1
|
Saez JM, Raimondo EE, Costa-Gutierrez SB, Aparicio JD, Mosca Angelucci D, Donati E, Polti MA, Tomei MC, Benimeli CS. Enhancing environmental decontamination and sustainable production through synergistic and complementary interactions of actinobacteria and fungi. Heliyon 2025; 11:e42135. [PMID: 39991206 PMCID: PMC11847236 DOI: 10.1016/j.heliyon.2025.e42135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Actinobacteria and fungi are renowned for their metabolic diversity and adaptability to various environments, thus exhibiting significant potential for environmental decontamination and sustainable production. Both actinobacteria and fungi excel in producing diverse secondary metabolites and enzymes, offering valuable tools for industrial and environmental applications. Their ability to detoxify metals and degrade a wide range of organic pollutants, such as pesticides, hydrocarbons, and dyes, positions them as promising candidates for bioremediation. Recent shifts in microbiological sciences emphasize research on mixed microbial populations. Microbial interactions in mixed communities emulate natural processes and yield emergent properties such as stability, robustness, and enhanced metabolism. Co-cultures of actinobacteria and fungi harness a broader range of genes and metabolic capabilities through their distinctive interactions, opening new avenues for developing novel products and/or technologies. This review provides a critical analysis of the present status of knowledge regarding the potential of actinobacteria-fungi co-cultures with a particular focus on novel functionalities and heightened production efficiency. These consortia are promising in several fields, from environmental applications to the biosynthesis of industrially relevant metabolites and enzymes, and enhancements in agricultural production. Although challenges still exist, their potential to address complex problems has been demonstrated and deserves further investigation.
Collapse
Affiliation(s)
- Juliana M. Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Enzo E. Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Stefanie B. Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juan D. Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Domenica Mosca Angelucci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Enrica Donati
- Institute for Biological Systems, National Research Council (CNR-ISB), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Marta A. Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Maria C. Tomei
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Claudia S. Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| |
Collapse
|
2
|
Xie J, Sun X, Xia Y, Tao L, Tan T, Zhang N, Xun W, Zhang R, Kovács ÁT, Xu Z, Shen Q. Bridging the Gap: Biofilm-mediated establishment of Bacillus velezensis on Trichoderma guizhouense mycelia. Biofilm 2024; 8:100239. [PMID: 39634280 PMCID: PMC11616078 DOI: 10.1016/j.bioflm.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Bacterial-fungal interactions (BFIs) are important in ecosystem dynamics, especially within the soil rhizosphere. The bacterium Bacillus velezensis SQR9 and the fungus Trichoderma guizhouense NJAU 4742 have gathered considerable attention due to their roles in promoting plant growth and protecting their host against pathogens. In this study, we utilized these two model microorganisms to investigate BFIs. We firstly demonstrate that while co-inoculation of B. velezensis and T. guizhouense could promote tomato growth, these two microorganisms display mutual antagonism on agar solidified medium. To resolve this contradiction, we developed an inoculation method, that allows B. velezensis colonization of T. guizhouense hyphae and performed a transcriptome analysis. During colonization of the fungal hyphae, B. velezensis SQR9 upregulates expression of biofilm related genes (e.g. eps, tasA, and bslA) that is distinct from free-living cells. This result suggested an intricate association between extracellular matrix expression and hyphae colonization. In accordance, deletion epsD, tasA, or both epsD and tasA genes of B. velezensis diminished colonization of the T. guizhouense hyphae. The insights from our study demonstrate that soil BFIs are more complex than we understood, potentially involving both competition and cooperation. These intricate biofilm-mediated BFI dynamics might contribute to the remarkable diversity observed within soil microbiota, providing a fresh perspective for further exploration of BFIs in the plant rhizosphere.
Collapse
Affiliation(s)
- Jiyu Xie
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanwei Xia
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lili Tao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Taimeng Tan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ákos T. Kovács
- Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
4
|
Li J, Hong M, Lv J, Tang R, Wang R, Yang Y, Liu N. Enhancement on migration and biodegradation of Diaphorobacter sp. LW2 mediated by Pythium ultimum in soil with different particle sizes. Front Microbiol 2024; 15:1391553. [PMID: 38841075 PMCID: PMC11150788 DOI: 10.3389/fmicb.2024.1391553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction The composition and structure of natural soil are very complex, leading to the difficult contact between hydrophobic organic compounds and degrading-bacteria in contaminated soil, making pollutants hard to be removed from the soil. Several researches have reported the bacterial migration in unsaturated soil mediated by fungal hyphae, but bacterial movement in soil of different particle sizes or in heterogeneous soil was unclear. The remediation of contaminated soil enhanced by hyphae still needs further research. Methods In this case, the migration and biodegradation of Diaphorobacter sp. LW2 in soil was investigated in presence of Pythium ultimum. Results Hyphae could promote the growth and migration of LW2 in culture medium. It was also confirmed that LW2 was able to migrate in the growth direction and against the growth direction along hyphae. Mediated by hyphae, motile strain LW2 translocated over 3 cm in soil with different particle size (CS1, 1.0-2.0 mm; CS2, 0.5-1.0mm; MS, 0.25-0.5 mm and FS, <0.25 mm), and it need shorter time in bigger particle soils. In inhomogeneous soil, hyphae participated in the distribution of introduced bacteria, and the total number of bacteria increased. Pythium ultimum enhanced the migration and survival of LW2 in soil, improving the bioremediation of polluted soil. Discussion The results of this study indicate that the mobilization of degrading bacteria mediated by Pythium ultimum in soil has great potential for application in bioremediation of contaminated soil.
Collapse
Affiliation(s)
- Jialu Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Jing Lv
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Rui Tang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Ruofan Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Yadong Yang
- School of Environmental Science and Engineering, Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng Institute of Technology, Yancheng, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Wang Y, Zou Q. Deciphering Microbial Adaptation in the Rhizosphere: Insights into Niche Preference, Functional Profiles, and Cross-Kingdom Co-occurrences. MICROBIAL ECOLOGY 2024; 87:74. [PMID: 38771320 PMCID: PMC11108897 DOI: 10.1007/s00248-024-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.
Collapse
Affiliation(s)
- Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
6
|
Hao H, Yue Y, Chen Q, Yang Y, Kuai B, Wang Q, Xiao T, Chen H, Zhang J. Effects of an efficient straw decomposition system mediated by Stropharia rugosoannulata on soil properties and microbial communities in forestland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170226. [PMID: 38280599 DOI: 10.1016/j.scitotenv.2024.170226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Cultivation of Stropharia rugosoannulata with straw in forestland is effective for straw biodegradation and can prevent the waste of straw resources and environmental pollution and generate economic benefits. However, there is a lack of systematic evaluation of spent mushroom substrate (SMS) input into forestland, such as soil properties and microbial succession. In this experiment, 0 (CK), 10 (SA), 20 (SB), 30 (SC), 40 (SD), and 50 (SE) kg/m2 straw were used to cultivate S. rugosoannulata, and two soil layers (0-10 cm, 10-20 cm) of the cultivated forestland were analyzed. The results indicated that SMS significantly promoted nutrient accumulation in forestland. The bacterial alpha diversity in the SC treatment group was greater than that in the control and gradually decreased to the control level with interannual changes, while the trend of fungal alpha diversity was opposite to that of bacterial alpha diversity. Furthermore, the SC treatment group positively affected soil nitrogen metabolism-related microorganisms for two consecutive years and significantly promoted tree growth. Habitat niche breadth and null model analysis revealed that bacterial communities were more sensitive than fungal communities after SMS input. Linear mixed model (LMM) analysis revealed that SMS supplementation significantly positively affected bacteria (Gammaproteobacteria and Bacteroidota) and significantly negatively affected fungi (Coniochaetales). The constructed fungal-bacterial co-occurrence networks exhibited modularity, and the five types of bacteria were significantly correlated with soil organic matter (SOM), soil organic carbon (SOC), available potassium (AK), available phosphorus (AAP) and available nitrogen (AN) levels. The structural equation model (SEM) showed that bacterial diversity responded more to changes in soil nutrients than did fungal diversity. Overall, 30 kg/m2 of straw decomposition and 2 years of continuous cultivation were beneficial to soil health. This study provides new insights into the rational decomposition of straw and maintenance of forestland ecological balance by S. rugosoannulata.
Collapse
Affiliation(s)
- Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yihong Yue
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qun Chen
- School of Biology Food and Environment, Hefei University, Hefei 23060, China
| | - Yan Yang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tingting Xiao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
7
|
Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Ritsema C, Geissen V, Sha X. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118912. [PMID: 37678020 DOI: 10.1016/j.jenvman.2023.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Moutai Institute, Renhuai, 564500, PR China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yuanze Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Kelu Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; Moutai Institute, Renhuai, 564500, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China
| | - Coen Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Xue Sha
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China.
| |
Collapse
|
8
|
Embacher J, Zeilinger S, Kirchmair M, Rodriguez-R LM, Neuhauser S. Wood decay fungi and their bacterial interaction partners in the built environment – A systematic review on fungal bacteria interactions in dead wood and timber. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Hanusch M, He X, Janssen S, Selke J, Trutschnig W, Junker RR. Exploring the Frequency and Distribution of Ecological Non-monotonicity in Associations among Ecosystem Constituents. Ecosystems 2023; 26:1819-1840. [PMID: 38106357 PMCID: PMC10721710 DOI: 10.1007/s10021-023-00867-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/06/2023] [Indexed: 12/19/2023]
Abstract
Complex links between biotic and abiotic constituents are fundamental for the functioning of ecosystems. Although non-monotonic interactions and associations are known to increase the stability, diversity, and productivity of ecosystems, they are frequently ignored by community-level standard statistical approaches. Using the copula-based dependence measure qad, capable of quantifying the directed and asymmetric dependence between variables for all forms of (functional) relationships, we determined the proportion of non-monotonic associations between different constituents of an ecosystem (plants, bacteria, fungi, and environmental parameters). Here, we show that up to 59% of all statistically significant associations are non-monotonic. Further, we show that pairwise associations between plants, bacteria, fungi, and environmental parameters are specifically characterized by their strength and degree of monotonicity, for example, microbe-microbe associations are on average stronger than and differ in degree of non-monotonicity from plant-microbe associations. Considering directed and non-monotonic associations, we extended the concept of ecosystem coupling providing more complete insights into the internal order of ecosystems. Our results emphasize the importance of ecological non-monotonicity in characterizing and understanding ecosystem patterns and processes. Supplementary Information The online version contains supplementary material available at 10.1007/s10021-023-00867-9.
