1
|
Duan X, Zhai W, Li X, Wu S, Wang Y, Wang L, Basang W, Zhu Y, Gao Y. Preparation, purification, and biochemical of fat-degrading bacterial enzymes from pig carcass compost and its application. BMC Biotechnol 2023; 23:48. [PMID: 37924095 PMCID: PMC10625193 DOI: 10.1186/s12896-023-00818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND A lot of kitchen waste oil is produced every day worldwide, leading to serious environmental pollution. As one of the environmental protection methods, microorganisms are widely used treating of various wastes. Lipase, as one of the cleaning agents can effectively degrade kitchen waste oil. The composting process of pig carcasses produces many lipase producing microorganisms, rendering compost products an excellent source for isolating lipase producing microorganisms. To our knowledge, there are no reports isolating of lipase producing strains from the high temperature phase of pig carcass compost. METHODOLOGY Lipase producing strains were isolated using a triglyceride medium and identified by 16S rRNA gene sequencing. The optimal fermentation conditions for maximum lipase yield were gradually optimized by single-factor tests. The extracellular lipase was purified by ammonium sulfate precipitation and Sephadex G-75 gel isolation chromatography. Amino acid sequence analysis, structure prediction, and molecular docking of the purified protein were performed. The pure lipase's enzymatic properties and application potential were evaluated by characterizing its biochemical properties. RESULTS In this study, a lipase producing strain of Bacillus sp. ZF2 was isolated from pig carcass compost products, the optimal fermentation conditions of lipase: sucrose 3 g/L, ammonium sulfate 7 g/L, Mn2+ 1.0 mmol/L, initial pH 6, inoculum 5%, temperature 25 ℃, and fermentation time 48 h. After purification, the specific activity of the purified lipase reached 317.59 U/mg, a 9.78-fold improvement. Lipase had the highest similarity to the GH family 46 chitosanase and molecular docking showed that lipase binds to fat via two hydrogen bonds at Gln146 (A) and Glu203 (A). Under different conditions (temperature, metal ions, organic solvents, and surfactants), lipase can maintain enzymatic activity. Under different types of kitchen oils, lipase has low activity only for 'chicken oil', in treating other substrates, the enzyme activity can exceed 50%. CONCLUSIONS This study reveals the potential of lipase for waste oil removal, and future research will be devoted to the application of lipase.
Collapse
Affiliation(s)
- Xinran Duan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Zhai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xintian Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Sicheng Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, China
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Quirós P, Sala-Comorera L, Gómez-Gómez C, Ramos-Barbero MD, Rodríguez-Rubio L, Vique G, Yance-Chávez T, Atarés S, García-Gutierrez S, García-Marco S, Vallejo A, Salaet I, Muniesa M. Identification of a virulent phage infecting species of Nitrosomonas. THE ISME JOURNAL 2023; 17:645-648. [PMID: 36759553 PMCID: PMC10119301 DOI: 10.1038/s41396-023-01380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
In the first and limiting step of nitrification, ammonia (NH3) is oxidised to nitrite (NO2-) by the action of some prokaryotes, including bacteria of the Nitrosomonas genus. A potential approach to nitrification inhibition would be through the application of phages, but until now this method has been unexplored and no virulent phages that infect nitrifying bacteria have been described. In this study, we report the isolation of the first phage infecting some Nitrosomonas species. This polyvalent virulent phage (named ΦNF-1) infected Nitrosomonas europaea, Nitrosomonas communis, and Nitrosomonas nitrosa. Phage ΦNF-1 has the morphology of the Podoviridae family, a dsDNA genome of 41,596 bp and a 45.1 % GC content, with 50 predicted open reading frames. Phage ΦNF-1 was found to inhibit bacterial growth and reduce NH4+ consumption in the phage-treated cultures. The application of phages as biocontrol agents could be a useful strategy for nitrification inhibition without the restrictions associated with chemical inhibitors.
Collapse
Affiliation(s)
- Pablo Quirós
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
- Departamento de I+D+i de Fertinagro Biotech S.L, Poligono Industrial La Paz, Teruel, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
- Departmento de Fisiologia, Genética y Microbiología, Universidad de Alicante (UA), 03080, Alicante, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Tula Yance-Chávez
- Departamento de I+D+i de Fertinagro Biotech S.L, Poligono Industrial La Paz, Teruel, Spain
| | - Sergio Atarés
- Departamento de I+D+i de Fertinagro Biotech S.L, Poligono Industrial La Paz, Teruel, Spain
| | - Sandra García-Gutierrez
- Departamento de Química y Tecnología de Alimentos, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sonia García-Marco
- Departamento de Química y Tecnología de Alimentos, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Antonio Vallejo
- Departamento de Química y Tecnología de Alimentos, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ignasi Salaet
- Departamento de I+D+i de Fertinagro Biotech S.L, Poligono Industrial La Paz, Teruel, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain.
| |
Collapse
|
3
|
Duan J, Cui R, Huang Y, Ai X, Hao Y, Shi H, Huang A, Xie Z. Identification and characterization of four microalgae strains with potential application in the treatment of tail-water for shrimp cultivation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Zhang Y, Ye X, Fang Y, Zhang H. Treatment of municipal wastewater by employing membrane bioreactors combined with efficient nitration microbial communities isolated by Isolation Chip with Plate Streaking technology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2576-2588. [PMID: 34250663 DOI: 10.1002/wer.1608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In this research, we developed a method so-called Isolation Chip with Plate Streaking (ICPS) to selectively enrich nitrifying microbial consortium for treating municipal wastewater. In batch experiment, these bacterial communities were able to remove NH3 -N in 72 h with an efficiency of 96%. Firmicutes, Bacteroidetes, and Proteobacteria species are dominant bacteria in these communities. When the bacterial communities were used in the membrane bioreactor under typical condition, the removal efficiency was 81.0%. In contrast, under the actual wastewater condition, the efficiency could reach 91.2%. All above results showed clearly that the consortium selected by our ICPS method could achieve high-efficient NH3 -N removal, thus offering a reliable technique for screening functional microorganisms in the field of water treatment. PRACTITIONER POINTS: ICPS technology was designed and used for screening specialized NH3 -N-removing isolates. The screening process benefited the growth of the dominant nitrifying bacteria Firmicutes and Bacteroidetes. When the functional bacteria applied into the MBR, the NH3 -N removal efficiency was 91.2% under actual wastewater conditions.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yuxin Fang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Bacterial communities in larger islands have reduced temporal turnover. THE ISME JOURNAL 2021; 15:2947-2955. [PMID: 33941889 PMCID: PMC8443627 DOI: 10.1038/s41396-021-00976-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Patterns of species diversity provide fundamental insights into the underlying mechanisms and processes that regulate biodiversity. The species-time relationship (STR) has the potential to be one such pattern; in a comparable manner to its more extensively studied spatial analogue, the species-area relationship (SAR), which has been pivotal in the development of ecological models and theories. We sought to determine the mechanisms and processes that underpin STR patterns of temporal turnover by sampling bacterial communities within ten water-filled tree-holes on the same European beech tree through the course of a year. We took this natural model system to represent an archipelago of islands of varying sizes and with shared common immigration sources. We observed an inverse relationship between STR-derived turnover rates and island size. Further, turnover was related to island size and not island isolation within the study system as indicated by a low frequency of dispersal limitation and high homogenizing dispersal. Compared to SARs, STRs are understudied, as such, the findings from the current study should provide a renewed interest in STR-based patterns and processes.
