1
|
Wang J, Wu D, Wu Q, Chen J, Zhao Y, Wang H, Liu F, Yuan Q. Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177782. [PMID: 39626421 DOI: 10.1016/j.scitotenv.2024.177782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China. The results indicated that the rates of aerobic oxidation of methane (AeOM) in lake sediment ranged from 7.1 to 27.7 μg g-1 d-1, which was higher than that in reservoirs sediment (1.92 to 11.56 μg g-1 d-1). Similarly, the average AeOM in the water column of lake (104.7 μg L-1 d-1) was much higher than that of reservoirs (46 μg L-1 d-1). The content of sediment organic carbon and dissolved inorganic carbon were important factors that influenced the rates of AeOM in sediment and water column, respectively. 16S rRNA genes sequencing revealed a higher relative abundance of methanotrophs in lake sediments compared to reservoir sediments. The dominant methanotrophic taxa in lake was Methylococcaceae (type Ib), while Methylomonadaceae (type Ia) was predominant in reservoirs. Meanwhile, anaerobic methane-oxidizing microorganisms Candidatus Methylomirabilis and Candidatus Methanoperedens were also abundant in sediments of reservoirs. However, metatranscriptomic analysis revealed that the type I methanotrophs, especially Methylobacter, was most active in the sediment of both lake and reservoir. Water depth and conductivity could be the key controlling factors of the structures of methanotrophic communities in sediment and water column, respectively. Metagenome-assembled genomes suggested that type I methanotrophs exhibited greater motility, as evidenced by a higher number of flagellar assembly genes, while type II methanotrophs demonstrated advantages in metabolic processes such as carbon, phosphorus, and methane metabolism.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiusheng Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingan Chen
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China
| | - Yuan Zhao
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fukang Liu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China.
| |
Collapse
|
2
|
Li B, Mao Z, Xue J, Xing P, Wu QL. Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70002. [PMID: 39232853 PMCID: PMC11374530 DOI: 10.1111/1758-2229.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi, China
| |
Collapse
|
3
|
Schorn S, Graf JS, Littmann S, Hach PF, Lavik G, Speth DR, Schubert CJ, Kuypers MMM, Milucka J. Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility. Nat Commun 2024; 15:5293. [PMID: 38906896 PMCID: PMC11192741 DOI: 10.1038/s41467-024-49602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake. The rates of anaerobic methane oxidation in the anoxic hypolimnion reached up to 0.2 µM d-1. Single-cell nanoSIMS measurements, together with metagenomic and metatranscriptomic analyses, linked the measured rates to MOB of the order Methylococcales. Interestingly, their methane assimilation activity was similar under hypoxic and anoxic conditions. Our data suggest that these MOB use fermentation-based methanotrophy as well as denitrification under anoxic conditions, thus offering an explanation for their widespread presence in anoxic habitats such as stratified water columns. Thus, the methane sink capacity of anoxic basins may have been underestimated by not accounting for the anaerobic MOB activity.
Collapse
Affiliation(s)
- Sina Schorn
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Jon S Graf
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philipp F Hach
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Carsten J Schubert
- Department of Surface Waters, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | | | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
4
|
Li B, Tao Y, Mao Z, Gu Q, Han Y, Hu B, Wang H, Lai A, Xing P, Wu QL. Iron oxides act as an alternative electron acceptor for aerobic methanotrophs in anoxic lake sediments. WATER RESEARCH 2023; 234:119833. [PMID: 36889095 DOI: 10.1016/j.watres.2023.119833] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Conventional aerobic CH4-oxidizing bacteria (MOB) are frequently detected in anoxic environments, but their survival strategy and ecological contribution are still enigmatic. Here we explore the role of MOB in enrichment cultures under O2 gradients and an iron-rich lake sediment in situ by combining microbiological and geochemical techniques. We found that enriched MOB consortium used ferric oxides as alternative electron acceptors for oxidizing CH4 with the help of riboflavin when O2 was unavailable. Within the MOB consortium, MOB transformed CH4 to low molecular weight organic matter such as acetate for consortium bacteria as a carbon source, while the latter secrete riboflavin to facilitate extracellular electron transfer (EET). Iron reduction coupled to CH4 oxidation mediated by the MOB consortium was also demonstrated in situ, reducing 40.3% of the CH4 emission in the studied lake sediment. Our study indicates how MOBs survive under anoxia and expands the knowledge of this previously overlooked CH4 sink in iron-rich sediments.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiujin Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yixuan Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Anxing Lai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