Collapse
Affiliation(s)
- Maximilian Hanusch
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Xie He
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Julian Selke
- Algorithmic Bioinformatics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Wolfgang Trutschnig
- Department for Artificial Intelligence & Human Interfaces, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Robert R. Junker
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
10
|
Hoosein S, Neuenkamp L, Trivedi P, Paschke MW. AM fungal-bacterial relationships: what can they tell us about ecosystem sustainability and soil functioning? FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1141963. [PMID: 37746131 PMCID: PMC10512368 DOI: 10.3389/ffunb.2023.1141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023]
Abstract
Considering our growing population and our continuous degradation of soil environments, understanding the fundamental ecology of soil biota and plant microbiomes will be imperative to sustaining soil systems. Arbuscular mycorrhizal (AM) fungi extend their hyphae beyond plant root zones, creating microhabitats with bacterial symbionts for nutrient acquisition through a tripartite symbiotic relationship along with plants. Nonetheless, it is unclear what drives these AM fungal-bacterial relationships and how AM fungal functional traits contribute to these relationships. By delving into the literature, we look at the drivers and complexity behind AM fungal-bacterial relationships, describe the shift needed in AM fungal research towards the inclusion of interdisciplinary tools, and discuss the utilization of bacterial datasets to provide contextual evidence behind these complex relationships, bringing insights and new hypotheses to AM fungal functional traits. From this synthesis, we gather that interdependent microbial relationships are at the foundation of understanding microbiome functionality and deciphering microbial functional traits. We suggest using pattern-based inference tools along with machine learning to elucidate AM fungal-bacterial relationship trends, along with the utilization of synthetic communities, functional gene analyses, and metabolomics to understand how AM fungal and bacterial communities facilitate communication for the survival of host plant communities. These suggestions could result in improving microbial inocula and products, as well as a better understanding of complex relationships in terrestrial ecosystems that contribute to plant-soil feedbacks.
Collapse
Affiliation(s)
- Shabana Hoosein
- Department of Forest and Rangeland Stewardship/Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Lena Neuenkamp
- Institute of Landscape Ecology, Münster University, Münster, Germany
- Department of Ecology and Multidisciplinary Institute for Environment Studies “Ramon Margalef,” University of Alicante, Alicante, Spain
| | - Pankaj Trivedi
- Microbiome Network, Department of Agricultural Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Mark W. Paschke
- Department of Forest and Rangeland Stewardship/Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Khan N, Muge E, Mulaa FJ, Wamalwa B, von Bergen M, Jehmlich N, Wick LY. Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments. THE ISME JOURNAL 2023; 17:570-578. [PMID: 36707614 PMCID: PMC10030463 DOI: 10.1038/s41396-023-01371-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Biotransformation of soil organochlorine pesticides (OCP) is often impeded by a lack of nutrients relevant for bacterial growth and/or co-metabolic OCP biotransformation. By providing space-filling mycelia, fungi promote contaminant biodegradation by facilitating bacterial dispersal and the mobilization and release of nutrients in the mycosphere. We here tested whether mycelial nutrient transfer from nutrient-rich to nutrient-deprived areas facilitates bacterial OCP degradation in a nutrient-deficient habitat. The legacy pesticide hexachlorocyclohexane (HCH), a non-HCH-degrading fungus (Fusarium equiseti K3), and a co-metabolically HCH-degrading bacterium (Sphingobium sp. S8) isolated from the same HCH-contaminated soil were used in spatially structured model ecosystems. Using 13C-labeled fungal biomass and protein-based stable isotope probing (protein-SIP), we traced the incorporation of 13C fungal metabolites into bacterial proteins while simultaneously determining the biotransformation of the HCH isomers. The relative isotope abundance (RIA, 7.1-14.2%), labeling ratio (LR, 0.13-0.35), and the shape of isotopic mass distribution profiles of bacterial peptides indicated the transfer of 13C-labeled fungal metabolites into bacterial proteins. Distinct 13C incorporation into the haloalkane dehalogenase (linB) and 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase (LinC), as key enzymes in metabolic HCH degradation, underpin the role of mycelial nutrient transport and fungal-bacterial interactions for co-metabolic bacterial HCH degradation in heterogeneous habitats. Nutrient uptake from mycelia increased HCH removal by twofold as compared to bacterial monocultures. Fungal-bacterial interactions hence may play an important role in the co-metabolic biotransformation of OCP or recalcitrant micropollutants (MPs).
Collapse
Affiliation(s)
- Nelson Khan
- University of Nairobi, Department of Biochemistry, 00200-30197, Nairobi, Kenya
- Helmholtz Centre for Environmental Research UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany
| | - Edward Muge
- University of Nairobi, Department of Biochemistry, 00200-30197, Nairobi, Kenya
| | - Francis J Mulaa
- University of Nairobi, Department of Biochemistry, 00200-30197, Nairobi, Kenya
| | - Benson Wamalwa
- University of Nairobi, Department of Chemistry, 00200-30197, Nairobi, Kenya
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research UFZ, Department of Molecular Systems Biology, 04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz Centre for Environmental Research UFZ, Department of Molecular Systems Biology, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany.
| |
Collapse
|
12
|
Miotto Vilanova LC, Rondeau M, Robineau M, Guise JF, Lavire C, Vial L, Fontaine F, Clément C, Jacquard C, Esmaeel Q, Aït Barka E, Sanchez L. Paraburkholderia phytofirmans PsJN delays Botrytis cinerea development on grapevine inflorescences. Front Microbiol 2022; 13:1030982. [DOI: 10.3389/fmicb.2022.1030982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Grapevine flowering is an important stage in the epidemiology of Botrytis cinerea, the causal agent of gray mold disease. To prevent infection and to minimize postharvest losses, the control of this necrotrophic fungus is mainly based on chemical fungicides application. However, there is a growing interest in other control alternatives. Among them, the use of beneficial microorganisms appears as an eco-friendly strategy. This study aims to investigate the effect of Paraburkholderia phytofirmans PsJN, root-inoculated or directly sprayed on fruiting cuttings inflorescences to control B. cinerea growth. For this purpose, quantification by real time PCR of Botrytis development, direct effect of PsJN on fungal spore germination and chemotaxis were assayed. Our results showed a significant protective effect of PsJN only by direct spraying on inflorescences. Moreover, we demonstrated an inhibition exerted by PsJN on Botrytis spore germination, effective when there was a direct contact between the two microorganisms. This study showed that PsJN is positively attracted by the pathogenic fungus B. cinerea and forms a biofilm around the fungal hyphae in liquid co-culture. Finally, microscopic observations on fruit cuttings revealed a co-localization of both beneficial and pathogenic microorganisms on grapevine receptacle and stigma that might be correlated with the protective effect induced by PsJN against B. cinerea via a direct antimicrobial effect. Taking together, our findings allowed us to propose PsJN as a biofungicide to control grapevine gray mold disease.
Collapse
|
13
|
Zhang D, Li S, Fan M, Zhao C. The Novel Compounds with Biological Activity Derived from Soil Fungi in the Past Decade. Drug Des Devel Ther 2022; 16:3493-3555. [PMID: 36248243 PMCID: PMC9553542 DOI: 10.2147/dddt.s377921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
The secondary metabolites isolated from soil fungi have received more and more attention, especially new compounds that exhibited good biological activities. In this review, a total of 546 new compounds are included in the relevant literature since 2011. The new compounds are isolated from soil fungi, We divided these compounds into seven categories, including alkaloids, terpenoids, steroids, ketones, phenylpropanoids, quinones, esters, lactones, etc. In addition, the biological activities and structure-activity relationships of these compounds have also been fully discussed. The activities of these compounds are roughly divided into eight categories, including anticancer activity, antimicrobial activity, anti-inflammatory activity, antioxidant activity, antiviral activity, antimalarial activity, immunosuppressive activity and other activities. Since natural products are an important source of new drugs, this review may have a positive guiding effect on drug screening.
