting of culture-dependent selective plating and incubation, rRNA-PCR-DGGE community profiling of agar plate washes, and culture-independent high-throughput amplicon sequencing, combined with a metabolite target analysis of non-volatile and volatile organic compounds (VOCs), was performed on samples from the fermentation and/or drying steps. The different starter culture mixtures applied effectively steered the cocoa fermentation processes performed. Moreover, the use of an amplicon sequence variant (ASV) approach, aligning these ASVs to the whole-genome sequences of the inoculated strains, allowed the monitoring of these inoculated strains and their differentiation from very closely related variants naturally present in the background or spontaneous fermentation processes. Further, traits such as malolactic fermentation during the fermentation step and acetoin and tetramethylpyrazine formation during the drying step could be unraveled. Finally, the yeast strains inoculated influenced the substrate consumption and metabolite production during all starter culture-initiated fermentation processes. This had an impact on the VOC profiles of the cured cocoa beans. Whereas the P. kudriavzevii strain produced a wide range of VOCs in the cocoa pulp, the S. cerevisiae strain mostly influenced the VOC composition of the cured cocoa beans.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Kouamé C, Loiseau G, Grabulos J, Boulanger R, Mestres C. Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. Int J Food Microbiol 2020; 337:108917. [PMID: 33126076 DOI: 10.1016/j.ijfoodmicro.2020.108917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/30/2020] [Accepted: 10/04/2020] [Indexed: 11/25/2022]
Abstract
The aromatic quality of chocolate requires the use of cocoa with high aromatic potential, this being acquired during the fermentation of cocoa beans. Traditional fermentation is still often carried out on a small scale with wild strains of yeasts and acetic bacteria and under poorly controlled conditions leading to cocoa quality ranging from best to worst. This study is the first part of a project aiming to control quality of cocoa to produce high aromatic quality chocolate by using a mixed starter of selected strains of yeast and acetic bacteria and by controlling the conditions of fermentation. To achieve this objective, a mathematical model of the alcoholic fermentation of cocoa beans has been developed. The growth, glucose consumption and ethanol production of Saccharomyces cerevisiae LM strain in synthetic broth were modeled for the most important intrinsic (pH, glucose, ethanol, free nitrogen and oxygen levels) and extrinsic (temperature, oxygen level) fermentation parameters. The model was developed by combining the effects of individual conditions in a multiplicative way using the gamma concept. The model was validated in liquid synthetic medium at two different inoculation levels 104 and 106 CFU/mL with an increase in temperature that recorded during spontaneous fermentations. The model clearly shows that the level of inoculation and the speed of the increase in temperature clearly drive yeast growth, while other factors including pH and ethanol, free nitrogen and oxygen levels have no significant impact on yeast growth.
Collapse
Affiliation(s)
- Christelle Kouamé
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Gérard Loiseau
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France.
| | - Joël Grabulos
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Renaud Boulanger
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Christian Mestres
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| |
Collapse
|
22
|
de C Lima CO, Vaz ABM, De Castro GM, Lobo F, Solar R, Rodrigues C, Martins Pinto LR, Vandenberghe L, Pereira G, Miúra da Costa A, Benevides RG, Azevedo V, Trovatti Uetanabaro AP, Soccol CR, Góes-Neto A. Integrating microbial metagenomics and physicochemical parameters and a new perspective on starter culture for fine cocoa fermentation. Food Microbiol 2020; 93:103608. [PMID: 32912581 DOI: 10.1016/j.fm.2020.103608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/28/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Cocoa beans used for chocolate production are fermented seeds of Theobroma cacao obtained by a natural fermentation process. The flavors and chemical compounds produced during the fermentation process make this step one of the most important in fine chocolate production. Herein, an integrative analysis of the variation of microbial community structure, using a shotgun metagenomics approach and associated physicochemical features, was performed during fermentation of fine cocoa beans. Samples of Forastero variety (FOR) and a mixture of two hybrids (PS1319 and CCN51) (MIX) from Bahia, Brazil, were analyzed at 7 different times. In the beginning (0 h), the structures of microbial communities were very different between FOR and MIX, reflecting the original plant-associated microbiomes. The highest change in microbial community structures occurred at the first 24 h of fermentation, with a marked increase in temperature and acetic acid concentration, and pH decrease. At 24-48 h both microbial community structures were quite homogenous regarding temperature, acetic acid, succinic acid, pH, soluble proteins and total phenols. During 72-96 h, the community structure resembles an acidic and warmer environment, prevailing few acetic acid bacteria. Taxonomic richness and abundance at 72-144 h exhibited significant correlation with temperature, reducing sugars, succinic, and acetic acids. Finally, we recommend that dominant microbial species of spontaneous fine cocoa fermentations should be considered as inoculum in accordance with the farm/region and GMP to maintain a differential organoleptic feature for production of fine chocolate. In our study, a starter inoculum composed of Acetobacter pausterianus and Hanseniaspora opuntiae strains is indicated.