5
|
He Z, Xu Y, Zhu Y, Feng J, Zhang D, Pan X. Long-term effects of soluble and insoluble ferric irons on anaerobic oxidation of methane in paddy soil. CHEMOSPHERE 2023; 317:137901. [PMID: 36669540 DOI: 10.1016/j.chemosphere.2023.137901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Iron-dependent anaerobic oxidation of methane (Fe-AOM) is an important process to reduce methane emissions into the atmosphere. It is well known that iron bioavailability largely influences microbial iron reduction, but the long-term effects of different ferric irons on soil Fe-AOM remain unknown. In this work, paddy soil in the ferruginous zone was collected and inoculated with insoluble ferrihydrite and soluble EDTA-Fe(III) for 420 days. Stable isotope experiments, activity inhibition tests, and molecular biological techniques were performed to reveal the activity, microbial community, and possible mechanism of paddy soil Fe-AOM. The results showed that ferrihydrite was a better electron acceptor for long-term Fe-AOM cultivation. Although EDTA-Fe(III) is highly bioavailable and could stimulate Fe-AOM activity for a short time, it restricted the activity increase in the long term. The abundances of archaea, iron-reducing bacteria (IRB), and gene mcrA largely increased after cultivation, indicating the important roles of mcrA-carrying archaea and IRB. Remarkably, archaeal communities were similar, but bacteria were totally different with different ferric irons. The results of the microbial community and activity inhibition suggested that Fe-AOM was performed likely by the cooperation between archaea (Methanomassiliicoccaceae or pGrfC26) and IRB in the cultures.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jieni Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
6
|
Su G, Lehmann MF, Tischer J, Weber Y, Lepori F, Walser JC, Niemann H, Zopfi J. Water column dynamics control nitrite-dependent anaerobic methane oxidation by Candidatus "Methylomirabilis" in stratified lake basins. THE ISME JOURNAL 2023; 17:693-702. [PMID: 36806832 PMCID: PMC10119105 DOI: 10.1038/s41396-023-01382-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
We investigated microbial methane oxidation in the water column of two connected but hydrodynamically contrasting basins of Lake Lugano, Switzerland. Both basins accumulate large amounts of methane in the water column below their chemoclines, but methane oxidation efficiently prevents methane from reaching surface waters. Here we show that in the meromictic North Basin water column, a substantial fraction of methane was eliminated through anaerobic methane oxidation (AOM) coupled to nitrite reduction by Candidatus Methylomirabilis. Incubations with 14CH4 and concentrated biomass from this basin showed enhanced AOM rates with nitrate (+62%) and nitrite (+43%). In the more dynamic South Basin, however, aerobic methanotrophs prevailed, Ca. Methylomirabilis was absent in the anoxic water column, and no evidence was found for nitrite-dependent AOM. Here, the duration of seasonal stratification and anoxia seems to be too short, relative to the slow growth rate of Ca. Methylomirabilis, to allow for the establishment of anaerobic methanotrophs, in spite of favorable hydrochemical conditions. Using 16 S rRNA gene sequence data covering nearly ten years of community dynamics, we show that Ca. Methylomirabilis was a permanent element of the pelagic methane filter in the North Basin, which proliferated during periods of stable water column conditions and became the dominant methanotroph in the system. Conversely, more dynamic water column conditions led to a decline of Ca. Methylomirabilis and induced blooms of the faster-growing aerobic methanotrophs Methylobacter and Crenothrix. Our data highlight that physical (mixing) processes and ecosystem stability are key drivers controlling the community composition of aerobic and anaerobic methanotrophs.
Collapse
Affiliation(s)
- Guangyi Su
- Department of Environmental Sciences, University of Basel, Basel, Switzerland. .,State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Jana Tischer
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Yuki Weber
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabio Lepori
- Department for Environment, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
| | | | - Helge Niemann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.,Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research and Utrecht University, Texel, The Netherlands
| | - Jakob Zopfi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Shen LD, Geng CY, Ren BJ, Jin JH, Huang HC, Liu X, Yang WT, Yang YL, Liu JQ, Tian MH. Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils. MICROBIAL ECOLOGY 2023; 85:441-453. [PMID: 35098330 DOI: 10.1007/s00248-022-01968-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g-1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.