Collapse
Affiliation(s)
- Danyu Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Shoujie Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Mohan Fan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Changqi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China,Correspondence: Changqi Zhao, Tel +86-5880-5046, Email
| |
Collapse
|
14
|
Zeng Q, Man X, Lebreton A, Dai Y, Martin FM. The bacterial and fungal microbiomes of ectomycorrhizal roots from stone oaks and Yunnan pines in the subtropical forests of the Ailao Mountains of Yunnan. Front Microbiol 2022; 13:916337. [PMID: 35966686 PMCID: PMC9372452 DOI: 10.3389/fmicb.2022.916337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ectomycorrhizal (ECM) symbioses play an important role in tree biology and forest ecology. However, little is known on the composition of bacterial and fungal communities associated to ECM roots. In the present study, we surveyed the bacterial and fungal microbiome of ECM roots from stone oaks (Lithocarpus spp.) and Yunnan pines (Pinus yunnanensis) in the subtropical forests of the Ailao Mountains (Yunnan, China). The bacterial community was dominated by species pertaining to Rhizobiales and Acidobacteriales, whereas the fungal community was mainly composed of species belonging to the Russulales and Thelephorales. While the bacterial microbiome hosted by ECM roots from stone oaks and Yunnan pines was very similar, the mycobiome of these host trees was strikingly distinct. The microbial networks for bacterial and fungal communities showed a higher complexity in Lithocarpus ECM roots compared to Pinus ECM roots, but their modularity was higher in Pinus ECM roots. Seasonality also significantly influenced the fungal diversity and their co-occurrence network complexity. Our findings thus suggest that the community structure of fungi establishing and colonizing ECM roots can be influenced by the local soil/host tree environment and seasonality. These results expand our knowledge of the ECM root microbiome and its diversity in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Qingchao Zeng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Xiaowu Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Annie Lebreton
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE, Grand Est-Nancy, Champenoux, France
| | - Yucheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
- *Correspondence: Yucheng Dai,
| | - Francis M. Martin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE, Grand Est-Nancy, Champenoux, France
- Francis M. Martin,
| |
Collapse
|
15
|
Xiong BJ, Kleinsteuber S, Sträuber H, Dusny C, Harms H, Wick LY. Impact of Fungal Hyphae on Growth and Dispersal of Obligate Anaerobic Bacteria in Aerated Habitats. mBio 2022; 13:e0076922. [PMID: 35638736 PMCID: PMC9239063 DOI: 10.1128/mbio.00769-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 01/21/2023] Open
Abstract
Anoxic microsites arising in fungal biofilms may foster the presence of obligate anaerobes. Here, we analyzed whether and to which degree hyphae of Coprinopsis cinerea thriving in oxic habitats enable the germination, growth, and dispersal of the obligate anaerobic soil bacterium Clostridium acetobutylicum. Time-resolved optical oxygen mapping, microscopy, and metabolite analysis revealed the formation and persistence of anoxic circum hyphal niches, allowing for spore germination, growth, and fermentative activity of the obligate anaerobe in an otherwise inhabitable environment. Hypoxic liquid films containing 80% ± 10% of atmospheric oxygen saturation around single air-exposed hyphae thereby allowed for efficient clostridial dispersal amid spatially separated (>0.5 cm) anoxic sites. Hyphae hence may serve as good networks for the activity and spatial organization of obligate anaerobic bacteria in oxygenated heterogeneous environments such as soil. IMPORTANCE Although a few studies have reported on the presence of anoxic microniches in fungal biofilms, knowledge of the effects of fungal oxygen consumption on bacterial-fungal interactions is limited. Here, we demonstrate the existence and persistence of oxygen-free zones in air-exposed mycelia enabling spore germination, growth, fermentative activity, and dispersal of the obligate anaerobe. Our study points out a previously overlooked role of aerobic fungi in creating and bridging anoxic microniches in ambient oxic habitats. Air-exposed hyphae hence may act as a scaffold for activity and dispersal of strictly anaerobic microbes. Given the short-term tolerance of strict anaerobes to oxygen and reduced oxygen content in the mycosphere, hyphae can promote spatial organization of both obligate anaerobic and aerobic bacteria. Such finding may be important for a better understanding of previously observed co-occurrences of aerobes and anaerobes in well-aerated habitats such as upland soils.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| |
Collapse
|
16
|
Chen J, Song D, Luan H, Liu D, Wang X, Sun J, Zhou W, Liang G. Living and Dead Microorganisms in Mediating Soil Carbon Stocks Under Long-Term Fertilization in a Rice-Wheat Rotation. Front Microbiol 2022; 13:854216. [PMID: 35756033 PMCID: PMC9230992 DOI: 10.3389/fmicb.2022.854216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Although soil microorganism is an active area of research, we are still in the early stages of understanding how living microorganisms influence the accumulations of soil microbial residues under different agricultural practices. Based on a 39-year fertilization experiment, we characterized the soil microbiota and correlated their compositions to soil microbial residues, which are indicated by amino sugars under a rice-wheat rotation. In the present study, fertilization regimes and crop season all exerted significant impacts on the compositions of soil microbial communities and their residues, although no significant difference in the microbial residues was found between soil depth (0-10 cm vs. 10-20 cm). Compared within fertilization regimes, the long-term fertilization, especially the application of organic manure, stimulated the accumulations of carbon (C) and nitrogen in soils and microbial residues. Upland soils in wheat season accumulated more microbial residues, particularly in fungal residues, than paddy soils in rice season. Our results suggested that the long-term application of organic manure favored the growth of soil microbial communities, and then increased the contents of microbial residues, particularly in fungal residues, leading to an enlargement of soil C pools. The keystone taxa Pseudaleuria identified by network analysis showed a significantly positive potential in soil C sequestration by increasing the accumulation of fungal residues. Thus, this study revealed the strong and close connections between microbial communities and their residues, and provided evidence about the critical role of keystone taxa in regulating C sequestration.
Collapse
Affiliation(s)
- Jie Chen
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dali Song
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Donghai Liu
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiubin Wang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwen Sun
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhou
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Liang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Wang YH, Dai Y, Kong WL, Zhu ML, Wu XQ. Improvement of Sphaeropsis Shoot Blight Disease Resistance by Applying the Ectomycorrhizal Fungus Hymenochaete sp. Rl and Mycorrhizal Helper Bacterium Bacillus pumilus HR10 to Pinus thunbergii. PHYTOPATHOLOGY 2022; 112:1226-1234. [PMID: 35476587 DOI: 10.1094/phyto-09-21-0392-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ectomycorrhizal fungi (EMFs) form symbioses with plant roots to promote nutrient uptake by plants but it is controversial as to whether they induce disease resistance in plants. Here, we inoculated pine seedlings with Sphaeropsis sapinea, which was presymbiotic with the EMF Hymenochaete sp. Rl, and the mycorrhizal helper bacterium (MHB) Bacillus pumilus HR10, which promotes the formation of Pinus thunbergia-Hymenochaete sp. Rl mycorrhizae. The results showed that inoculation with Hymenochaete sp. Rl, B. pumilus HR10, and the consortium significantly reduced pine shoot blight disease caused by S. sapinea. After inoculation with pathogenic fungi, callose deposition was significantly increased in needles of pine seedlings inoculated with Hymenochaete sp. Rl, B. pumilus HR10, and the consortium, together with an increase in enzymatic and nonenzymatic systemic antioxidant activity as well as early priming for upregulated expression of PR3 and PR5 genes. Our findings suggest that ectomycorrhizal colonization enhances the resistance of pine seedlings to Sphaeropsis shoot blight by triggering a systemic defense response and that interactions between EMFs and MHBs are essential for mycorrhizal-induced disease resistance.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
18
|
See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. GLOBAL CHANGE BIOLOGY 2022; 28:2527-2540. [PMID: 34989058 DOI: 10.1111/gcb.16073] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Associations between soil minerals and microbially derived organic matter (often referred to as mineral-associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non-rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere-bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non-random colonization of mineral surfaces by hyphae-associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals.
Collapse
Affiliation(s)
- Craig R See
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Adrienne B Keller
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter G Kennedy
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| |
Collapse
|
19
|
Wang YH, Kong WL, Zhu ML, Dai Y, Wu XQ. Colonization by the Mycorrhizal Helper Bacillus pumilus HR10 Is Enhanced During the Establishment of Ectomycorrhizal Symbiosis Between Hymenochaete sp. Rl and Pinus thunbergii. Front Microbiol 2022; 13:818912. [PMID: 35330763 PMCID: PMC8940532 DOI: 10.3389/fmicb.2022.818912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
There are complex interactions between mycorrhizal helper bacteria (MHBs) and ectomycorrhizal (ECM) fungi, with MHBs promoting mycorrhizal synthesis and ECM fungi regulating plant rhizobacterial colonization, diversity, and function. In this study, to investigate whether the ECM fungus Hymenochaete sp. Rl affects the survival and colonization of the MHB strain Bacillus pumilus HR10 in the rhizosphere, the biomass of B. pumilus HR10 was measured in the rhizosphere and mycorrhizosphere. In addition, extracts of Hymenochaete sp. Rl and Pinus thunbergii were evaluated for their effect on B. pumilus HR10 colonization (growth, sporulation, biofilm formation, extracellular polysaccharide and extracellular protein contents, flagellar motility, and expression of colonization-related genes). The results showed that inoculation of Hymenochaete sp. Rl significantly increased the biomass of B. pumilus HR10 in the rhizosphere; however, while extracts of Hymenochaete sp. Rl and P. thunbergii did not affect the biomass or spore formation of HR10, they did affect its biofilm formation, extracellular polysaccharide and extracellular protein production, and flagellar motility. Furthermore, the addition of symbiont extracts affected the expression of chemotaxis-related genes in HR10. When the extracts were added separately, the expression of srf genes in HR10 increased; when the extracts were added simultaneously, the expression of the flagellin gene fliG in HR10 increased, but there was no significant effect on the expression of srf genes, consistent with the results on biofilm production. Thus, Hymenochaete sp. Rl and P. thunbergii roots had a positive effect on colonization by B. pumilus HR10 at the rhizosphere level through their secretions.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
20
|
Bacterial hitchhikers derive benefits from fungal housing. Curr Biol 2022; 32:1523-1533.e6. [PMID: 35235767 PMCID: PMC9009100 DOI: 10.1016/j.cub.2022.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
Fungi and bacteria are ubiquitous constituents of all microbiomes, yet mechanisms of microbial persistence in polymicrobial communities remain obscure. Here, we examined the hypothesis that specialized fungal survival structures, chlamydospores, induced by bacterial lipopeptides serve as bacterial reservoirs. We find that symbiotic and pathogenic gram-negative bacteria from non-endosymbiotic taxa enter and propagate in chlamydospores. Internalized bacteria have higher fitness than planktonic bacteria when challenged with abiotic stress. Further, tri-cultures of Ralstonia solanacearum, Pseudomonas aeruginosa, and Aspergillus flavus reveal the unprecedented finding that chlamydospores are colonized by endofungal bacterial communities. Our work identifies a previously unknown ecological role of chlamydospores, provides an expanded view of microbial niches, and presents significant implications for the persistence of pathogenic and beneficial bacteria.