Collapse
|
6
|
Biological treatment of coke plant effluents: from a microbiological perspective. Biol Futur 2021; 71:359-370. [PMID: 34554459 DOI: 10.1007/s42977-020-00028-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
During coke production, large volume of effluent is generated, which has a very complex chemical composition and contains several toxic and carcinogenic substances, mainly aromatic compounds, cyanide, thiocyanate and ammonium. The composition of these high-strength effluents is very diverse and depends on the quality of coals used and the operating and technological parameters of coke ovens. In general, after initial physicochemical treatment, biological purification steps are applied in activated sludge bioreactors. This review summarizes the current knowledge on the anaerobic and aerobic transformation processes and describes key microorganisms, such as phenol- and thiocyanate-degrading, floc-forming, nitrifying and denitrifying bacteria, which contribute to the removal of pollutants from coke plant effluents. Providing the theoretical basis for technical issues (in this case the microbiology of coke plant effluent treatment) aids the optimization of existing technologies and the design of new management techniques.
Collapse
|
7
|
Romanis CS, Pearson LA, Neilan BA. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. J Microbiol Methods 2020; 180:106123. [PMID: 33316292 DOI: 10.1016/j.mimet.2020.106123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Municipal wastewater treatment facilities (WWTFs) are prone to the proliferation of cyanobacterial species which thrive in stable, nutrient-rich environments. Dense cyanobacterial blooms frequently disrupt treatment processes and the supply of recycled water due to their production of extracellular polymeric substances, which hinder microfiltration, and toxins, which pose a health risk to end-users. A variety of methods are employed by water utilities for the identification and monitoring of cyanobacteria and their toxins in WWTFs, including microscopy, flow cytometry, ELISA, chemoanalytical methods, and more recently, molecular methods. Here we review the literature on the occurrence and significance of cyanobacterial blooms in WWTFs and discuss the pros and cons of the various strategies for monitoring these potentially hazardous events. Particular focus is directed towards next-generation metagenomic sequencing technologies for the development of site-specific cyanobacterial bloom management strategies. Long-term multi-omic observations will enable the identification of indicator species and the development of site-specific bloom dynamics models for the mitigation and management of cyanobacterial blooms in WWTFs. While emerging metagenomic tools could potentially provide deep insight into the diversity and flux of problematic cyanobacterial species in these systems, they should be considered a complement to, rather than a replacement of, quantitative chemoanalytical approaches.
Collapse
Affiliation(s)
- Caitlin S Romanis
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia.
| |
Collapse
|
8
|
Roy D, Lemay JF, Drogui P, Tyagi RD, Landry D, Rahni M. Identifying the link between MBRs' key operating parameters and bacterial community: A step towards optimized leachate treatment. WATER RESEARCH 2020; 172:115509. [PMID: 31986399 DOI: 10.1016/j.watres.2020.115509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
A MBR treating compost leachate was studied in order to link the operating parameters (solid and hydraulic retention time) to contaminant's specific bacterial catabolic activity. In this context, a lab-scale aerobic membrane bioreactor was operated for 200 days, at solid retention times (SRT) of 30 and 45 days and four different contaminant load rates. Results showed that increasing the food to microorganism ratio (F/M) by increasing the contaminant load rates lessened the selectivity pressure, which allowed the proliferation of subdominant operational taxonomic units (OTU) (relative abundance >3%) that were otherwise inhibited by highly adapted dominant OTUs (relative abundance >10%). Subsequently, increasing the SRT resulted in a lower species richness and the selection of two dominant types of bacteria: 1) genera with low growth rates that feed on non-limiting substrates or substrates with few competitors, and 2) genera with metabolisms that are highly specific to the available substrates and that can outcompete the other genera by using the substrate more efficiently. The bacterial population evolution observed during this study suggests that the mixed liquor population diversity and structure can be modulated with the operating conditions for the bioenhancement of contaminant specific catabolic activity. Identified dominant and subdominant genera were linked to the MBR's NH4+ and COD removal performances. Interestingly, nitrification performances were unaffected by the organic load rate and the Nitrosomonas relative abundance.
Collapse
Affiliation(s)
- Dany Roy
- INRS, 490, Rue de la Couronne, Québec, Qc, G1K 9A9, Canada
| | | | - Patrick Drogui
- INRS, 490, Rue de la Couronne, Québec, Qc, G1K 9A9, Canada.
| | | | - Dany Landry
- Englobe Corp., 505 Boul. de Parc Technologique, Québec, Qc, G1P 4S7, Canada
| | | |
Collapse
|
9
|
Xue J, Schmitz BW, Caton K, Zhang B, Zabaleta J, Garai J, Taylor CM, Romanchishina T, Gerba CP, Pepper IL, Sherchan SP. Assessing the spatial and temporal variability of bacterial communities in two Bardenpho wastewater treatment systems via Illumina MiSeq sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1543-1552. [PMID: 30677920 DOI: 10.1016/j.scitotenv.2018.12.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Next generation sequencing provides new insights into the diversity and ecophysiology of bacteria communities throughout wastewater treatment plants (WWTP), as well as the fate of pathogens in wastewater treatment system. In the present study, we investigated the bacterial communities and human-associated Bacteroidales (HF183) marker in two WWTPs in North America that utilize Bardenpho treatment processes. Although, most pathogens were eliminated during wastewater treatment, some pathogenic bacteria were still observed in final effluents. The HF183 genetic marker demonstrated significant reductions between influent and post-Bardenpho treated samples in each WWTP, which coincided with changes in bacteria relative abundances and community compositions. Consistent with previous studies, the major phyla in wastewater samples were predominantly comprised by Proteobacteria (with Gammaproteobacteria and Alphaproteobacteria among the top two classes), Actinobacteria, Bacteroidetes, and Firmicutes. Dominant genera were often members of Proteobacteria and Firmicutes, including several pathogens of public health concern, such as Pseudomonas, Serratia, Streptococcus, Mycobacterium and Arcobacter. Pearson correlations were calculated to observe the seasonal variation of relative abundances of gene sequences at different levels based on the monthly average temperature. These findings profile how changes in bacterial communities can function as a robust method for monitoring wastewater treatment quality and performance for public and environmental health purposes.