Collapse
Affiliation(s)
- Carolina O de C Lima
- Department of Biological Sciences, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Aline B M Vaz
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Giovanni M De Castro
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco Lobo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Solar
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Luiz Roberto Martins Pinto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Luciana Vandenberghe
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Gilberto Pereira
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Andréa Miúra da Costa
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Raquel Guimarães Benevides
- Department of Biological Sciences, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | | | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Aristóteles Góes-Neto
- Department of Biological Sciences, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA, 44036-900, Brazil; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
23
|
Functional Biodiversity of Yeasts Isolated from Colombian Fermented and Dry Cocoa Beans. Microorganisms 2020; 8:microorganisms8071086. [PMID: 32708172 PMCID: PMC7409280 DOI: 10.3390/microorganisms8071086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Yeasts play an important role in the cocoa fermentation process. Although the most relevant function is the degradation of sugars and the production of ethanol, there is little understanding of the enzyme activities and attributes that allow them to survive even after drying. The present study explored the functional biodiversity of yeasts associated with Criollo Colombian cocoa fermented beans, able to survive after drying. Twelve species belonging to 10 genera of osmo-, acid-, thermo-, and desiccation-tolerant yeasts were isolated and identified from fermented and dry cocoa beans, with Pichia kudriavzevii and Saccharomyces cerevisiae standing out as the most frequent. For the first time, we reported the presence of Zygosaccharomyces bisporus in cocoa fermented beans. It was found that resistance to desiccation is related to the different degradation capacities of fermentation substrates, which suggests that associative relationships may exist between the different yeast species and their degradation products. Besides, the increased thermotolerance of some species was related to the presence of polyphenols in the medium, which might play a fundamental role in shaping the microbial community composition.
Collapse
|
24
|
Lara-Hidalgo CE, Dorantes-Álvarez L, Hernández-Sánchez H, Santoyo-Tepole F, Martínez-Torres A, Villa-Tanaca L, Hernández-Rodríguez C. Isolation of Yeasts from Guajillo Pepper (Capsicum annuum L.) Fermentation and Study of Some Probiotic Characteristics. Probiotics Antimicrob Proteins 2020; 11:748-764. [PMID: 29696516 DOI: 10.1007/s12602-018-9415-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three yeast strains were isolated from the spontaneous fermentation of guajillo pepper: Hanseniaspora opuntiae, Pichia kudriavzevii, and Wickerhamomyces anomalus, which were identified by amplification of the ITS/5.8S ribosomal DNA. Some probiotic characteristics of these strains were evaluated and compared with one commercial probiotic yeast (Saccharomyces boulardii). The survival percentage of all the yeasts was similar to that of the commercial product. They showed different hydrophobicity characteristics with hydrocarbons, autoaggregation > 90%, and characteristics of co-aggregation with pathogenic microorganisms. The adhesion capacity to mucin of the three yeast samples was similar to the reference yeast. The antioxidant activity of the yeasts varied between 155 and 178 μM Trolox equivalents. All exhibited cholesterol reduction capacity, and W. anomalus was able to decrease up to 83% of cholesterol after 48 h of incubation. The 7.5-fold concentrated H. opuntiae supernatant had antimicrobial activity against Salmonella enterica ser. Typhimurium ATCC 14028 and Candida albicans ENCBDM2; tests suggest this activity against S. Typhimurium is due to a proteinaceous metabolite with a weight between 10 and 30 kDa. Among the yeasts, P. kudriavzevii exhibited the highest protective effect on the viability of Lactobacillus casei Shirota in gastric and intestinal conditions. These results suggest that yeasts isolated from guajillo pepper may have a probiotic potential.