Collapse
|
21
|
Xu F, Liao H, Zhang Y, Yao M, Liu J, Sun L, Zhang X, Yang J, Wang K, Wang X, Ding Y, Liu C, Rensing C, Zhang J, Yeh K, Xu W. Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying. THE ISME JOURNAL 2022; 16:801-811. [PMID: 34621017 PMCID: PMC8857228 DOI: 10.1038/s41396-021-01133-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022]
Abstract
Moderate soil drying (MSD) is a promising agricultural technique that can reduce water consumption and enhance rhizosheath formation promoting drought resistance in plants. The endophytic fungus Piriformospora indica (P. indica) with high auxin production may be beneficial for rhizosheath formation. However, the integrated role of P. indica with native soil microbiome in rhizosheath formation is unclear. Here, we investigated the roles of P. indica and native bacteria on rice rhizosheath formation under MSD using high-throughput sequencing and rice mutants. Under MSD, rice rhizosheath formation was significantly increased by around 30% with P. indica inoculation. Auxins in rice roots and P. indica were responsible for the rhizosheath formation under MSD. Next, the abundance of the genus Bacillus, known as plant growth-promoting rhizobacteria, was enriched in the rice rhizosheath and root endosphere with P. indica inoculation under MSD. Moreover, the abundance of Bacillus cereus (B. cereus) with high auxin production was further increased by P. indica inoculation. After inoculation with both P. indica and B. cereus, rhizosheath formation in wild-type or auxin efflux carrier OsPIN2 complemented line rice was higher than that of the ospin2 mutant. Together, our results suggest that the interaction of the endophytic fungus P. indica with the native soil bacterium B. cereus favors rice rhizosheath formation by auxins modulation in rice and microbes under MSD. This finding reveals a cooperative contribution of P. indica and native microbiota in rice rhizosheath formation under moderate soil drying, which is important for improving water use in agriculture.
Collapse
Affiliation(s)
- Feiyun Xu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hanpeng Liao
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yingjiao Zhang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Minjie Yao
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianping Liu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Leyun Sun
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xue Zhang
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jinyong Yang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ke Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoyun Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yexin Ding
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chen Liu
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Christopher Rensing
- grid.256111.00000 0004 1760 2876Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianhua Zhang
- grid.221309.b0000 0004 1764 5980Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kaiwun Yeh
- grid.19188.390000 0004 0546 0241Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Exploring the roles of microbes in facilitating plant adaptation to climate change. Biochem J 2022; 479:327-335. [PMID: 35119455 PMCID: PMC8883484 DOI: 10.1042/bcj20210793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
Plants benefit from their close association with soil microbes which assist in their response to abiotic and biotic stressors. Yet much of what we know about plant stress responses is based on studies where the microbial partners were uncontrolled and unknown. Under climate change, the soil microbial community will also be sensitive to and respond to abiotic and biotic stressors. Thus, facilitating plant adaptation to climate change will require a systems-based approach that accounts for the multi-dimensional nature of plant-microbe-environment interactions. In this perspective, we highlight some of the key factors influencing plant-microbe interactions under stress as well as new tools to facilitate the controlled study of their molecular complexity, such as fabricated ecosystems and synthetic communities. When paired with genomic and biochemical methods, these tools provide researchers with more precision, reproducibility, and manipulability for exploring plant-microbe-environment interactions under a changing climate.
Collapse
|
23
|
Xiong BJ, Dusny C, Wang L, Appel J, Lindstaedt K, Schlosser D, Harms H, Wick LY. Illuminate the hidden: in vivo mapping of microscale pH in the mycosphere using a novel whole-cell biosensor. ISME COMMUNICATIONS 2021; 1:75. [PMID: 36765263 PMCID: PMC9723660 DOI: 10.1038/s43705-021-00075-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
The pH of an environment is both a driver and the result of diversity and functioning of microbial habitats such as the area affected by fungal hyphae (mycosphere). Here we used a novel pH-sensitive bioreporter, Synechocystis sp. PCC6803_peripHlu, and ratiometric fluorescence microscopy, to spatially and temporally resolve the mycosphere pH at the micrometre scale. Hyphae of the basidiomycete Coprionopsis cinerea were allowed to overgrow immobilised and homogeneously embedded pH bioreporters in an agarose microcosm. Signals of >700 individual cells in an area of 0.4 × 0.8 mm were observed over time and used to create highly resolved (3 × 3 µm) pH maps using geostatistical approaches. C. cinerea changed the pH of the agarose from 6.9 to ca. 5.0 after 48 h with hyphal tips modifying pH in their vicinity up to 1.8 mm. pH mapping revealed distinct microscale spatial variability and temporally stable gradients between pH 4.4 and 5.8 over distances of ≈20 µm. This is the first in vivo mapping of a mycosphere pH landscape at the microscale. It underpins the previously hypothesised establishment of pH gradients serving to create spatially distinct mycosphere reaction zones.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lin Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jens Appel
- Department of Biology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Kristin Lindstaedt
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
24
|
de Andrade Reis RJ, Alves AF, Dos Santos PHD, Aguiar KP, da Rocha LO, da Silveira SF, Canellas LP, Olivares FL. Mutualistic interaction of native Serratia marcescens UENF-22GI with Trichoderma longibrachiatum UENF-F476 boosting seedling growth of tomato and papaya. World J Microbiol Biotechnol 2021; 37:211. [PMID: 34729659 DOI: 10.1007/s11274-021-03179-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
A plethora of bacteria-fungal interactions occur on the extended fungal hyphae network in soil. The mycosphere of saprophytic fungi can serve as a bacterial niche boosting their survival, dispersion, and activity. Such ecological concepts can be converted to bioproducts for sustainable agriculture. Accordingly, we tested the hypothesis that the well-characterised beneficial bacterium Serratia marcescens UENF-22GI can enhance plant growth-promoting properties when combined with Trichoderma longibrachiatum UENF-F476. The cultural and cell interactions demonstrated S. marcescens and T. longibrachiatum mutual compatibility. Bacteria cells were able to attach, forming aggregates to biofilms and migrating through the fungal hyphae network. Long-distance bacterial migration through growing hyphae was confirmed using a two-compartment Petri dishes assay. Fungal inoculation increased the bacteria survival rates into the vermicompost substrate over the experimental time. Also, in vitro indolic compound, phosphorus, and zinc solubilisation bacteria activities increased in the presence of the fungus. In line with the ecophysiological bacteria fitness, the bacterium-fungal combination boosted tomato and papaya plantlet growth when applied into the plant substrate under nursery conditions. Mutualistic interaction between mycosphere-colonizing bacterium S. marcescens UENF-22GI and the saprotrophic fungi T. longibrachiatum UENF-F467 increased the ecological fitness of the bacteria alongside with beneficial potential for plant growth. A proper combination and delivery of mutual compatible beneficial bacteria-fungal represent an open avenue for microbial-based products for the biological enrichment of plant substrates in agricultural systems.
Collapse
Affiliation(s)
- Régis Josué de Andrade Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Alice Ferreira Alves
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Pedro Henrique Dias Dos Santos
- Laboratório de Entomologia e Fitopatologia (LEF), Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Kamilla Pereira Aguiar
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Letícia Oliveira da Rocha
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Silvaldo Felipe da Silveira
- Laboratório de Entomologia e Fitopatologia (LEF), Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciano Pasqualoto Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fabio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil. .,Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Högberg MN, Högberg P, Wallander H, Nilsson LO. Carbon-nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest. THE NEW PHYTOLOGIST 2021; 232:1839-1848. [PMID: 34449884 DOI: 10.1111/nph.17701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The supply of carbon (C) from tree photosynthesis to ectomycorrhizal (ECM) fungi is known to decrease with increasing plant nitrogen (N) supply, but how this affects fungal nutrition and growth remains to be clarified. We placed mesh-bags with quartz sand, with or without an organic N (15 N-, 13 C-labeled) source, in the soil along a natural N supply gradient in boreal forest, to measure growth and use of N and C by ECM extramatrical mycelia. Mycelial C : N declined with increasing N supply. Addition of N increased mycelial growth at the low-N end of the gradient. We found an inverse relationship between uptake of added N and C; the use of added N was high when ambient N was low, whereas use of added C was high when C from photosynthesis was low. We propose that growth of ECM fungi is N-limited when soil N is scarce and tree belowground C allocation to ECM fungi is high, but is C-limited when N supply is high and tree belowground C allocation is low. This suggests that ECM fungi have a major role in soil N retention in nutrient-poor, but less so in nutrient-rich boreal forests.