Collapse
Affiliation(s)
- Jia Xue
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Bradley W Schmitz
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, United States of America
| | - Kevin Caton
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Bowen Zhang
- Department of Natural Resources and Environmental Management, Ball State University, Muncie, IN, United States of America
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, 70112, USA
| | - Jone Garai
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, 70112, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Tatiana Romanchishina
- Department of Computer Science, College of Science, Technology, and Health, University of Southern Maine, Portland, ME, United States of America
| | - Charles P Gerba
- WEST Center, University of Arizona, Tucson, AZ, United States of America
| | - Ian L Pepper
- WEST Center, University of Arizona, Tucson, AZ, United States of America
| | - Samendra P Sherchan
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America.
| |
Collapse
|
10
|
Preena PG, Achuthan C, Kumar VJR, Boobal R, Deepa GD, Puthumana J, Poulose S, Surekhamol IS, Singh ISB. Community composition of marine and brackish water ammonia-oxidizing consortia developed for aquaculture application. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1017-1028. [PMID: 31025982 DOI: 10.2166/wst.2019.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To mitigate the toxicity of ammonia in aquaculture systems, marine and brackish water ammonia-oxidizing bacterial consortia have been developed and are used for activation of nitrifying bioreactors integrated to recirculating aquaculture systems. To shed more light on to these biological entities, diversity of both the consortia were analyzed based on random cloning of 16S rRNA gene and ammonia-oxidizing bacterial specific amoA gene sequences. The dendrograms of representative clones on the basis of amplified ribosomal DNA restriction analysis generated 22 and 19 clusters for marine and brackish water nitrifying consortia, respectively. Phylogenetic analysis demonstrated the presence of various autotrophic nitrifiers belonging to α-, β- and γ-Proteobacteria, anaerobic ammonia oxidizers, heterotrophic denitrifiers, Bacteroidetes, and Actinobacteria. Distribution patterns of the organisms within the two consortia were determined using the software Geneious and diversity indices were investigated using Mega 5.0, VITCOMIC and Primer 7. The abundance of ammonia oxidizers was found in the order of 2.21 ± 0.25 × 109 copies/g wet weight of marine consortium and 6.20 ± 0.23 × 107 copies/g of brackish water consortium. Besides, marine ammonia-oxidizing consortium exhibited higher mean population diversity and Shannon Wiener diversity than the brackish water counterparts.
Collapse
Affiliation(s)
- P G Preena
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| | - Cini Achuthan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| | - V J Rejish Kumar
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail: ; Present address: Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, India
| | - R Boobal
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| | - G D Deepa
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| | - Sunitha Poulose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| | - I S Surekhamol
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682016, India E-mail:
| |
Collapse
|
11
|
Seuntjens D, Han M, Kerckhof FM, Boon N, Al-Omari A, Takacs I, Meerburg F, De Mulder C, Wett B, Bott C, Murthy S, Carvajal Arroyo JM, De Clippeleir H, Vlaeminck SE. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants. WATER RESEARCH 2018; 138:37-46. [PMID: 29571087 DOI: 10.1016/j.watres.2017.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (ΘAOB = 1.10, ΘNOB = 1.06-1.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal.
Collapse
Affiliation(s)
- Dries Seuntjens
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Mofei Han
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium; DC WATER, District of Columbia, USA
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | | | - Francis Meerburg
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Chaïm De Mulder
- Biomath, Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | - Charles Bott
- Hampton Roads Sanitation District (HRSD), Virginia Beach, USA
| | | | - Jose Maria Carvajal Arroyo
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Faculty of Science, University of Antwerp, Belgium.
| |
Collapse
|
12
|
Wang M, Keeley R, Zalivina N, Halfhide T, Scott K, Zhang Q, van der Steen P, Ergas SJ. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:845-857. [PMID: 29660710 DOI: 10.1016/j.jenvman.2018.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 05/21/2023]
Abstract
The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| | - Ryan Keeley
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, BSF 132, Tampa, FL 33620-5200, USA.
| | - Nadezhda Zalivina
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| | - Trina Halfhide
- Department of Life Sciences, The University of The West Indies, Natural Sciences Building, New Wing, Room 225, St. Augustine, Trinidad and Tobago.
| | - Kathleen Scott
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, BSF 132, Tampa, FL 33620-5200, USA.
| | - Qiong Zhang
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| | - Peter van der Steen
- Department of Environmental Engineering and Water Technology, IHE Institute for Water Education, PO Box 3015, 2601 DA, Delft, The Netherlands.
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| |
Collapse
|
13
|
Kapoor V, Phan D, Pasha ABMT. Effects of metal oxide nanoparticles on nitrification in wastewater treatment systems: A systematic review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:659-668. [PMID: 29469639 DOI: 10.1080/10934529.2018.1438825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While the variety of engineered nanoparticles used in consumer products continues to grow, the use of metal oxide nanoparticles in electronics, textiles, cosmetics and food packaging industry has grown exponentially in recent years, which will inevitably result in their release into wastewater streams in turn impacting the important biological processes in wastewater treatment plants. Among these processes, nitrification play a critical role in nitrogen removal during wastewater treatment, however, it is sensitive to a wide range of inhibitory substances including metal oxide nanoparticles. Therefore, it is essential to systematically asses the effects of metal oxide nanoparticles on nitrification in biological wastewater treatment systems. In this review we discuss the present scenario of metal oxide nanoparticles and their impact on biological wastewater treatment processes, specifically nitrogen removal through nitrification. We also summarize the various methods used to measure nitrification inhibition by metal oxide nanoparticles and highlight corresponding results obtained using those methods. Finally, the key research gaps that need to be addressed in future are discussed.
Collapse
Affiliation(s)
- Vikram Kapoor
- a Department of Civil and Environmental Engineering , University of Texas at San Antonio , San Antonio , Texas , USA
| | - Duc Phan
- a Department of Civil and Environmental Engineering , University of Texas at San Antonio , San Antonio , Texas , USA
| | - A B M Tanvir Pasha
- a Department of Civil and Environmental Engineering , University of Texas at San Antonio , San Antonio , Texas , USA
| |
Collapse
|
14
|
He R, Zhao D, Xu H, Huang R. Abundance and community structure of ammonia-oxidizing bacteria in activated sludge from different geographic regions in China. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1698-1705. [PMID: 29595172 DOI: 10.2166/wst.2018.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detailed ecological information on ammonia-oxidizing bacteria (AOB) in activated sludge of wastewater treatment plants (WWTPs) is very important to improve the efficiency of wastewater treatment. In this study, activated sludge samples were collected from seven municipal WWTPs located in seven cities in China, and real-time quantitative polymerase chain reaction (qPCR), as well as construction of clone libraries combined with correlation-based data analysis was performed. Further, the effect of geographic distribution and some water quality parameters on the ecological distribution of AOB in activated sludge from WWTPs were investigated. The geographic distribution, the influent concentration of total nitrogen (TN) and ammonia nitrogen (NH4+-N) had significant effects on the abundance of AOB (P < 0.05). However, the community structure of AOB were not significantly affected by geographic distribution, but by water quality parameters including the concentrations of TN and NH4+-N. N. oligotropha lineage was the dominant AOB group in the wastewater treatment systems. The results obtained in this study provide useful information to understand some aspects of the ecological information and influencing factors of AOB in geographically distributed WWTPs.
Collapse
Affiliation(s)
- Rujia He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| | - Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| |
Collapse
|
15
|
Sheng X, Liu R, Chen L, Yin Z, Zhu J. Enrichment and application of nitrifying activated sludge in membrane bioreactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2888-2894. [PMID: 29210676 DOI: 10.2166/wst.2017.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, nitrifying bacteria were enriched in a membrane bioreactor (MBR, R1) and their bioaugmentation effectiveness was evaluated in another two MBRs (R2 and R3). Nitrifying activated sludge (NAS) with high nitrification activity of up to 3,000 mg-N/(L·d)-1 was successfully enriched in R1. The results showed that chemical oxygen demand concentration of 100-200 mg/L had no negative effect on NAS enrichment but reduced the ratio of bacterial nitrifiers. Moreover, the cell concentration of nitrifying bacteria in NAS, which was 3.1 × 1011 cells/L, was similar to that of the commercial bacterium agent. For the bioaugmentation test, the reactor inoculated with 14% NAS achieved a 23% higher NH4+-N removal efficiency than that of the uninoculated reactor. Along with the improvement of nitrification performance, the bacterial nitrifiers abundance and microbial richness remarkably increased after bioaugmentation. These results suggested that the MBR system could efficiently enrich nitrifying bacteria using organic carbon containing culture medium, and potentially act as a side-stream reactor to enhance the nitrification function of the wastewater treatment plant.