Collapse
Affiliation(s)
- C E Lara-Hidalgo
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico
| | - L Dorantes-Álvarez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico.
| | - H Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico
| | - F Santoyo-Tepole
- Departamento de Investigación, Central de Instrumentación de Espectroscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - A Martínez-Torres
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - L Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - C Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| |
Collapse
|
25
|
Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 2020; 6:1-31. [PMID: 32226912 PMCID: PMC7099199 DOI: 10.3934/microbiol.2020001] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/19/2020] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is the best studied eukaryote and a valuable tool for most aspects of basic research on eukaryotic organisms. This is due to its unicellular nature, which often simplifies matters, offering the combination of the facts that nearly all biological functions found in eukaryotes are also present and well conserved in S. cerevisiae. In addition, it is also easily amenable to genetic manipulation. Moreover, unlike other model organisms, S. cerevisiae is concomitantly of great importance for various biotechnological applications, some of which date back to several thousands of years. S. cerevisiae's biotechnological usefulness resides in its unique biological characteristics, i.e., its fermentation capacity, accompanied by the production of alcohol and CO2 and its resilience to adverse conditions of osmolarity and low pH. Among the most prominent applications involving the use of S. cerevisiae are the ones in food, beverage -especially wine- and biofuel production industries. This review focuses exactly on the function of S. cerevisiae in these applications, alone or in conjunction with other useful microorganisms involved in these processes. Furthermore, various aspects of the potential of the reservoir of wild, environmental, S. cerevisiae isolates are examined under the perspective of their use for such applications.
Collapse
Affiliation(s)
- Maria Parapouli
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Anastasios Vasileiadis
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Amalia-Sofia Afendra
- Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Efstathios Hatziloukas
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
26
|
Almeida OGG, Pinto UM, Matos CB, Frazilio DA, Braga VF, von Zeska-Kress MR, De Martinis ECP. Does Quorum Sensing play a role in microbial shifts along spontaneous fermentation of cocoa beans? An in silico perspective. Food Res Int 2020; 131:109034. [PMID: 32247478 DOI: 10.1016/j.foodres.2020.109034] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Cocoa fermentation is a spontaneous process shaped by a variable microbial ecosystem which is assembled due to cross-feeding relationship among yeasts and bacteria, resulting in a synchronized microbial succession started by yeasts, followed by lactic acid bacteria (LAB) and finalized by acetic acid bacteria (AAB). Several studies have indicated the effect of microbial interactions in food ecosystems highlighting the importance of quorum sensing (QS) in bacterial adaptation in harsh environments modulating several phenotypes such as biofilm formation, tolerance to acid stress, bacteriocin production, competence, morphological modifications, motility, among others. However, antagonic interactions also occur, and can be marked by Quorum Quenching (QQ) activity, negatively impacting QS regulated phenotypes. Our current knowledge regarding microbial cocoa composition and functioning is based on culture-based analysis and culture-independent PCR-based methods. Therefore, we set out to investigate the application of metagenomics analysis on a classical spontaneous cocoa fermentation in order to describe: (I) the microbial taxonomic composition; (II) the functional potential of the cocoa microbiome; (III) the microbiome putative QS potential; and (IV) the microbiome QQ potential. Both aims III and IV are related to the expression of effectors that may confer advantageous traits along fermentation which can explain their dominance in specific time zones during the entire process. We have observed a bacterial succession shaped by yeasts and filamentous fungi and then Enterobacteriaceales, LAB and AAB, as well as a diverse genetic metabolic potential related to proteins and carbohydrates metabolism associated to the yeast Saccharomyces cerevisiae and members of the Enterobacteriaceales order and LAB and AAB groups. In addition, in silico evidences of interspecific QS arsenal were found in members of the genera Enterobacter, Lactobacillus, Bacillus and Pantoea, while inferences of intraspecific QS potential were found in the members of the genera Bacillus, Enterobacter, Komagataeibacter, Lactobacillus and Pantoea. In addition, a QQ potential was detected in Lactobacillus and in AAB members. These findings indicate that QS and QQ may modulate bacterial dominance in different time points during fermentation, along with cross-feeding, being responsible for their maintenance in a large time range.