Collapse
Affiliation(s)
- Mona N Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Peter Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Håkan Wallander
- Department of Biology, Lund University, Lund, SE-22362, Sweden
| | - Lars-Ola Nilsson
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
- Chancellery, Halmstad University, Halmstad, SE-301 18, Sweden
| |
Collapse
|
26
|
Chandran H, Meena M, Swapnil P. Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. SUSTAINABILITY 2021; 13:10986. [DOI: 10.3390/su131910986] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Environmental stress is a major challenge for sustainable food production as it reduces yield by generating reactive oxygen species (ROS) which pose a threat to cell organelles and biomolecules such as proteins, DNA, enzymes, and others, leading to apoptosis. Plant growth-promoting rhizobacteria (PGPR) offers an eco-friendly and green alternative to synthetic agrochemicals and conventional agricultural practices in accomplishing sustainable agriculture by boosting growth and stress tolerance in plants. PGPR inhabit the rhizosphere of soil and exhibit positive interaction with plant roots. These organisms render multifaceted benefits to plants by several mechanisms such as the release of phytohormones, nitrogen fixation, solubilization of mineral phosphates, siderophore production for iron sequestration, protection against various pathogens, and stress. PGPR has the potential to curb the adverse effects of various stresses such as salinity, drought, heavy metals, floods, and other stresses on plants by inducing the production of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. Genetically engineered PGPR strains play significant roles to alleviate the abiotic stress to improve crop productivity. Thus, the present review will focus on the impact of PGPR on stress resistance, plant growth promotion, and induction of antioxidant systems in plants.
Collapse
Affiliation(s)
- Hema Chandran
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi 110007, India
| |
Collapse
|
27
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
28
|
Macrofungi Cultivation in Shady Forest Areas Significantly Increases Microbiome Diversity, Abundance and Functional Capacity in Soil Furrows. J Fungi (Basel) 2021; 7:jof7090775. [PMID: 34575813 PMCID: PMC8469386 DOI: 10.3390/jof7090775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cultivating macrofungi is an important management measure to develop economy in shady forest areas; however, its effect on soil ecology, especially microbial abundance and structure, remains insufficiently studied. Herein, in a subtropical forestland, soil chemical and enzyme analyses, metagenomic sequencing and quantitative real-time PCR were employed to evaluate the impact of Stropharia rugosoannulata cultivation on soil microbiomes in three niches: soil below fungal beds, soil from furrows, and control forest soil with no influence from mushroom cultivation. Nutrients were accumulated in the soil below fungal beds with a significant increase (p < 0.05) in SOC, total C, total N, available P, and the activities of glucosidase and cellobiosidase. Non-metric multidimensional scaling and PERMANOVA results indicated that the structure of the microbiomes had been significantly (p < 0.05) shaped among the different niches. Soil furrows were microbial hotspots characterized by the higher microbial diversity and richness. Moreover, the increased microbiome abundance (assessed through qPCR) and the high number of significant stimulated functional types (based on MetaCyc genome database) indicated an enhanced functional capacity in furrows. Together, these results provide a comprehensive understanding of the microbial assemblies and the differently influenced soil properties in mushroom cultivation areas.
Collapse
|
29
|
Gu H, Yan K, You Q, Chen Y, Pan Y, Wang H, Wu L, Xu J. Soil indigenous microorganisms weaken the synergy of Massilia sp. WF1 and Phanerochaete chrysosporium in phenanthrene biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146655. [PMID: 33798893 DOI: 10.1016/j.scitotenv.2021.146655] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Biodegradation is a promising way to reduce phenanthrene (PHE) in environment. PHE biodegradation by bioaugmentation of axenic and mixed cultures of Massilia sp. WF1 (a highly efficient PHE-degrading bacteria) and Phanerochaete chrysosporium (P. chrysosporium, an extensively researched model fungus in organic pollutant bioremediation) was investigated in aqueous and autoclaved/un-autoclaved soil cultures. In the liquid cultures, the strain WF1 could use PHE (ca. 10 mg L-1) as the sole carbon source, and the presence of d-fructose (500 mg L-1) had no obvious effect on its PHE degradation; while the opposite was observed for P. chrysosporium. The bioaugmentation of strain WF1 and P. chrysosporium co-culture showed the highest PHE-degradation efficiency, especially in the aqueous and the autoclaved soil (PHE, ca. 50 mg kg-1) cultures, indicating a synergistic interaction of the co-culture during PHE dissipation. It was further observed that the indigenous microorganisms (mainly the Gram-positive bacteria) played a dominant role during PHE biodegradation and showed an antagonistic action against the strain WF1-P. chrysosporium co-culture, which weakened the synergistic action of the co-culture in the un-autoclaved soil. Besides, the abundances of PAH-RHDα GP and nidA genes were negatively correlated with residual PHE in the soil. Our findings provide the scientific support for bioremediation of PAHs in environment.
Collapse
Affiliation(s)
- Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Department of Environmental Sciences, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Kang Yan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Qi You
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Yuanzhi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Beihai Tieshangang District Human Resources and Social Security Bureau, Beihai, China
| | - Yunhui Pan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Sharma S, Compant S, Franken P, Ruppel S, Ballhausen MB. It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms 2021; 9:microorganisms9081566. [PMID: 34442645 PMCID: PMC8398733 DOI: 10.3390/microorganisms9081566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and “hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.
Collapse
Affiliation(s)
- Shubhangi Sharma
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Max-Bernhard Ballhausen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Correspondence:
| |
Collapse
|
31
|
Jiao S, Peng Z, Qi J, Gao J, Wei G. Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling. mSystems 2021; 6:e01052-20. [PMID: 33758030 PMCID: PMC8546990 DOI: 10.1128/msystems.01052-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Biodiversity is important for supporting ecosystem functioning. To evaluate the factors contributing to the strength of microbial diversity-function relationships in complex terrestrial ecosystems, we conducted a soil survey over different habitats, including an agricultural field, forest, wetland, grassland, and desert. Soil microbial multidiversity was estimated by the combination of bacterial and fungal diversity. Soil ecosystem functions were evaluated using a multinutrient cycling index (MNC) in relation to carbon, nitrate, phosphorus, and potassium cycling. Significant positive relationships between soil multidiversity and multinutrient cycling were observed in all habitats, except the grassland and desert. Specifically, community compositions showed stronger correlations with multinutrient cycling than α-diversity, indicating the crucial role of microbial community composition differences on soil nutrient cycling. Importantly, we revealed that changes in both the neutral processes (Sloan neutral modeling) and the proportion of negative bacterial-fungal associations were linked to the magnitude and direction of the diversity-MNC relationships. The habitats less governed by neutral processes and dominated by negative bacterial-fungal associations exhibited stronger negative microbial α-diversity-MNC relationships. Our findings suggested that the balance between positive and negative bacterial-fungal associations was connected to the link between soil biodiversity and ecosystem function in complex terrestrial ecosystems. This study elucidates the potential factors influencing diversity-function relationships, thereby enabling future studies to forecast the effects of belowground biodiversity on ecosystem function.IMPORTANCE The relationships between soil biodiversity and ecosystem functions are an important yet poorly understood topic in microbial ecology. This study presents an exploratory effort to gain predictive understanding of the factors driving the relationships between microbial diversity and potential soil nutrient cycling in complex terrestrial ecosystems. Our structural equation modeling and random forest analysis revealed that the balance between positive and negative bacterial-fungal associations was clearly linked to the strength of the relationships between soil microbial diversity and multiple nutrients cycling across different habitats. This study revealed the potential factors underpinning diversity-function relationships in terrestrial ecosystems and thus helps us to manage soil microbial communities for better provisioning of key ecosystem services.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiamin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
32
|
Gohar D, Pent M, Põldmaa K, Bahram M. Bacterial community dynamics across developmental stages of fungal fruiting bodies. FEMS Microbiol Ecol 2021; 96:5894922. [PMID: 32816035 DOI: 10.1093/femsec/fiaa175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggest that bacteria form diverse communities in various eukaryotic hosts, including fungi. However, little is known about their succession and the functional potential at different host development stages. Here we examined the effect of fruiting body parts and developmental stages on the structure and potential function of fungus-associated bacterial communities. Using high-throughput sequencing, we characterized bacterial communities and their associated potential functions in fruiting bodies from ten genera belonging to four major mushroom-forming orders and three different developmental stages of a model host species Cantharellus cibarius. Our results demonstrate that bacterial community structure differs between internal and external parts of the fruiting body but not between inner tissues. The structure of the bacterial communities showed significant variation across fruiting body developmental stages. We provide evidence that certain functional groups, such as those related to nitrogen fixation, persist in fruiting bodies during the maturation, but are replaced by putative parasites/pathogens afterwards. These data suggest that bacterial communities inhabiting fungal fruiting bodies may play important roles in their growth and development.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
| |
Collapse
|
33
|
Jeon JS, Carreno-Quintero N, van Eekelen HDLM, De Vos RCH, Raaijmakers JM, Etalo DW. Impact of root-associated strains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea. Sci Rep 2021; 11:2781. [PMID: 33531553 PMCID: PMC7854645 DOI: 10.1038/s41598-021-82238-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Several root-colonizing bacterial species can simultaneously promote plant growth and induce systemic resistance. How these rhizobacteria modulate plant metabolism to accommodate the carbon and energy demand from these two competing processes is largely unknown. Here, we show that strains of three Paraburkholderia species, P. graminis PHS1 (Pbg), P. hospita mHSR1 (Pbh), and P. terricola mHS1 (Pbt), upon colonization of the roots of two Broccoli cultivars led to cultivar-dependent increases in biomass, changes in primary and secondary metabolism and induced resistance against the bacterial leaf pathogen Xanthomonas campestris. Strains that promoted growth led to greater accumulation of soluble sugars in the shoot and particularly fructose levels showed an increase of up to 280-fold relative to the non-treated control plants. Similarly, a number of secondary metabolites constituting chemical and structural defense, including flavonoids, hydroxycinnamates, stilbenoids, coumarins and lignins, showed greater accumulation while other resource-competing metabolite pathways were depleted. High soluble sugar generation, efficient sugar utilization, and suppression or remobilization of resource-competing metabolites potentially contributed to curb the tradeoff between the carbon and energy demanding processes induced by Paraburkholderia-Broccoli interaction. Collectively, our results provide a comprehensive and integrated view of the temporal changes in plant metabolome associated with rhizobacteria-mediated plant growth promotion and induced resistance.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- KeyGene N.V., Wageningen, 6708 PW, The Netherlands
| | | | - Ric C H De Vos
- Wageningen Plant Research, Bioscience, Wageningen, 6708 PB, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
34
|
The Importance of Microbial Inoculants in a Climate-Changing Agriculture in Eastern Mediterranean Region. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Climate change has gained importance due to its severe consequences for many aspects of life. Increasing temperature, drought and greenhouse gases affect directly or indirectly the productivity of agricultural and natural ecosystems as well as human health. The nutrient supply capacity of the soil is diminishing, while food requirements for the growing population are increasing. The ongoing application of agrochemicals results in adverse effects on ecosystem functioning and food chain. Now, more than ever, there is a need to mitigate the effects of agricultural activities on climate change using environmentally friendly techniques. The role of plant beneficial microorganisms on this global challenge is increasingly being explored, and there is strong evidence that could be important. The use of functional microbial guilds forms an alternative or even a supplementary approach to common agricultural practices, due to their ability to act as biofertilizers and promote plant growth. Application of microbial inocula has a significantly lower impact on the environment compared to chemical inputs, while the agricultural sector will financially benefit, and consumers will have access to quality products. Microbial inoculants could play an important role in agricultural stress management and ameliorate the negative impacts of climate change. This short review highlights the role of microbes in benefiting agricultural practices against climate-changing conditions. In particular, the main microbial plant growth-promoting functional traits that are related to climate change are presented and discussed. The importance of microbial inoculants’ multifunctionality is debated, while future needs and challenges are also highlighted.