Collapse
Affiliation(s)
- Xiaolin Sheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China E-mail:
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China E-mail:
| | - Lujun Chen
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China E-mail: ; School of Environment, Tsinghua University, Beijing, China
| | - Zihua Yin
- College of Life and Environment Science, Shanghai Normal University, Shanghai, China
| | - Jianfeng Zhu
- Zhejiang Zheneng Jiaxing Power Generation Co., Ltd, Jiaxing, China
| |
Collapse
|
16
|
Liu H, Zhu L, Tian X, Yin Y. Seasonal variation of bacterial community in biological aerated filter for ammonia removal in drinking water treatment. WATER RESEARCH 2017; 123:668-677. [PMID: 28710983 DOI: 10.1016/j.watres.2017.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/08/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Biological aerated filter (BAF) is widely used in wastewater treatment plants (WWTPs) and shows potential application of micropolluted drinking water sources with a higher NH4+-N removal efficiency during short warm seasons. Here we adopted a pilot lava-based BAF setup as a pretreatment unit of drinking water treatment plant (DWTP) and achieved a great performance of ammonia removal over a two-year operation using natural river water. We respectively observed 92.62% of NH4+-N removal efficiency, 97.88% of NO2--N removal efficiency in summer, and 77.52% NH4+-N removal efficiency in winter down to 5 °C. Based on DGGE analysis, AOB, NOB, as well as heterotrophic bacteria including genus Flavobacterium and Sphingomonas are responsible for the performance. Nitrosomonas and Nitrospira are found to be the dominant AOB and NOB in the BAF microbiota. The compositions of AOB including Nitrosomonas communis and Nitrosomonas oligotropha are different from the strains previously reported in BAF of WWTPs but similar to the observations in DWPTs. We observed seasonal bacterial shifts between summer and winter groups involved in AOB, NOB and heterotrophic genus Flavobacterium, which may be responsible for the seasonal performance fluctuation. The psychrophilic AOB belonging to Nitrosomonas likely contribute to the recovered NH4+-N removal efficiency when temperature is below 7 °C. Lack of nitrification functional psychrophilic or psychrotolerant NOB may be in charge of the severe nitrite accumulation below 7 °C. Our analysis suggests that the colonization of psychrophilic nitrifying bacteria in BAF needs at least two-year of natural acclimatization and is necessary for all-weather BAF in DWTPs.
Collapse
Affiliation(s)
- Hongyuan Liu
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Liying Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Xiaohe Tian
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yeshi Yin
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| |
Collapse
|
17
|
Eva S. Longterm Monitoring of Nitrification and Nitrifying Communities during Biofilter Activation of Two Marine Recirculation Aquaculture Systems (RAS). ACTA ACUST UNITED AC 2017. [DOI: 10.17352/2455-8400.000029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Chen Y, Lan S, Wang L, Dong S, Zhou H, Tan Z, Li X. A review: Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. CHEMOSPHERE 2017; 174:173-182. [PMID: 28161518 DOI: 10.1016/j.chemosphere.2017.01.129] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
The performance and stabilization of biological wastewater treatment systems 1are closely related to the microbial community structure and dynamics. In this paper, the effects and mechanisms of influent composition, process configuration, operating parameters (dissolved oxygen [DO], pH, hydraulic retention time [HRT] and sludge retention time [SRT]) and environmental condition (temperature) to the change of microbial community structure and process performance (nitrification, denitrification, biological phosphorus removal, organics mineralization and utilization, etc.) are critically reviewed. Furthermore, some strategies for microbial community structure regulation, mainly bioaugmentation, process adjustment and operating parameters optimization, applied in the current wastewater treatment systems are also discussed. Although the recent studies have strengthened our understanding on the relationship between microbial community structure and wastewater treatment process performance, how to fully tap the microbial information, optimize the microbial community structure and maintain the process performance in wastewater treatment systems are still full of challenges.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Longhui Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| |
Collapse
|
19
|
Evaluations of biofilm thickness and dissolved oxygen on single stage anammox process in an up-flow biological aerated filter. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Luo J, Chen H, Han X, Sun Y, Yuan Z, Guo J. Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation–anammox process. FEMS Microbiol Ecol 2017; 93:3003320. [DOI: 10.1093/femsec/fix021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
|
21
|
Mehri I, Lajnef R, Rejab AB, Khessairi A, Cherif H, Ouzari H, Hassen A. Biofilms in bioremediation and wastewater treatment: characterization of bacterial community structure and diversity during seasons in municipal wastewater treatment process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3519-3530. [PMID: 27878485 DOI: 10.1007/s11356-016-8090-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/09/2016] [Indexed: 05/02/2023]
Abstract
The bacterial community structure and diversity were assessed at the scale of rotating biodisk procedure (RB) in a semi-industrial pilot plant. As well, the Salmonella community was particularly monitored, and the effects of ultraviolet (UV-C254) on the bacterial community were studied. The identification of dominant bacteria revealed the presence of beneficial and useful species that could play an important role in the process of wastewater purification. Several species as Enterobacter agglomerans, Cronobacter sakazakii, and Pantoea agglomerans known for their bioremediation activities were revealed in the majority of biofilm samples. Common detection of Salmonella community provides evidence that the RB system did not seriously affect Salmonella. Furthermore, the investigation on the (UV)-C254 inactivation of the whole bacterial community, in secondary treated wastewater, showed variable UV resistance results. No Salmonella detection was registered at a dose of around 1440 mW s cm-2 since a total disappearance of Salmonella was recorded.