Collapse
Affiliation(s)
- Li-Dong Shen
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Cai-Yu Geng
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bing-Jie Ren
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jing-Hao Jin
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He-Chen Huang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xin Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wang-Ting Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mao-Hui Tian
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
8
|
Jaffe AL, Bardot C, Le Jeune AH, Liu J, Colombet J, Perrière F, Billard H, Castelle CJ, Lehours AC, Banfield JF. Variable impact of geochemical gradients on the functional potential of bacteria, archaea, and phages from the permanently stratified Lac Pavin. MICROBIOME 2023; 11:14. [PMID: 36694212 PMCID: PMC9875498 DOI: 10.1186/s40168-022-01416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined. RESULTS Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO2 fixation pathways in the oxic lake interface and anoxic zone/sediments, suggesting that oxygen likely plays a role in structuring metabolic strategies in non-CPR bacteria and archaea. Notably, we find that the oxidation of methane and its byproducts is largely spatially separated from methane production, which is mediated by diverse communities of sediment methanogens that vary on the centimeter scale. In contrast, we detected evidence for RuBisCO throughout the water column and sediments, including form II/III and form III-related enzymes encoded by CPR bacteria in the water column and DPANN archaea in the sediments. On the whole, though, CPR bacteria and phages did not show strong signals of gene content differentiation by depth, despite the fact that distinct species groups populate different lake and sediment compartments. CONCLUSIONS Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Corinne Bardot
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Anne-Hélène Le Jeune
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jett Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Fanny Perrière
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Hermine Billard
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Cindy J Castelle
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Adeniyi A, Bello I, Mukaila T, Hammed A. A Review of Microbial Molecular Profiling during Biomass Valorization. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Lyautey E, Billard E, Tissot N, Jacquet S, Domaizon I. Seasonal Dynamics of Abundance, Structure, and Diversity of Methanogens and Methanotrophs in Lake Sediments. MICROBIAL ECOLOGY 2021; 82:559-571. [PMID: 33538855 DOI: 10.1007/s00248-021-01689-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding temporal and spatial microbial community abundance and diversity variations is necessary to assess the functional roles played by microbial actors in the environment. In this study, we investigated spatial variability and temporal dynamics of two functional microbial sediment communities, methanogenic Archaea and methanotrophic bacteria, in Lake Bourget, France. Microbial communities were studied from 3 sites sampled 4 times over a year, with one core sampled at each site and date, and 5 sediment layers per core were considered. Microbial abundance in the sediment were determined using flow cytometry. Methanogens and methanotrophs community structures, diversity, and abundance were assessed using T-RFLP, sequencing, and real-time PCR targeting mcrA and pmoA genes, respectively. Changes both in structure and abundance were detected mainly at the water-sediment interface in relation to the lake seasonal oxygenation dynamics. Methanogen diversity was dominated by Methanomicrobiales (mainly Methanoregula) members, followed by Methanosarcinales and Methanobacteriales. For methanotrophs, diversity was dominated by Methylobacter in the deeper area and by Methylococcus in the shallow area. Organic matter appeared to be the main environmental parameter controlling methanogens, while oxygen availability influenced both the structure and abundance of the methanotrophic community.
Collapse
Affiliation(s)
- Emilie Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France.
| | - Elodie Billard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Nathalie Tissot
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Stéphan Jacquet
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Isabelle Domaizon
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| |
Collapse
|
11
|
Wu D, Zhao Y, Cheng L, Zhou Z, Wu Q, Wang Q, Yuan Q. Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147515. [PMID: 33975103 DOI: 10.1016/j.scitotenv.2021.147515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Freshwater reservoirs are an important source of the greenhouse gas methane (CH4). However, little is known about the activity and structure of microbial communities involved in methanogenic decomposition of sediment organic matter (SOM) in cascade hydropower reservoirs. In this study, we targeted on sediments of three cascade reservoirs in Wujiang River, Southwest China. Our results showed that the content of sediment organic carbon (SOC) was between 3% and 11%, and it's positively correlated with both C/N ratio and recalcitrant organic carbon content of SOM. Meanwhile, SOC content was positively correlated with CH4 production rates but had no significant correlation with total CO2 production rates of the sediments, when rates were normalized to sediment volume. Resultantly, the sediment anaerobic decomposition rates hardly significantly increase along with the SOC content. These results suggested that the terrestrial organic matter accumulated after damming stimulated CH4 production from the reservoir sediments even though its decomposition rate was limited. Meantime, high throughput sequencing of 16S rRNA genes indicated that not only the hydrogenotrophic and acetoclastic, but also the methylotrophic methanogens (Methanomassiliicoccus) are abundant in the reservoir sediments. Moreover, metagenomic sequencing also suggested that methylotrophic methanogenesis are potentially important in the sediment of cascade reservoirs. Finally, the hydraulic residence time of the reservoir could be the key controlling factor of the structures of bacterial and archaeal communities as well as the CH4 production rates of the reservoir sediments.