Collapse
|
35
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
36
|
Abeysinghe G, Kuchira M, Kudo G, Masuo S, Ninomiya A, Takahashi K, Utada AS, Hagiwara D, Nomura N, Takaya N, Obana N, Takeshita N. Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism. Life Sci Alliance 2020; 3:3/12/e202000878. [PMID: 32962971 PMCID: PMC7574024 DOI: 10.26508/lsa.202000878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial cells travel along fungal highway and pay thiamine as a toll to the fungus. Simultaneous spatial and metabolic interactions in communicating bacterial and fungal species establish a mutualism that facilitates them to obtain an environmental niche and nutrient. Exclusivity in physical spaces and nutrients is a prerequisite for survival of organisms, but a few species have been able to develop mutually beneficial strategies that allow them to co-habit. Here, we discovered a mutualistic mechanism between filamentous fungus, Aspergillus nidulans, and bacterium, Bacillus subtilis. The bacterial cells co-cultured with the fungus traveled along mycelia using their flagella and dispersed farther with the expansion of fungal colony, indicating that the fungal mycelia supply space for bacteria to migrate, disperse, and proliferate. Transcriptomic, genetic, molecular mass, and imaging analyses demonstrated that the bacteria reached the mycelial edge and supplied thiamine to the growing hyphae, which led to a promotion of hyphal growth. The thiamine transfer from bacteria to the thiamine non-auxotrophic fungus was directly demonstrated by stable isotope labeling. The simultaneous spatial and metabolic interactions demonstrated in this study reveal a mutualism that facilitates the communicating fungal and bacterial species to obtain an environmental niche and nutrient, respectively.
Collapse
Affiliation(s)
- Gayan Abeysinghe
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Momoka Kuchira
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Gamon Kudo
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shunsuke Masuo
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Ninomiya
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kohei Takahashi
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Andrew S Utada
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naoki Takaya
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nozomu Obana
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
37
|
Pent M, Bahram M, Põldmaa K. Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. THE ISME JOURNAL 2020; 14:2131-2141. [PMID: 32409757 PMCID: PMC7368025 DOI: 10.1038/s41396-020-0674-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
Abstract
Eukaryote-associated microbiomes vary across host taxa and environments but the key factors underlying their diversity and structure in fungi are still poorly understood. Here we determined the structure of bacterial communities in fungal fruitbodies in relation to the main chemical characteristics in ectomycorrhizal (EcM) and saprotrophic (SAP) mushrooms as well as in the surrounding soil. Our analyses revealed significant differences in the structure of endofungal bacterial communities across fungal phylogenetic groups and to a lesser extent across fungal guilds. These variations could be partly ascribed to differences in fruitbody chemistry, particularly the carbon-to-nitrogen ratio and pH. Fungal fruitbodies appear to represent nutrient-rich islands that derive their microbiome largely from the underlying continuous soil environment, with a larger overlap of operational taxonomic units observed between SAP fruitbodies and the surrounding soil, compared with EcM fungi. In addition, bacterial taxa involved in the decomposition of organic material were relatively more abundant in SAP fruitbodies, whereas those involved in release of minerals were relatively more enriched in EcM fruitbodies. Such contrasts in patterns and underlying processes of the microbiome structure between SAP and EcM fungi provide further evidence that bacteria can support the functional roles of these fungi in terrestrial ecosystems.
Collapse
Affiliation(s)
- Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden.
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| |
Collapse
|
38
|
Lee SJ, Kong M, St-Arnaud M, Hijri M. Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights Rhizophagus as a Key Tolerant Genus. Microorganisms 2020; 8:microorganisms8060872. [PMID: 32526923 PMCID: PMC7356029 DOI: 10.3390/microorganisms8060872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play an important role in increasing plant fitness in harsh conditions. Therefore, AMF are currently considered to be effective partners in phytoremediation. However, AMF communities in high levels of petroleum pollution are still poorly studied. We investigated the community structures of AMF in roots and rhizospheric soils of two plant species, Eleocharis elliptica and Populus tremuloides, growing spontaneously in high petroleum-contaminated sedimentation basins of a former petrochemical plant (91,000 μg/Kg of C10–C50 was recorded in a basin which is 26-fold higher than the threshold of polluted soil in Quebec, Canada). We used a PCR cloning, and sequencing approach, targeting the 18S rRNA gene to identify AMF taxa. The high concentration of petroleum-contamination largely influenced the AMF diversity, which resulted in less than five AMF operational taxonomical units (OTUs) per individual plant at all sites. The OTUs detected belong mainly to the Glomerales, with some from the Diversisporales and Paraglomerales, which were previously reported in high concentrations of metal contamination. Interestingly, we found a strong phylogenetic signal in OTU associations with host plant species identity, biotopes (roots or soils), and contamination concentrations (lowest, intermediate and highest). The genus Rhizophagus was the most dominant taxon representing 74.4% of all sequences analyzed in this study and showed clear association with the highest contamination level. The clear association of Rhizophagus with high contamination levels suggests the importance of the genus for the use of AMF in bioremediation, as well as for the survey of key AMF genes related to petroleum hydrocarbon resistance. By favoring plant fitness and mediating its soil microbial interactions, Rhizophagus spp. could enhance petroleum hydrocarbon pollutant degradation by both plants and their microbiota in contaminated sites.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Mengxuan Kong
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (M.K.); (M.S.-A.)
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (M.K.); (M.S.-A.)
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (M.K.); (M.S.-A.)
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660—Hay Moulay Rachid, 43150 Ben Guerir, Morocco
- Correspondence: ; Tel.: +1-514-343-2120
| |
Collapse
|
39
|
Hamzah N, Kasmuri N, Tao W, Singhal N, Padhye L, Swift S. Effect of rhamnolipid on the physicochemical properties and interaction of bacteria and fungi. Braz J Microbiol 2020; 51:1317-1326. [PMID: 32399689 DOI: 10.1007/s42770-020-00295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/07/2020] [Indexed: 10/24/2022] Open
Abstract
Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.