Collapse
Affiliation(s)
- Ines Mehri
- Water Research and Technology Centre (CERTE), Borj Cédria Technology Park, P.O. BOX 273, Soliman, 8020, Tunisia
| | - Rim Lajnef
- Water Research and Technology Centre (CERTE), Borj Cédria Technology Park, P.O. BOX 273, Soliman, 8020, Tunisia
| | - Asma Ben Rejab
- Water Research and Technology Centre (CERTE), Borj Cédria Technology Park, P.O. BOX 273, Soliman, 8020, Tunisia
| | - Amel Khessairi
- Water Research and Technology Centre (CERTE), Borj Cédria Technology Park, P.O. BOX 273, Soliman, 8020, Tunisia
| | - Hanene Cherif
- Water Research and Technology Centre (CERTE), Borj Cédria Technology Park, P.O. BOX 273, Soliman, 8020, Tunisia
| | - Hadda Ouzari
- Laboratoire Microorganisme and Biomolécules Actives, Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, 2092, Tunis, Tunisia
| | - Abdennaceur Hassen
- Water Research and Technology Centre (CERTE), Borj Cédria Technology Park, P.O. BOX 273, Soliman, 8020, Tunisia
| |
Collapse
|
22
|
Isazadeh S, Jauffur S, Frigon D. Bacterial community assembly in activated sludge: mapping beta diversity across environmental variables. Microbiologyopen 2016; 5:1050-1060. [PMID: 27762086 PMCID: PMC5221439 DOI: 10.1002/mbo3.388] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/06/2022] Open
Abstract
Effect of ecological variables on community assembly of heterotrophic bacteria at eight full-scale and two pilot-scale activated sludge wastewater treatment plants (AS-WWTPs) were explored by pyrosequencing of 16S rRNA gene amplicons. In total, 39 samples covering a range of abiotic factors spread over space and time were analyzed. A core bacterial community of 24 families detected in at least six of the eight AS-WWTPs was defined. In addition to the core families, plant-specific families (observed at <50% AS-WWTPs) were found to be also important in the community structure. Observed beta diversity was partitioned with respect to ecological variables. Specifically, the following variables were considered: influent wastewater characteristics, season (winter vs. summer), process operations (conventional, oxidation ditch, and sequence batch reactor), reactor sizes (pilot-scale vs. full-scale reactors), chemical stresses defined by ozonation of return activated sludge, interannual variation, and geographical locations. Among the assessed variables, influent wastewater characteristics and geographical locations contributed more in explaining the differences between AS-WWTP bacterial communities with a maximum of approximately 26% of the observed variations. Partitioning of beta diversity is necessary to interpret the inherent variability in microbial community assembly and identify the driving forces at play in engineered microbial ecosystem.
Collapse
Affiliation(s)
- Siavash Isazadeh
- Department of Civil Engineering and Applied MechanicsMcGill UniversityMontrealQuebecCanada
- Present address: Life Sciences GroupAir Liquide Delaware Research & Technology CenterNewarkUSA
| | - Shameem Jauffur
- Department of Civil Engineering and Applied MechanicsMcGill UniversityMontrealQuebecCanada
| | - Dominic Frigon
- Department of Civil Engineering and Applied MechanicsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
23
|
Moreno B, Benitez E. Impact of agricultural management on bacterial laccase-encoding genes with possible implications for soil carbon storage in semi-arid Mediterranean olive farming. PeerJ 2016; 4:e2257. [PMID: 27547563 PMCID: PMC4963216 DOI: 10.7717/peerj.2257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022] Open
Abstract
Background: In this work, we aimed to gain insights into the contribution of soil bacteria to carbon sequestration in Mediterranean habitats. In particular, we aimed to use bacterial laccase-encoding genes as molecular markers for soil organic C cycling. Using rainfed olive farming as an experimental model, we determined the stability and accumulation levels of humic substances and applied these data to bacterial laccase-encoding gene expression and diversity in soils under four different agricultural management systems (bare soils under tillage/no tillage and vegetation cover under chemical/mechanical management). Materials and Methods: Humic C (> 104 Da) was subjected to isoelectric focusing. The GC-MS method was used to analyze aromatic hydrocarbons. Real-Time PCR quantification and denaturing gradient gel electrophoresis (DGGE) for functional bacterial laccase-like multicopper oxidase (LMCO)-encoding genes and transcripts were also carried out. Results: Soils under spontaneous vegetation, eliminated in springtime using mechanical methods for more than 30 years, showed the highest humic acid levels as well as the largest bacterial population rich in laccase genes and transcripts. The structure of the bacterial community based on LMCO genes also pointed to phylogenetic differences between these soils due to the impact of different management systems. Soils where herbicides were used to eliminate spontaneous vegetation once a year and those where pre-emergence herbicides resulted in bare soils clustered together for DNA-based DGGE analysis, which indicated a certain amount of microbial selection due to the application of herbicides. When LMCO-encoding gene expression was studied, soils where cover vegetation was managed either with herbicides or with mechanical methods showed less than 10% similarity, suggesting that the type of weed management strategy used can impact weed community composition and consequently laccase substrates derived from vegetation decay. Conclusions: We suggest that the low humic acid content retrieved in the herbicide-treated soils was mainly related to the type (due to vegetal cover specialization) and smaller quantity (due to lower vegetal biomass levels) of phenolic substrates for laccase enzymes involved in humification processes. We also found that spontaneous vegetal cover managed using mechanical methods could be the best option for achieving C stabilization in rainfed Mediterranean agroecosystems.
Collapse
Affiliation(s)
- Beatriz Moreno
- Department of Environmental Protection, CSIC-Estacion Experimental del Zaidin (EEZ) , Granada , Spain
| | - Emilio Benitez
- Department of Environmental Protection, CSIC-Estacion Experimental del Zaidin (EEZ) , Granada , Spain
| |
Collapse
|
24
|
Kapoor V, Li X, Chandran K, Impellitteri CA, Santo Domingo JW. Use of functional gene expression and respirometry to study wastewater nitrification activity after exposure to low doses of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6443-6450. [PMID: 26627696 DOI: 10.1007/s11356-015-5843-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Autotrophic nitrification in biological nitrogen removal systems has been shown to be sensitive to the presence of heavy metals in wastewater treatment plants. Using transcriptase-quantitative polymerase chain reaction (RT-qPCR) data, we examined the effect of copper on the relative expression of functional genes (i.e., amoA, hao, nirK, and norB) involved in redox nitrogen transformation in batch enrichment cultures obtained from a nitrifying bioreactor operated as a continuous reactor (24-h hydraulic retention time). 16S ribosomal RNA (rRNA) gene next-generation sequencing showed that Nitrosomonas-like populations represented 60-70% of the bacterial community, while other nitrifiers represented <5%. We observed a strong correspondence between the relative expression of amoA and hao and ammonia removal in the bioreactor. There were no considerable changes in the transcript levels of amoA, hao, nirK, and norB for nitrifying samples exposed to copper dosages ranging from 0.01 to 10 mg/L for a period of 12 h. Similar results were obtained when ammonia oxidation activity was measured via specific oxygen uptake rate (sOUR). The lack of nitrification inhibition by copper at doses lower than 10 mg/L may be attributed to the role of copper as cofactor for ammonia monooxygenase or to the sub-inhibitory concentrations of copper used in this study. Overall, these results demonstrate the use of molecular methods combined with conventional respirometry assays to better understand the response of wastewater nitrifying systems to the presence of copper.
Collapse
Affiliation(s)
- Vikram Kapoor
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Xuan Li
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
| | | | - Jorge W Santo Domingo
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| |
Collapse
|
25
|
Bellucci M, Ofiţeru ID, Beneduce L, Graham DW, Head IM, Curtis TP. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors. Microb Biotechnol 2015; 8:590-603. [PMID: 25874592 PMCID: PMC4408191 DOI: 10.1111/1751-7915.12284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 11/30/2022] Open
Abstract
The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the ‘paradox of enrichment’ which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation.