Collapse
Affiliation(s)
- O G G Almeida
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Brazil
| | - U M Pinto
- Food Research Center, Universidade de São Paulo - Faculdade de Ciências Farmacêuticas, Brazil
| | - C B Matos
- Comissão Executiva do Plano da Lavoura Cacaueira- Centro de Pesquisas do Cacau (CEPLAC-CEPEC), Rod. Jorge Amado, 22 - Alto Mirante, Itabuna, BA, Brazil
| | - D A Frazilio
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Brazil
| | - V F Braga
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Brazil
| | - M R von Zeska-Kress
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Brazil
| | - E C P De Martinis
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Brazil.
| |
Collapse
|
27
|
Papalexandratou Z, Kaasik K, Kauffmann LV, Skorstengaard A, Bouillon G, Espensen JL, Hansen LH, Jakobsen RR, Blennow A, Krych L, Castro-Mejía JL, Nielsen DS. Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. Int J Food Microbiol 2019; 304:106-118. [PMID: 31176963 DOI: 10.1016/j.ijfoodmicro.2019.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Nicaraguan cocoa bean fermentations of several single local cocoa varieties originating from the same region (North Highlands of Nicaragua, San Jose de Bocay/El Cuá) were compared to fermentations of blended cocoa varietals from other producing regions of the country (Waslala and Nueva Guinea) making use of High Throughput Sequencing techniques, metabolite target analysis and sensory evaluation of cocoa liquor samples. A succession of the important cocoa-related yeasts Hanseniaspora uvarum/opuntiae, Saccharomyces cerevisiae and/or Pichia kudriavzevii was seen for single varietals and Nueva Guinea fermentations, while Kazachstania humilis dominated the mid and end phase of the Waslala cocoa fermentations. Tatumella species (mainly Tatumella terrea and Tatumella punctata) predominated the bacterial community at the onset of all fermentations followed by unusually late (generally 2 days into the fermentations) appearance of Lactobacillus fermentum relative to fermentations in other parts of the World. Acetobacter spp. were the main acetic acid bacteria during all fermentations, but also Gluconobacter spp. were involved in some single-variety fermentations. All fermentations proved complete as determined by metabolite analysis with bean sucrose being fully depleted and pulp sugars exhausted after 48-72 h of fermentation. From an organoleptic point of view, all Nicaraguan cocoas of this study reflected fine fruity (citrus or berry-like) flavours with distinct herbal or caramel notes. Floral notes were associated with the cases where P. kudriavzevii was involved in the later stages of fermentation. Intense citrus/fruity character was related to high pulp and bean citrate concentrations. Off-notes were found in some over-fermented batches where Bacillus spp. was detected. No relation between cut-test results and organoleptic appreciation was seen.
Collapse
Affiliation(s)
| | - Kristina Kaasik
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | | - Albert Skorstengaard
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Gregoire Bouillon
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Julie Leth Espensen
- Ingemann Fine Cocoa, Managua, Nicaragua; Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Lars H Hansen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | | | - Andreas Blennow
- Department of Plant & Environmental Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | |
Collapse
|
28
|
Serra JL, Moura FG, Pereira GVDM, Soccol CR, Rogez H, Darnet S. Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int J Food Microbiol 2019; 301:41-50. [PMID: 31085407 DOI: 10.1016/j.ijfoodmicro.2019.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/12/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022]
Abstract
Fermentation is an essential process step to develop precursor compounds for aroma and flavour characteristics of chocolate, as well as preventing germination of the cocoa bean. Despite the importance of the role of microorganisms during the chocolate production, to date, there are some discrepancies of the "cocobiota" community found during fermentation and the impact of starter culture in fermented cocoa beans. This review provides both a detailed overview of the starter cultures used in fermented cocoa beans and the microbial diversity involved during this process, and an in-depth discussion of the methods used to identify these microorganisms. In this review, we included only published articles from 2008 to 2018 in English language. A total of forty-seven studies contributed to the description of the cocobiota from 13 different countries. In detail, we observed that the most common fermentation method used is the wooden box, followed by heap. Interestingly, 37% of the studies cited in this review did not mention the type of cocoa variety studied. Most of the techniques used to identify the microbiota are fingerprinting based (DGGE); however, few studies have been using next-generation technologies to elucidate the possible functions and interactions among microbes. Our results showed a greater diversity of yeasts if compared with bacterial involved in the fermentation. This review will help researchers seeking to design starter cultures to drive cocoa bean fermentation, and thus achieve a homogenous mass of fermented cocoa beans as well as serve as a guide for assessing methodologies for the identification of microorganisms.