Collapse
Affiliation(s)
- Nurhidayah Hamzah
- Department of Water Resources and Environmental Systems, Faculty of Civil Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Norhafezah Kasmuri
- Department of Water Resources and Environmental Systems, Faculty of Civil Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Wei Tao
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China
| | - Naresh Singhal
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lokesh Padhye
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Different Effects of Soil Fertilization on Bacterial Community Composition in the Penicillium canescens Hyphosphere and in Bulk Soil. Appl Environ Microbiol 2020; 86:AEM.02969-19. [PMID: 32144110 PMCID: PMC7205497 DOI: 10.1128/aem.02969-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
P-solubilizing Penicillium strains are introduced as biofertilizers to agricultural soils to improve plant P nutrition. Currently, little is known about the ecology of these biofertilizers, including their interactions with other soil microorganisms. This study shows that communities dominated by Betaproteobacteria and Gammaproteobacteria colonize P. canescens hyphae in soil and that the compositions of these communities depend on the soil conditions. The potential of these communities for N and organic P cycling is generally higher than that of soil communities. The high potential for organic P metabolism might complement the ability of the fungus to solubilize inorganic P, and it points to the hyphosphere as a hot spot for P metabolism. Furthermore, the high potential for N fixation could indicate that P. canescens recruits bacteria that are able to improve its N nutrition. Hence, this community study identifies functional groups relevant for the future optimization of next-generation biofertilizer consortia for applications in soil. This study investigated the effects of long-term soil fertilization on the composition and potential for phosphorus (P) and nitrogen (N) cycling of bacterial communities associated with hyphae of the P-solubilizing fungus Penicillium canescens. Using a baiting approach, hyphosphere bacterial communities were recovered from three soils that had received long-term amendment in the field with mineral or mineral plus organic fertilizers. P. canescens hyphae recruited bacterial communities with a decreased diversity and an increased abundance of Proteobacteria relative to what was observed in soil communities. As core bacterial taxa, Delftia and Pseudomonas spp. were present in all hyphosphere samples irrespective of soil fertilization. However, the type of fertilization showed significant impacts on the diversity, composition, and distinctive taxa/operational taxonomic units (OTUs) of hyphosphere communities. The soil factors P (Olsen method), exchangeable Mg, exchangeable K, and pH were important for shaping soil and hyphosphere bacterial community compositions. An increased relative abundance of organic P metabolism genes was found in hyphosphere communities from soil that had not received P fertilizers, which could indicate P limitation near the fungal hyphae. Additionally, P. canescens hyphae recruited bacterial communities with a higher abundance of N fixation genes than found in soil communities, which might imply a role of hyphosphere communities for fungal N nutrition. Furthermore, the relative abundances of denitrification genes were greater in several hyphosphere communities, indicating an at least partly anoxic microenvironment with a high carbon-to-N ratio around the hyphae. In conclusion, soil fertilization legacy shapes P. canescens hyphosphere microbiomes and their functional potential related to P and N cycling. IMPORTANCE P-solubilizing Penicillium strains are introduced as biofertilizers to agricultural soils to improve plant P nutrition. Currently, little is known about the ecology of these biofertilizers, including their interactions with other soil microorganisms. This study shows that communities dominated by Betaproteobacteria and Gammaproteobacteria colonize P. canescens hyphae in soil and that the compositions of these communities depend on the soil conditions. The potential of these communities for N and organic P cycling is generally higher than that of soil communities. The high potential for organic P metabolism might complement the ability of the fungus to solubilize inorganic P, and it points to the hyphosphere as a hot spot for P metabolism. Furthermore, the high potential for N fixation could indicate that P. canescens recruits bacteria that are able to improve its N nutrition. Hence, this community study identifies functional groups relevant for the future optimization of next-generation biofertilizer consortia for applications in soil.
Collapse
|
41
|
Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME JOURNAL 2020; 14:1015-1029. [PMID: 31974462 DOI: 10.1038/s41396-020-0587-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The access of rhizobia to legume host is a prerequisite for nodulation. Rhizobia are poorly motile in soil, while filamentous fungi are known to grow extensively across soil pores. Since root exudates-driven bacterial chemotaxis cannot explain rhizobial long-distance dispersal, mycelia could constitute ideal dispersal networks to help rhizobial enrichment in the legume rhizosphere from bulk soil. Thus, we hypothesized that mycelia networks act as vectors that enable contact between rhizobia and legume and influence subsequent nodulation. By developing a soil microcosm system, we found that a facultatively biotrophic fungus, Phomopsis liquidambaris, helps rhizobial migration from bulk soil to the peanut (Arachis hypogaea) rhizosphere and, hence, triggers peanut-rhizobium nodulation but not seen in the absence of mycelia. Assays of dispersal modes suggested that cell proliferation and motility mediated rhizobial dispersal along mycelia, and fungal exudates might contribute to this process. Furthermore, transcriptomic analysis indicated that genes associated with the cell division, chemosensory system, flagellum biosynthesis, and motility were regulated by Ph. liquidambaris, thus accounting for the detected rhizobial dispersal along hyphae. Our results indicate that rhizobia use mycelia as dispersal networks that migrate to legume rhizosphere and trigger nodulation. This work highlights the importance of mycelial network-based bacterial dispersal in legume-rhizobium symbiosis.
Collapse
|
42
|
Hao X, Zhu YG, Nybroe O, Nicolaisen MH. The Composition and Phosphorus Cycling Potential of Bacterial Communities Associated With Hyphae of Penicillium in Soil Are Strongly Affected by Soil Origin. Front Microbiol 2020; 10:2951. [PMID: 31969866 PMCID: PMC6960115 DOI: 10.3389/fmicb.2019.02951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Intimate fungal-bacterial interactions are widespread in nature. However the main drivers for the selection of hyphae-associated bacterial communities and their functional traits in soil systems remain elusive. In the present study, baiting microcosms were used to recover hyphae-associated bacteria from two Penicillium species with different phosphorus-solubilizing capacities in five types of soils. Based on amplicon sequencing of 16S rRNA genes, the composition of bacterial communities associated with Penicillium hyphae differed significantly from the soil communities, showing a lower diversity and less variation in taxonomic structure. Furthermore, soil origin had a significant effect on hyphae-associated community composition, whereas the two fungal species used in this study had no significant overall impact on bacterial community structure, despite their different capacities to solubilize phosphorus. However, discriminative taxa and specific OTUs were enriched in hyphae-associated communities of individual Penicillium species indicating that each hyphosphere represented a unique niche for bacterial colonization. Additionally, an increased potential of phosphorus cycling was found in hyphae-associated communities, especially for the gene phnK involved in phosphonate degradation. Altogether, it was established that the two Penicillium hyphae represent unique niches in which microbiome assemblage and phosphorus cycling potential are mainly driven by soil origin, with less impact made by fungal identity with a divergent capacity to utilize phosphorus.
Collapse
Affiliation(s)
- Xiuli Hao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette H. Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Li X, Garbeva P, Liu X, Klein Gunnewiek PJA, Clocchiatti A, Hundscheid MPJ, Wang X, de Boer W. Volatile-mediated antagonism of soil bacterial communities against fungi. Environ Microbiol 2019; 22:1025-1035. [PMID: 31580006 PMCID: PMC7064993 DOI: 10.1111/1462-2920.14808] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
Competition is a major type of interaction between fungi and bacteria in soil and is also an important factor in suppression of plant diseases caused by soil‐borne fungal pathogens. There is increasing attention for the possible role of volatiles in competitive interactions between bacteria and fungi. However, knowledge on the actual role of bacterial volatiles in interactions with fungi within soil microbial communities is lacking. Here, we examined colonization of sterile agricultural soils by fungi and bacteria from non‐sterile soil inoculums during exposure to volatiles emitted by soil‐derived bacterial communities. We found that colonization of soil by fungi was negatively affected by exposure to volatiles emitted by bacterial communities whereas that of bacteria was barely changed. Furthermore, there were strong effects of bacterial community volatiles on the assembly of fungal soil colonizers. Identification of volatile composition produced by bacterial communities revealed several compounds with known fungistatic activity. Our results are the first to reveal a collective volatile‐mediated antagonism of soil bacteria against fungi. Given the better exploration abilities of filamentous fungi in unsaturated soils, this may be an important strategy for bacteria to defend occupied nutrient patches against invading fungi. Another implication of our research is that bacterial volatiles in soil atmospheres can have a major contribution to soil fungistasis.
Collapse
Affiliation(s)
- Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.,Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.,CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Xiaojiao Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.,College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Paulien J A Klein Gunnewiek
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Anna Clocchiatti
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Maria P J Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.,Soil Biology Group, Wageningen University, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
44
|
Ma YJ, Zheng LP, Wang JW. Bacteria Associated With Shiraia Fruiting Bodies Influence Fungal Production of Hypocrellin A. Front Microbiol 2019; 10:2023. [PMID: 31572311 PMCID: PMC6749022 DOI: 10.3389/fmicb.2019.02023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Hypocrellin A (HA) is a natural red perylenequinone pigment from Shiraia fruiting body, which was used clinically on various skin diseases and developed as a photodynamic therapy agent against cancers. The fruiting bodies may harbor a diverse but poorly understood microbial community. In this study, we characterized the bacterial community of Shiraia fruiting body using a combination of culture-based method and Illumina high-throughput sequencing, and tested the involvement of some companion bacteria in fungal HA production using the fungal-bacterial confrontation assay. Our results revealed that the bacterial community in the fruiting body was dominated by Bacillus and Pseudomonas. Some Pseudomonas isolates such as P. fulva, P. putida, and P. parafulva could stimulate fungal HA accumulation by Shiraia sp. S9. The bacterial treatment of P. fulva SB1 up-regulated the expression of polyketide synthase (PKS) for HA biosynthesis and transporter genes including ATP-binding cassette (ABC) and major facilitator superfamily transporter (MFS) for HA exudation. After the addition of live P. fulva SB1, the mycelium cultures of Shiraia sp. S9 presented a higher HA production (225.34 mg/L), about 3.25-fold over the mono-culture. On the other hand, B. cereus was capable of alleviating fungal self-toxicity from HA via down-regulation of HA biosynthetic genes or possible biodegradation on HA. To our knowledge, this is the first report on the diversified species of bacteria associated with Shiraia fruiting bodies and the regulation roles of the companion bacteria on fungal HA biosynthesis. Furthermore, the bacterial co-culture provided a good strategy for the enhanced HA production by Shiraia.