Collapse
Affiliation(s)
- Micol Bellucci
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Foggia, via Napoli 25, Foggia, 71122, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Spychała M, Starzyk J. Bacteria in non-woven textile filters for domestic wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2015; 36:937-945. [PMID: 25318829 DOI: 10.1080/09593330.2014.969326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was preliminary identification of heterotrophic and ammonia oxidizing bacteria (AOB) cell concentration in the cross-sectional profile of geotextile filters for wastewater treatment. Filters of thicknesses 3.6 and 7.2 mm, made of non-woven textile TS20, were supplied with septic tank effluent and intermittently dosed and filtered under hydrostatic pressure. The cumulative loads of chemical oxygen demand (COD) and total solids were about 1.36 and 1.06 kg/cm2, respectively. The filters under analysis reached a relatively high removal efficiency for organic pollution 70-90% for biochemical oxygen demand (BOD5) and 60-85% for COD. The ammonia nitrogen removal efficiency level proved to be unstable (15-55%). Biomass samples for dry mass identification were taken from two regions: continuously flooded with wastewater and intermittently flooded with wastewater. The culturable heterotrophic bacteria were determined as colony-forming units (CFUs) on microbiological-selective media by means of the plate method. AOB and nitrite oxidizing bacteria (NOB) were examined using the FISH technique. A relatively wide range of heterotrophic bacteria was observed from 7.4×10(5)/cm2 to 3.8×10(6)/cm2 in geotextile layers. The highest concentration of heterotrophic bacteria (3.8×10(6)/cm2) was observed in the first layer of the textile filter. AOB were identified occasionally--about 8-15% of all bacteria colonizing the last filter layer, but occasionally much higher concentrations and ammonia nitrogen efficiency were achieved. Bacteria oxidizing nitrite to nitrate were not observed. The relation of total and organic fraction of biomass to culturable heterotrophic bacteria was also found.
Collapse
Affiliation(s)
- Marcin Spychała
- a Department of Hydraulic and Sanitary Engineering , Poznan University of Life Sciences , 60-649 Poznań, Piątkowska St. 94A, Poland
| | | |
Collapse
|
27
|
Eyice Ö, Ince O, Ince BK. Monitoring the abundance and the activity of ammonia-oxidizing bacteria in a full-scale nitrifying activated sludge reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2328-2334. [PMID: 25185496 DOI: 10.1007/s11356-014-3519-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Cell-specific ammonia oxidation rate (AOR) has been suggested to be an indicator of the performance of nitrification reactors and to be used as an operational parameter previously. However, published AOR values change by orders of magnitude and studies investigating full-scale nitrification reactors are limited. Therefore, this study aimed at quantifying ammonia-oxidizing bacteria (AOB) and estimating their in situ cell-specific AOR in a full-scale activated sludge reactor treating combined domestic and industrial wastewaters. Results showed that cell-specific AOR changed between 5.30 and 9.89 fmol cell(-1) h(-1), although no significant variation in AOB cell numbers were obtained (1.54E + 08 ± 0.22 cell/ml). However, ammonia-removal efficiency varied largely (52-79 %) and was proportional to the cell-specific AOR in the reactor. This suggested that the cell-specific AOR might be the factor affecting the biological ammonia-removal efficiency of nitrification reactors independent of the AOB number. Further investigation is needed to establish an empirical relationship to use cell-specific AOR as a parameter to operate full-scale nitrification systems more effectively.
Collapse
Affiliation(s)
- Ö Eyice
- School of Life Sciences, University of Warwick, Coventry, UK, CV4 7AL,
| | | | | |
Collapse
|
28
|
Correlation of seasonal nitrification failure and ammonia-oxidizing community dynamics in a wastewater treatment plant treating water from a saline thermal spa. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0811-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Pan M, Henry LG, Liu R, Huang X. Nitrogen removal from slaughterhouse wastewater through partial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 11 degreeC. ENVIRONMENTAL TECHNOLOGY 2014; 35:470-477. [PMID: 24600887 DOI: 10.1080/09593330.2013.832336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study is aimed to examine the removal of nitrogen from high strength slaughterhouse wastewater at 11 degreeC via partial nitrification followed by denitrification (PND), using the intermittently aerated sequencing batch reactor (IASBR) technology. The slaughterhouse wastewater contained chemical oxygen demand (COD) of 6068 mg/L, total nitrogen (TN) of 571 mg/L, total phosphorus (TP) of 51 mg/L and suspended solids of 1.8 g/L, on average. The laboratory-scale IASBR reactors had a working volume of 8 L and was operated at an average organic loading rate of 0.61 g COD/(L-d). At the cycle duration of 12 h, COD was efficiently removed under three aeration rates of 0.4, 0.6 and 0.8 L air/min. Among the three aeration rates, the optimum aeration rate was 0.6 L air/min with removals of COD, TN, and TP of 98%, 98%, and 96%, respectively. The treated wastewater met the Irish emission standards. The microbial community analysis by fluorescence in situ hybridization shows 12 +/- 0.4% of ammonium oxidizing bacteria, and 7.2 - 0.4% of nitrite oxidizing bacteria in the general bacteria (EUB) in the activated sludge at the aeration rate of 0.6 L air/min, leading to efficient partial nitrification. PND effectively removed nitrogen from slaughterhouse wastewater at 11degreeC, but PND efficiency was dependent on the aeration rate applied. PND efficiencies were up to 75.8%, 70.1% and only 25.4% at the aeration rates of 0.4, 0.6, and 0.8 L air/min.
Collapse
Affiliation(s)
- Min Pan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Liam Garry Henry
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, People's Republic of China
| | - Xiaoming Huang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| |
Collapse
|
30
|
Gao J, Luo X, Wu G, Li T, Peng Y. Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems. Appl Microbiol Biotechnol 2013; 98:3339-54. [DOI: 10.1007/s00253-013-5428-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
31
|
Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). PLoS One 2013; 8:e64577. [PMID: 23741344 PMCID: PMC3669304 DOI: 10.1371/journal.pone.0064577] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L.) to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change.
Collapse
|
32
|
Bellucci M, Ofiţeru ID, Head IM, Curtis TP, Graham DW. Nitrification in hybrid bioreactors treating simulated domestic wastewater. J Appl Microbiol 2013; 115:621-30. [PMID: 23611422 DOI: 10.1111/jam.12233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 11/27/2022]
Abstract
AIM To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors). METHODS AND RESULTS Three bench-scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5-day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2.5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia-oxidizing bacteria, AOB; nitrite-oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB-NOB activity were less apparent, resulting in incomplete nitrification. CONCLUSIONS Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.
Collapse
Affiliation(s)
- M Bellucci
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
33
|
Effects of non-indigenous oysters on microbial diversity and ecosystem functioning. PLoS One 2012; 7:e48410. [PMID: 23144762 PMCID: PMC3483273 DOI: 10.1371/journal.pone.0048410] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH(4)(+) and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO(2) and CH(4)) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO(2) (13 fold greater) and CH(4) (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH(4)(+) were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance.
Collapse
|
34
|
Winkler MKH, Kleerebezem R, de Bruin LMM, Verheijen PJT, Abbas B, Habermacher J, van Loosdrecht MCM. Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Appl Microbiol Biotechnol 2012; 97:7447-58. [DOI: 10.1007/s00253-012-4472-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
35
|
Microwave radiation and reactor design influence microbial communities during methane fermentation. ACTA ACUST UNITED AC 2012; 39:1397-405. [DOI: 10.1007/s10295-012-1141-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/25/2012] [Indexed: 01/19/2023]
Abstract
Abstract
The effect of reactor design and method of heating on the efficiency of methane fermentation and composition of microbial communities, especially methanogenic Archaea, were determined. The research was carried out using submerge- and trickling-bed reactors fed with wastewater and the heat supply into the reactors included a convection heating method and microwave radiation. The polymerase chain reaction-denaturing gradient gel electrophoresis and relative real-time PCR were used in order to assess the biofilm communities. The best fermentation results and the highest abundance of methanogenic Archaea in biomass were observed in microwave heated trickling-bed reactors. The research proved that in reactors of identical design, the application of microwaves enabled a higher fermentation efficiency to be obtained and simultaneously increased the diversity of methanogenic Archaea communities that favors process stability. All the identified sequences of Archaea belonged to Methanosarcina sp., suggesting that species from this genera are susceptible to non-thermal effects of microwaves. There were no effects from microwaves on the bacterial communities in both types of reactors, however, the bacterial species composition varied in the reactors of different design.