Collapse
|
30
|
Jacques N, Casaregola S. Large biodiversity of yeasts in French Guiana and the description of Suhomyces coccinellae f.a. sp. nov. and Suhomyces faveliae f.a. sp. nov. Int J Syst Evol Microbiol 2019; 69:1634-1649. [PMID: 31033433 DOI: 10.1099/ijsem.0.003369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extent of the diversity of yeasts in tropical rain forest and different environments from French Guiana was investigated. A total of 365 samples were collected from various substrates, such as plants, fruits and insects, at 13 locations, yielding 276 pure yeast isolates. Sequence analysis of the D1/D2 domains of the large subunit rRNA gene indicated that 210 isolates out of 276 belonged to 82 described species (67 Saccharomycotina, 14 Basidiomycota and 1 Pezizomycotina). In addition to these, a total of 54 Saccharomycotina isolates could not be assigned to a known species. These belonged to 14 genera and should be studied further from a taxonomic point of view. In addition, among the 43 Basidiomycotina isolates found, 12 could not be assigned to a known species. This report shows an unexpected biodiversity and indicates that oversea territories, such as French Guiana, constitute a largely unexplored reservoir for yeast diversity. Two Saccharomycotina strains, CLIB 1706 and CLIB 1725, isolated from an insect and from a fern respectively, were characterized further and were shown to belong to the Suhomyces clade on the basis of the rDNA sequence comparison. CLIB 1706TrDNA sequences showed nine substitutions and three indels out of 556 bp (D1/D2 domains) and 32 substitutions and 12 indels out of 380 bp [internal transcribed spacer (ITS)] with that of the most closely related species Suhomyces guaymorum CBS 9823T. CLIB 1725T rDNA sequences presented 18 substitutions and one indel out of 549 bp (D1/D2 domains) and 48 substitutions and 11 indels out of 398 bp (ITS) with that of its closest relative Suhomyces vadensis CBS 9454T. Two novel species of the genus Suhomyces were described to accommodate these two strains: Suhomyces coccinellae f.a. sp. nov. (CLIB 1706T=CBS 14298T) and Suhomyces faveliae f.a. sp. nov. (CLIB 1725T=CBS 14299T).
Collapse
Affiliation(s)
- Noémie Jacques
- CIRM-Levures, INRA, Micalis Institute, Jouy-en-Josas, France.,†Present address: Bioger, INRA, Thiverval-Grignon, France
| | | |
Collapse
|
31
|
Mota-Gutierrez J, Barbosa-Pereira L, Ferrocino I, Cocolin L. Traceability of Functional Volatile Compounds Generated on Inoculated Cocoa Fermentation and Its Potential Health Benefits. Nutrients 2019; 11:E884. [PMID: 31010207 PMCID: PMC6521293 DOI: 10.3390/nu11040884] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Microbial communities are responsible for the unique functional properties of chocolate. During microbial growth, several antimicrobial and antioxidant metabolites are produced and can influence human wellbeing. In the last decades, the use of starter cultures in cocoa fermentation has been pushed to improve nutritional value, quality, and the overall product safety. However, it must be noted that unpredictable changes in cocoa flavor have been reported between the different strains from the same species used as a starter, causing a loss of desirable notes and flavors. Thus, the importance of an accurate selection of the starter cultures based on the biogenic effect to complement and optimize chocolate quality has become a major interest for the chocolate industry. This paper aimed to review the microbial communities identified from spontaneous cocoa fermentations and focused on the yeast starter strains used in cocoa beans and their sensorial and flavor profile. The potential compounds that could have health-promoting benefits like limonene, benzaldehyde, 2-phenylethanol, 2-methylbutanal, phenylacetaldehyde, and 2-phenylethyl acetate were also evaluated as their presence remained constant after roasting. Further research is needed to highlight the future perspectives of microbial volatile compounds as biomarkers to warrant food quality and safety.