Collapse
Affiliation(s)
- Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
45
|
Martinez‐Almoyna C, Thuiller W, Chalmandrier L, Ohlmann M, Foulquier A, Clément J, Zinger L, Münkemüller T. Multi‐trophic β‐diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Camille Martinez‐Almoyna
- Univ. Grenoble Alpes CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d’Ecologie Alpine Grenoble France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d’Ecologie Alpine Grenoble France
| | | | - Marc Ohlmann
- Univ. Grenoble Alpes CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d’Ecologie Alpine Grenoble France
| | - Arnaud Foulquier
- Univ. Grenoble Alpes CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d’Ecologie Alpine Grenoble France
| | | | - Lucie Zinger
- Ecole Normale Supérieure, CNRS, Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University Paris France
| | - Tamara Münkemüller
- Univ. Grenoble Alpes CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d’Ecologie Alpine Grenoble France
| |
Collapse
|
46
|
Chen H, Yang ZK, Yip D, Morris RH, Lebreux SJ, Cregger MA, Klingeman DM, Hui D, Hettich RL, Wilhelm SW, Wang G, Löffler FE, Schadt CW. One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. PLoS One 2019; 14:e0211310. [PMID: 31211785 PMCID: PMC6581249 DOI: 10.1371/journal.pone.0211310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Soil microbiome responses to short-term nitrogen (N) inputs remain uncertain when compared with previous research that has focused on long-term fertilization responses. Here, we examined soil bacterial/archaeal and fungal communities pre- and post-N fertilization in an 8 year-old switchgrass field, in which twenty-four plots received N fertilization at three levels (0, 100, and 200 kg N ha-1 as NH4NO3) for the first time since planting. Soils were collected at two depths, 0–5 and 5–15 cm, for DNA extraction and amplicon sequencing of 16S rRNA genes and ITS regions for assessment of microbial community composition. Baseline assessments prior to fertilization revealed no significant pre-existing divergence in either bacterial/archaeal or fungal communities across plots. The one-time N fertilizations increased switchgrass yields and tissue N content, and the added N was nearly completely removed from the soil of fertilized plots by the end of the growing season. Both bacterial/archaeal and fungal communities showed large spatial (by depth) and temporal variation (by season) within each plot, accounting for 17 and 12–22% of the variation as calculated from the Sq. root of PERMANOVA tests for bacterial/archaeal and fungal community composition, respectively. While N fertilization effects accounted for only ~4% of overall variation, some specific microbial groups, including the bacterial genus Pseudonocardia and the fungal genus Archaeorhizomyces, were notably repressed by fertilization at 200 kg N ha-1. Bacterial groups varied with both depth in the soil profile and time of sampling, while temporal variability shaped the fungal community more significantly than vertical heterogeneity in the soil. These results suggest that short-term effects of N fertilization are significant but subtle, and other sources of variation will need to be carefully accounted for study designs including multiple intra-annual sampling dates, rather than one-time “snapshot” analyses that are common in the literature. Continued analyses of these trends over time with fertilization and management are needed to understand how these effects may persist or change over time.
Collapse
Affiliation(s)
- Huaihai Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dan Yip
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Reese H. Morris
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Steven J. Lebreux
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gangsheng Wang
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Frank E. Löffler
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
47
|
Gurusinghe S, Brooks TL, Barrow RA, Zhu X, Thotagamuwa A, Dennis PG, Gupta VVSR, Vanniasinkam T, Weston LA. Technologies for the Selection, Culture and Metabolic Profiling of Unique Rhizosphere Microorganisms for Natural Product Discovery. Molecules 2019; 24:E1955. [PMID: 31117282 PMCID: PMC6571749 DOI: 10.3390/molecules24101955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/04/2023] Open
Abstract
Small molecule discovery has benefitted from the development of technologies that have aided in the culture and identification of soil microorganisms and the subsequent analysis of their respective metabolomes. We report herein on the use of both culture dependent and independent approaches for evaluation of soil microbial diversity in the rhizosphere of canola, a crop known to support a diverse microbiome, including plant growth promoting rhizobacteria. Initial screening of rhizosphere soils showed that microbial diversity, particularly bacterial, was greatest at crop maturity; therefore organismal recovery was attempted with soil collected at canola harvest. Two standard media (Mueller Hinton and gellan gum) were evaluated following inoculation with soil aqueous suspensions and compared with a novel "rhizochip" prototype buried in a living canola crop rhizosphere for microbial culture in situ. Following successful recovery and identification of 375 rhizosphere microbiota of interest from all culture methods, isolates were identified by Sanger sequencing and/or characterization using morphological and biochemical traits. Three bacterial isolates of interest were randomly selected as case studies for intensive metabolic profiling. After successful culture in liquid media and solvent extraction, individual extracts were subjected to evaluation by UHPLC-DAD-QToF-MS, resulting in the rapid characterization of metabolites of interest from cultures of two isolates. After evaluation of key molecular features, unique or unusual bacterial metabolites were annotated and are reported herein.
Collapse
Affiliation(s)
- Saliya Gurusinghe
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Tabin L Brooks
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Russell A Barrow
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Plus 3 Australia Pty Ltd, P.O. Box 4345, Hawker, ACT 2614, Australia.
| | - Xiaocheng Zhu
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Agasthya Thotagamuwa
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | - Thiru Vanniasinkam
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| |
Collapse
|
48
|
Miquel Guennoc C, Rose C, Labbé J, Deveau A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol Ecol 2019; 94:4998851. [PMID: 29788056 DOI: 10.1093/femsec/fiy093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.
Collapse
Affiliation(s)
- Cora Miquel Guennoc
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| |
Collapse
|
49
|
Jenner M, Jian X, Dashti Y, Masschelein J, Hobson C, Roberts DM, Jones C, Harris S, Parkhill J, Raja HA, Oberlies NH, Pearce CJ, Mahenthiralingam E, Challis GL. An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics. Chem Sci 2019; 10:5489-5494. [PMID: 31293732 PMCID: PMC6553374 DOI: 10.1039/c8sc04897e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/22/2019] [Indexed: 11/21/2022] Open
Abstract
Fungus-associated Burkholderia gladioli bacteria use a unique ‘dual-priming’ nonribosomal peptide synthetase to assemble icosalide A1.
Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (CI) domains. One of these is appended to the N-terminus of module 1 – a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded CI domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly.
Collapse
Affiliation(s)
- Matthew Jenner
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Xinyun Jian
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Yousef Dashti
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Joleen Masschelein
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Christian Hobson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Douglas M Roberts
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Cerith Jones
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Simon Harris
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Cedric J Pearce
- Mycosynthetix , 4905 Pine Cone Drive , Durham , North Carolina 27707 , USA
| | - Eshwar Mahenthiralingam
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Gregory L Challis
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK.,Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia
| |
Collapse
|
50
|
Bacterial Dispersers along Preferential Flow Paths of a Clay Till Depth Profile. Appl Environ Microbiol 2019; 85:AEM.02658-18. [PMID: 30658975 PMCID: PMC6414393 DOI: 10.1128/aem.02658-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/21/2018] [Indexed: 11/29/2022] Open
Abstract
The ability to disperse is considered essential for soil bacteria colonization and survival, yet very little is known about the dispersal ability of communities from different heterogeneous soil compartments. Important factors for dispersal are the thickness and connectivity of the liquid film between soil particles. The present results from a fractured clay till depth profile suggest that dispersal ability is common in various soil compartments and that most are dominated by a few dispersing taxa. Importantly, an increase in shared dispersers among the preferential flow paths of the clay till suggests that active dispersal plays a role in the successful colonization of these habitats. This study assessed the dispersal of five bacterial communities from contrasting compartments along a fractured clay till depth profile comprising plow layer soil, preferential flow paths (biopores and the tectonic fractures below), and matrix sediments, down to 350 cm below the surface. A recently developed expansion of the porous surface model (PSM) was used to capture bacterial communities dispersing under controlled hydration conditions on a soil-like surface. All five communities contained bacteria capable of active dispersal under relatively low hydration conditions (−3.1 kPa). Further testing of the plow layer community revealed active dispersal even at matric potentials of −6.3 to −8.4 kPa, previously thought to be too dry for dispersal on the PSM. Using 16S rRNA gene amplicon sequencing, the dispersing communities were found to be less diverse than their corresponding total communities. The dominant dispersers in most compartments belonged to the genus Pseudomonas and, in the plow layer soil, to Rahnella as well. An exception to this was the dispersing community in the matrix at 350 cm below the surface, which was dominated by Pantoea. Hydrologically connected compartments shared proportionally more dispersing than nondispersing amplicon sequence variants (ASVs), suggesting that active dispersal is important for colonizing these compartments. These results highlight the importance of including soil profile heterogeneity when assessing the role of active dispersal and contribute to discerning the importance of active dispersal in the soil environment. IMPORTANCE The ability to disperse is considered essential for soil bacteria colonization and survival, yet very little is known about the dispersal ability of communities from different heterogeneous soil compartments. Important factors for dispersal are the thickness and connectivity of the liquid film between soil particles. The present results from a fractured clay till depth profile suggest that dispersal ability is common in various soil compartments and that most are dominated by a few dispersing taxa. Importantly, an increase in shared dispersers among the preferential flow paths of the clay till suggests that active dispersal plays a role in the successful colonization of these habitats.
Collapse
|