Collapse
|
36
|
Almstrand R, Lydmark P, Lindgren PE, Sörensson F, Hermansson M. Dynamics of specific ammonia-oxidizing bacterial populations and nitrification in response to controlled shifts of ammonium concentrations in wastewater. Appl Microbiol Biotechnol 2012; 97:2183-91. [DOI: 10.1007/s00253-012-4047-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/01/2022]
|
37
|
Cabrol L, Malhautier L, Poly F, Lepeuple AS, Fanlo JL. Bacterial dynamics in steady-state biofilters: beyond functional stability. FEMS Microbiol Ecol 2012; 79:260-71. [PMID: 22029727 DOI: 10.1111/j.1574-6941.2011.01213.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.
Collapse
Affiliation(s)
- Léa Cabrol
- Veolia Environnement Recherche et Innovation, Maisons Laffitte, France
| | | | | | | | | |
Collapse
|
38
|
Yan Q, van der Gast CJ, Yu Y. Bacterial community assembly and turnover within the intestines of developing zebrafish. PLoS One 2012; 7:e30603. [PMID: 22276219 PMCID: PMC3261916 DOI: 10.1371/journal.pone.0030603] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 12/19/2011] [Indexed: 12/20/2022] Open
Abstract
Background The majority of animal associated microorganisms are present in digestive tract communities. These intestinal communities arise from selective pressures of the gut habitats as well as host's genotype are regarded as an extra ‘organ’ regulate functions that have not evolved wholly on the host. They are functionally essential in providing nourishment, regulating epithelial development, and influencing immunity in the vertebrate host. As vertebrates are born free of microorganisms, what is poorly understood is how intestinal bacterial communities assemble and develop in conjunction with the development of the host. Methodology/Principal Findings Set within an ecological framework, we investigated the bacterial community assembly and turnover within the intestinal habitats of developing zebrafish (from larvae to adult animals). Spatial and temporal species-richness relationships and Mantel and partial Mantel tests revealed that turnover was low and that richness and composition was best predicted by time and not intestinal volume (habitat size) or changes in food diet. We also observed that bacterial communities within the zebrafish intestines were deterministically assembled (reflected by the observed low turnover) switching to stochastic assembly in the later stages of zebrafish development. Conclusions/Significance This study is of importance as it provides a novel insight into how intestinal bacterial communities assemble in tandem with the host's development (from early to adult stages). It is our hope that by studying intestinal microbiota of this vertebrate model with such or some more refined approaches in the future could well provide ecological insights for clinical benefit. In addition, this study also adds to our still fledgling knowledge of how spatial and temporal species-richness relationships are shaped and provides further mounting evidence that bacterial community assembly and dynamics are shaped by both deterministic and stochastic considerations.
Collapse
Affiliation(s)
- Qingyun Yan
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Yuhe Yu
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
39
|
Portillo MC, Santana M, Gonzalez JM. Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften 2011; 99:43-53. [PMID: 22159635 DOI: 10.1007/s00114-011-0867-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/15/2011] [Accepted: 11/18/2011] [Indexed: 12/01/2022]
Abstract
Organic sulfur and nitrogen are major reservoirs of these elements in terrestrial systems, although their cycling remains to be fully understood. Both sulfur and nitrogen mineralization are directly related to microbial metabolism. Mesophiles and thermophiles were isolated from temperate environments. Thermophilic isolates were classified within the Firmicutes, belonging to the Geobacillus, Brevibacillus, and Ureibacillus genera, and showed optimum growth temperatures between 50°C and 60°C. Sulfate and ammonium produced were higher during growth of thermophiles both for isolated strains and natural bacterial assemblages. They were positively related to organic nutrient load. Temperature also affected the release of sulfate and ammonium by thermophiles. Quantitative, real-time reverse-transcription polymerase chain reaction on environmental samples indicated that the examined thermophilic Firmicutes represented up to 3.4% of the total bacterial community RNA. Temperature measurements during summer days showed values above 40°C for more than 10 h a day in soils from southern Spain. These results support a potential role of thermophilic bacteria in temperate terrestrial environments by mineralizing organic sulfur and nitrogen ruled by the existence and length of warm periods.
Collapse
Affiliation(s)
- M C Portillo
- IRNAS-CSIC, Avda. Reina Mercedes 10, Sevilla, 41012, Spain
| | | | | |
Collapse
|
40
|
Wang L, Zheng Z, Luo X, Zhang J. Performance and mechanisms of a microbial-earthworm ecofilter for removing organic matter and nitrogen from synthetic domestic wastewater. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:245-253. [PMID: 21890268 DOI: 10.1016/j.jhazmat.2011.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 07/22/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
The performance of a microbial-earthworm ecofilter for the treatment of synthetic domestic wastewater is evaluated, and the mechanisms of organic matter and nitrogen transformation investigated. Vermifiltration efficiently reduced chemical oxygen demand (COD) and ammonia nitrogen (NH(3)-N) from the influent. A combination of soil with sawdust possessed higher porosity and specific surface area than other media, and this microporous structure together with wormcast surface greatly facilitated COD reduction at depths from 5 to 35 cm. Nitrogen variations in wastewater were influenced by soil properties, earthworm activities, and wormcast characteristics. Their interaction with added nitrogen determined soil nitrogen distribution. In addition, denaturing gradient gel electrophoresis (DGGE) profiles revealed a highly diverse community of ammonia-oxidizing bacteria (AOB) and Nitrospira in soil layers. There was a positive correlation between the Shannon biodiversity index for AOB and decreasing NH(3)-N concentration, indicating that dominant soil microbes played a major role in removing NH(3)-N and nitrogen conversion. In contrast to previous reports, identification of retrieved sequences of AOB species showed that most belonged to an uncertain AOB genus. This biofiltration system is a low cost, efficient alternative for decontaminating local domestic wastewater.
Collapse
Affiliation(s)
- Longmian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | | | | | | |
Collapse
|
41
|
Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Sherry A, Swainsbury R, Voordouw G, Voordouw JK, Head IM. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 2011; 14:387-404. [PMID: 21824242 PMCID: PMC3490369 DOI: 10.1111/j.1462-2920.2011.02521.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO(2) -reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense - an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems.
Collapse
Affiliation(s)
- Casey R J Hubert
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers. Appl Environ Microbiol 2011; 77:6502-9. [PMID: 21764959 DOI: 10.1128/aem.00576-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to environmental perturbations.