Collapse
Affiliation(s)
- Jatziri Mota-Gutierrez
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Letricia Barbosa-Pereira
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santigo de Compostela, Spain.
| | - Ilario Ferrocino
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Luca Cocolin
- Department of Agricultural, Forestry, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| |
Collapse
|
32
|
Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr Rev Food Sci Food Saf 2019; 18:587-625. [DOI: 10.1111/1541-4337.12440] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Emanuele Zannini
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Stuart Wilkinson
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Luk Daenen
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
- APC Microbiome IrelandUniv. College Cork Cork T12 K8AF Ireland
| |
Collapse
|
33
|
John WA, Böttcher NL, Aßkamp M, Bergounhou A, Kumari N, Ho PW, D'Souza RN, Nevoigt E, Ullrich MS. Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food Chem 2019; 278:786-794. [DOI: 10.1016/j.foodchem.2018.11.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
34
|
Bastos VS, Santos MF, Gomes LP, Leite AM, Flosi Paschoalin VM, Del Aguila EM. Analysis of the cocobiota and metabolites of Moniliophthora perniciosa-resistant Theobroma cacao beans during spontaneous fermentation in southern Brazil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4963-4970. [PMID: 29577311 DOI: 10.1002/jsfa.9029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cocoa bean fermentation is a spontaneous process involving a succession of microbial activities, yeasts, lactic acid, and acetic acid bacteria. The spontaneous fermentation of cocoa beans by Theobroma cacao TSH565 clonal variety, a highly productive hybrid resistant to Moniliophthora perniciosa and Phytophthora spp., was investigated. The natural cocobiota involved in the spontaneous fermentation of this hybrid in southern Brazil, was investigated by using both a culture-dependent microbiological analysis and a molecular analysis. The changes in the physicochemical characteristics and the kinetics of substrate utilization and metabolite production during fermentation were also evaluated. RESULTS Yeasts (178) and bacteria (244) isolated during fermentation were identified by partial sequencing of the ITS and 16S rDNAs, respectively. After 144 h of fermentation, the indigenous yeast community was composed of Hanseniaspora spp., Saccharomyces spp., and Pichia spp. The bacterial population comprised Lactococcus spp., Staphylococcus spp., Acetobacter spp. and Lactobacilli strains. The kinetics of substrate transformation reflected the dynamic composition of the cocobiota. Substrates such as glucose, fructose, sucrose, and citric acid, present at the beginning of fermentation, were metabolized to produce ethanol, acetic acid, and lactic acid. CONCLUSION The results described here provide new insights into microbial diversity in cocoa bean-pulp mass fermentation and the kinetics of metabolites synthesis, and pave the way for the selection of starter cultures to increase efficiency and consistency to obtain homogeneous and best quality cocoa products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valdeci S Bastos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia, Nossa Sra. da Glória, Brazil
| | - Maria Fs Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laidson P Gomes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Analy Mo Leite
- Universidade Federal do Rio de Janeiro/Campus Macaé. Rua Aloísio da Silva Gomes, Macaé, Brazil
| | | | - Eduardo M Del Aguila
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Dynamics and Biodiversity of Bacterial and Yeast Communities during Fermentation of Cocoa Beans. Appl Environ Microbiol 2018; 84:AEM.01164-18. [PMID: 30054357 DOI: 10.1128/aem.01164-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022] Open
Abstract
Forastero hybrid cocoa bean fermentations have been carried out in a box (B) and in a heap (H), with or without the inoculation of Saccharomyces cerevisiae and Torulaspora delbrueckii as starter cultures. The bacteria, yeasts, and microbial metabolites (volatile and nonvolatile organic compounds) were monitored during fermentation to assess the connection between microbiota and the release of metabolites during this process. The presence of starter cultures was detected, by means of culture-dependent analysis, during the first 2 days of both fermentations. However, no statistical difference was observed in any of the physicochemical or microbiological analyses. Plate counts revealed the dominance of yeasts at the beginning of both fermentations, and these were followed by acetic acid bacteria (AAB) and lactic acid bacteria (LAB). Hanseniaspora opuntiae, S. cerevisiae, Pichia pijperi, Acetobacter pasteurianus, and Lactobacillus fermentum were the most abundant operational taxonomic units (OTUs) during both fermentation processes (B and H), although different relative abundances were observed. Only the diversity of the fungal species indicated a higher level of complexity in the B fermentations than in the H fermentations (P < 0.05), as well as a statistically significant difference between the initially inoculated starter cultures (P < 0.01). However, the microbial metabolite analysis indicated different distributions of the volatile and nonvolatile compounds between the two procedures, that is, B and H (P < 0.05), rather than between the inoculated and noninoculated fermentations. The box fermentations showed faster carbohydrate metabolism and greater production of organic acid compounds, which boosted the formation of alcohols and esters, than did the heap fermentations. Overall, the microbial dynamics and associations between the bacteria, yeasts, and metabolites were found to depend on the type of fermentation.IMPORTANCE In spite of the limited effectiveness of the considered inoculated starter strains, this study provides new information on the microbial development of box and heap cocoa fermentations, under inoculated and noninoculated conditions, as we coupled yeast/bacterial amplicon-based sequencing data with microbial metabolite detection. The information so far available suggests that microbial communities have played an important role in the evolution of aroma compounds. Understanding the pathways that microorganisms follow during the formation of aromas could be used to improve the fermentation processes and to enhance chocolate quality.
Collapse
|
36
|
Ozturk G, Young GM. Food Evolution: The Impact of Society and Science on the Fermentation of Cocoa Beans. Compr Rev Food Sci Food Saf 2017; 16:431-455. [PMID: 33371559 DOI: 10.1111/1541-4337.12264] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Abstract
Cocoa is part of the cultural heritage in many areas of South and Central America and has played an important role in the history of human culture there. The modern methods of cocoa bean production for the purpose of the manufacture of modern chocolate are tied to the origin and development of cocoa bean fermentation and processing methods and the science of microbiology. To date, however, there has not been a study that discusses the impacts of both science and culture on the evolution of cocoa beans and cocoa bean processing. This work provides both a detailed overview of the evolution and historical development of cocoa, from its earliest forms to modern chocolate manufacturing, an in-depth discussion of the biochemistry of cocoa bean fermentation, as well as a compilation of primary research studies with details on fermentation methods, the scientific bases of interactions in microbial fermentations, and methods for their investigation, as well as metabolites that are produced. As a result, we present here the major microorganisms among all the ones that have been identified in previous studies. This database will aid researchers seeking standardized inoculants to drive cocoa bean fermentation, as well as serve as a guide for inventorying and assessing other food evolution-related studies regarding traditional and artisanal-based food systems.
Collapse
Affiliation(s)
- Gulustan Ozturk
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, U.S.A
| | - Glenn M Young
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, U.S.A
| |
Collapse
|
37
|
Rychlik T, Szwengiel A, Bednarek M, Arcuri E, Montet D, Mayo B, Nowak J, Czarnecki Z. Application of the PCR-DGGE technique to the fungal community of traditional Wielkopolska fried ripened curd cheese to determine its PGI authenticity. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Samagaci L, Ouattara H, Niamké S, Lemaire M. Pichia kudrazevii and Candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Food Res Int 2016; 89:773-780. [DOI: 10.1016/j.foodres.2016.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
39
|
Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations. Food Res Int 2016; 89:764-772. [DOI: 10.1016/j.foodres.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/24/2022]
|
40
|
Del Mónaco SM, Rodríguez ME, Lopes CA. Pichia kudriavzevii as a representative yeast of North Patagonian winemaking terroir. Int J Food Microbiol 2016; 230:31-9. [PMID: 27124468 DOI: 10.1016/j.ijfoodmicro.2016.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Terroir concept includes specific soil, topography, climate, landscape characteristics and biodiversity features. In reference to the last aspect, recent studies investigating the microbial biogeography (lately called 'microbial terroir') have revealed that different wine-growing regions maintain different microbial communities. The aim of the present work was to identify potential autochthonous fermentative yeasts isolated from native plants in North Patagonia, Schinus johnstonii, Ephedra ochreata and Lycium chilense, that could be associated to the specific vitivinicultural terroir of this region. Different Pichia kudriavzevii isolates were recovered from these plants and physiologically and genetically compared to regional wine isolates and foreign reference strains of the same species. All isolates were subjected to molecular characterization including mtDNA-RFLP, RAPD-PCR and sequence analysis. Both wine and native P. kudriavzevii isolates from Patagonia showed similar features, different from those showed by foreign strains, suggesting that this species could be part of a specific regional terroir from North Patagonia.