Collapse
|
43
|
Saikaly PE, Oerther DB. Diversity of dominant bacterial taxa in activated sludge promotes functional resistance following toxic shock loading. MICROBIAL ECOLOGY 2011; 61:557-567. [PMID: 21153808 DOI: 10.1007/s00248-010-9783-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Examining the relationship between biodiversity and functional stability (resistance and resilience) of activated sludge bacterial communities following disturbance is an important first step towards developing strategies for the design of robust biological wastewater treatment systems. This study investigates the relationship between functional resistance and biodiversity of dominant bacterial taxa by subjecting activated sludge samples, with different levels of biodiversity, to toxic shock loading with cupric sulfate (Cu[II]), 3,5-dichlorophenol (3,5-DCP), or 4-nitrophenol (4-NP). Respirometric batch experiments were performed to determine the functional resistance of activated sludge bacterial community to the three toxicants. Functional resistance was estimated as the 30 min IC(50) or the concentration of toxicant that results in a 50% reduction in oxygen utilization rate compared to a referential state represented by a control receiving no toxicant. Biodiversity of dominant bacterial taxa was assessed using polymerase chain reaction-terminal restriction fragment length polymorphism (PCR-T-RFLP) targeting the 16S ribosomal RNA (16S rRNA) gene. Statistical analysis of 30 min IC(50) values and PCR-T-RFLP data showed a significant positive correlation (P < 0.05) between functional resistance and microbial diversity for each of the three toxicants tested. To our knowledge, this is the first study showing a positive correlation between biodiversity of dominant bacterial taxa in activated sludge and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading.
Collapse
Affiliation(s)
- Pascal E Saikaly
- Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | | |
Collapse
|
44
|
Ayarza JM, Erijman L. Balance of neutral and deterministic components in the dynamics of activated sludge floc assembly. MICROBIAL ECOLOGY 2011; 61:486-95. [PMID: 20972561 DOI: 10.1007/s00248-010-9762-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/10/2010] [Indexed: 05/20/2023]
Abstract
Understanding the processes that generate patterns of community structure is a central focus of ecological research. With that aim, we manipulated the structure of bacterial activated sludge to test the influence of the species richness and composition of bacterial communities on the dynamics of activated sludge floc assembly in lab-scale bioreactors. Bacterial community structure was analyzed using denaturing gradient gel electrophoresis of RT-PCR amplified 16S rRNA. Fingerprinting of four parallel reactors, started with the same source communities added in different proportions, converged to patterns that were more similar than expected by chance, suggesting a deterministic selection in floc development. Evidence for neutral dynamics was suggested by the dependence of the rate of replacement of species (bacterial taxa-time relationships) on the number of available species in the source community. Further indication of stochastic dynamics was obtained by the application of the Sloan neutral model for prokaryotes. The fitting of the observed data to the model predictions revealed that the importance of the stochastic component increased with the size of the reservoir of species richness from which the community is drawn. Taken together, the results illustrate how both neutral and deterministic dynamics operate simultaneously in the assembly of the bacterial floc and show that the balance of the two depends on the richness of the source community.
Collapse
Affiliation(s)
- Joaquín M Ayarza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
45
|
Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 2011; 90:837-49. [PMID: 21424795 DOI: 10.1007/s00253-011-3191-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
Biofilters are packed-bed bioreactors where contaminants, once transferred from the gas phase to the biofilm, are oxidized by diverse and complex communities of attached microorganisms. Over the last decade, more and more studies aimed at opening the back box of biofiltration by unraveling the biodiversity-ecosystem function relationship. In this review, we report the insights provided by the microbial ecology approach in biofilters and we emphasize the parallels existing with other engineered ecosystems used for wastewater treatment, as they all constitute relevant model ecosystems to explore ecological issues. We considered three characteristic ecological indicators: the density, the diversity, and the structure of the microbial community. Special attention was paid to the temporal and spatial dynamics of each indicator, insofar as it can disclose the potential relationship, or absence of relation, with any operating or functional parameter. We also focused on the impact of disturbance regime on the microbial community structure, in terms of resistance, resilience, and memory. This literature review led to mitigated conclusions in terms of biodiversity-ecosystem function relationship. Depending on the environmental system itself and the way it is investigated, the spatial and temporal dynamics of the microbial community can be either correlated (e.g., spatial stratification) or uncoupled (e.g., temporal instability) to the ecosystem function. This lack of generality shows the limits of current 16S approach in complex ecosystems, where a functional approach may be more suitable.
Collapse
|
46
|
|
47
|
Abstract
Ammonia-oxidizing bacteria (AOB) have a key role in the conversion of ammonia to nitrite in wastewater treatment plants (WWTPs). The characterization of AOB communities in such systems requires the use of genomic methods as AOB are difficult to isolate from environmental samples. Fluorescence in situ hybridization (FISH) using fluorescently labeled probes targeting 16S rRNA molecules provides a robust tool for the detection and quantification of AOB populations in biofilms and activated sludge flocs. The abundance of AOB may be also determined by real-time quantitative polymerase chain reaction (qPCR) using primers that amplify either the 16S rRNA or amoA genes. The evaluation of changes in the AOB community in time and space can be undertaken by PCR amplification of these gene fragments followed by denaturing gradient gel electrophoresis (PCR-DGGE). In this chapter, we summarize the most commonly applied procedures for the analysis of the AOB in wastewater, emphasizing their advantages and limitations.
Collapse
Affiliation(s)
- Micol Bellucci
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
48
|
Hesham AEL, Qi R, Yang M. Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis. J Environ Sci (China) 2011; 23:2049-2054. [PMID: 22432337 DOI: 10.1016/s1001-0742(10)60647-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The combination of PCR amplification of 16S rRNA genes with denaturing gradient gel electrophoresis (DGGE) analysis was used to reveal the compositions and dynamics of bacterial communities in a sewage treatment plant with two systems, i.e., an anoxic-anaerobic-aerobic system (inverted A20) and an anaerobic-anoxic-aerobic one (conventional A20) over a period from February to July 2009, during which both systems experienced serious sludge bulking problems. The DGGE patterns showed that there were many common bands in both systems, suggesting the high similarity of bacterial communities of the two systems. Meanwhile, the moving window correlation analysis showed that the two systems experienced different microbial community structure changes during the period, which might be related with the different situations of the occurrence and disappearance of sludge bulking, as being reflected by sludge volume index (SVI) values. Major bands of DGGE patterns of sludge samples were further sequenced. Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria, Firmicutes, Bacteroidetes/Chlorobi group and alpha- and beta-Proteobacteria. Two sequences showed high similarities to typical filamentous bacteria Microthrix parvicella and Nostocoida limicola I, indicating that these bacterial species have been involved in the sludge bulking problems.
Collapse
Affiliation(s)
- Abd El-latif Hesham
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | |
Collapse
|
49
|
Yu T, Li D, Qi R, Li ST, Xu SW, Yang M. Structure and dynamics of nitrifier populations in a full-scale submerged membrane bioreactor during start-up. Appl Microbiol Biotechnol 2010; 90:369-76. [DOI: 10.1007/s00253-010-3030-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
50
|
Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Appl Environ Microbiol 2010; 77:351-4. [PMID: 21075891 DOI: 10.1128/aem.01316-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complex microbial communities exhibit a large diversity, hampering differentiation by DNA fingerprinting. Herein, differential display-denaturing gradient gel electrophoresis is proposed. By adding a nucleotide to the 3' ends of PCR primers, 16 primer pairs and fingerprints were generated per community. Complexity reduction in each partial fingerprint facilitates sample comparison.
Collapse
|