Collapse
Affiliation(s)
- Silvana M Del Mónaco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| | - María E Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina.
| | - Christian A Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| |
Collapse
|
41
|
Illeghems K, Pelicaen R, De Vuyst L, Weckx S. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol 2016; 58:68-78. [PMID: 27217361 DOI: 10.1016/j.fm.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 01/02/2023]
Abstract
Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems.
Collapse
Affiliation(s)
- Koen Illeghems
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Rudy Pelicaen
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
42
|
Papalexandratou Z, Nielsen DS. It's Gettin’ Hot in Here: Breeding Robust Yeast Starter Cultures for Cocoa Fermentation. Trends Microbiol 2016; 24:168-170. [DOI: 10.1016/j.tim.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 12/01/2022]
|
43
|
De Vuyst L, Weckx S. The cocoa bean fermentation process: from ecosystem analysis to starter culture development. J Appl Microbiol 2016; 121:5-17. [DOI: 10.1111/jam.13045] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- L. De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO); Faculty of Sciences and Bioengineering Sciences; Vrije Universiteit Brussel; Brussels Belgium
| | - S. Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO); Faculty of Sciences and Bioengineering Sciences; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
44
|
|
45
|
Badrie N, Bekele F, Sikora E, Sikora M. Cocoa agronomy, quality, nutritional, and health aspects. Crit Rev Food Sci Nutr 2016; 55:620-59. [PMID: 24915358 DOI: 10.1080/10408398.2012.669428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The history of cocoa and chocolate including the birth and the expansion of the chocolate industry was described. Recent developments in the industry and cocoa economy were briefly depicted. An overview of the classification of cacao as well as studies on phenotypic and genetic diversity was presented. Cocoa agronomic practices including traditional and modern propagation techniques were reviewed. Nutrition-related health benefits derived from cocoa consumption were listed and widely reviewed. The specific action of cocoa antioxidants was compared to those of teas and wines. Effects of adding milk to chocolate and chocolate drinks versus bioavailability of cocoa polyphenols were discussed. Finally, flavor, sensory, microbiological, and toxicological aspects of cocoa consumption were presented.
Collapse
Affiliation(s)
- Neela Badrie
- a Faculty of Food and Agriculture, Department of Food Production , The University of the West Indies , St. Augustine , Republic of Trinidad and Tobago
| | | | | | | |
Collapse
|
46
|
Dynamics of microbial ecology during cocoa fermentation and drying: Towards the identification of molecular markers. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.05.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Adler P, Frey LJ, Berger A, Bolten CJ, Hansen CE, Wittmann C. The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions. Appl Environ Microbiol 2014; 80:4702-16. [PMID: 24837393 PMCID: PMC4148806 DOI: 10.1128/aem.01048-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.
Collapse
Affiliation(s)
- Philipp Adler
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lasse Jannis Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Antje Berger
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Carl Erik Hansen
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | - Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
48
|
Oxidation of metabolites highlights the microbial interactions and role of Acetobacter pasteurianus during cocoa bean fermentation. Appl Environ Microbiol 2014; 80:1848-57. [PMID: 24413595 DOI: 10.1128/aem.03344-13] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848(T), Acetobacter fabarum LMG 24244(T), and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848(T) oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848(T) and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation.
Collapse
|
49
|
Meersman E, Steensels J, Mathawan M, Wittocx PJ, Saels V, Struyf N, Bernaert H, Vrancken G, Verstrepen KJ. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS One 2013; 8:e81559. [PMID: 24358116 PMCID: PMC3864809 DOI: 10.1371/journal.pone.0081559] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.
Collapse
Affiliation(s)
- Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | | | - Pieter-Jan Wittocx
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Nore Struyf
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | | | | | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- * E-mail: .
| |
Collapse
|
50
|
Durand N, El Sheikha AF, Suarez-Quiros ML, Oscar GR, Nganou ND, Fontana-Tachon A, Montet D. Application of PCR-DGGE to the study of dynamics and biodiversity of yeasts and potentially OTA producing fungi during coffee processing. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|