Collapse
Affiliation(s)
- Debin Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qiusheng Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qian Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
12
|
Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M, Peura S. Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes. Front Microbiol 2021; 12:669937. [PMID: 34456882 PMCID: PMC8397446 DOI: 10.3389/fmicb.2021.669937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.
Collapse
Affiliation(s)
- Gaëtan Martin
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Li C, Hambright KD, Bowen HG, Trammell MA, Grossart HP, Burford MA, Hamilton DP, Jiang H, Latour D, Meyer EI, Padisák J, Zamor RM, Krumholz LR. Global co-occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates. Environ Microbiol 2021; 23:6503-6519. [PMID: 34327792 DOI: 10.1111/1462-2920.15691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%-90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.
Collapse
Affiliation(s)
- Chuang Li
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, The University of Oklahoma, Norman, Ok, USA
| | - K David Hambright
- Plankton Ecology and Limnology Laboratory, Program in Ecology and Evolutionary Biology, and the Geographical Ecology Group, Department of Biology, The University of Oklahoma, Norman, OK, USA
| | - Hannah G Bowen
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Majoi A Trammell
- Biomedical Research Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Stechlin, and Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Michele A Burford
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Delphine Latour
- Université Clermont Auvergne CNRS, LMGE, Aubière Cedex, France
| | - Elisabeth I Meyer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Judit Padisák
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, Veszprém, Hungary
| | | | - Lee R Krumholz
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, The University of Oklahoma, Norman, Ok, USA
| |
Collapse
|
14
|
Rojas CA, De Santiago Torio A, Park S, Bosak T, Klepac-Ceraj V. Organic Electron Donors and Terminal Electron Acceptors Structure Anaerobic Microbial Communities and Interactions in a Permanently Stratified Sulfidic Lake. Front Microbiol 2021; 12:620424. [PMID: 33967973 PMCID: PMC8103211 DOI: 10.3389/fmicb.2021.620424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The extent to which nutrients structure microbial communities in permanently stratified lakes is not well understood. This study characterized microbial communities from the anoxic layers of the meromictic and sulfidic Fayetteville Green Lake (FGL), NY, United States, and investigated the roles of organic electron donors and terminal electron acceptors in shaping microbial community structure and interactions. Bacterial communities from the permanently stratified layer below the chemocline (monimolimnion) and from enrichment cultures inoculated by lake sediments were analyzed using 16S rRNA gene sequencing. Results showed that anoxygenic phototrophs dominated microbial communities in the upper monimolimnion (21 m), which harbored little diversity, whereas the most diverse communities resided at the bottom of the lake (∼52 m). Organic electron donors explained 54% of the variation in the microbial community structure in aphotic cultures enriched on an array of organic electron donors and different inorganic electron acceptors. Electron acceptors only explained 10% of the variation, but were stronger drivers of community assembly in enrichment cultures supplemented with acetate or butyrate compared to the cultures amended by chitin, lignin or cellulose. We identified a range of habitat generalists and habitat specialists in both the water column and enrichment samples using Levin's index. Network analyses of interactions among microbial groups revealed Chlorobi and sulfate reducers as central to microbial interactions in the upper monimolimnion, while Syntrophaceae and other fermenting organisms were more important in the lower monimolimnion. The presence of photosynthetic microbes and communities that degrade chitin and cellulose far below the chemocline supported the downward transport of microbes, organic matter and oxidants from the surface and the chemocline. Collectively, our data suggest niche partitioning of bacterial communities via interactions that depend on the availability of different organic electron donors and terminal electron acceptors. Thus, light, as well as the diversity and availability of chemical resources drive community structure and function in FGL, and likely in other stratified, meromictic lakes.
Collapse
Affiliation(s)
- Connie A. Rojas
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
- Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, United States
| | - Ana De Santiago Torio
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Serry Park
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
15
|
Rainer EM, Seppey CVW, Tveit AT, Svenning MM. Methanotroph populations and CH4 oxidation potentials in high-Arctic peat are altered by herbivory induced vegetation change. FEMS Microbiol Ecol 2021; 96:5868763. [PMID: 32639555 PMCID: PMC8202349 DOI: 10.1093/femsec/fiaa140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023] Open
Abstract
Methane oxidizing bacteria (methanotrophs) within the genus
Methylobacter constitute the biological filter for methane
(CH4) in many Arctic soils. Multiple Methylobacter strains
have been identified in these environments but we seldom know the ecological significance
of the different strains. High-Arctic peatlands in Svalbard are heavily influenced by
herbivory, leading to reduced vascular plant and root biomass. Here, we have measured
potential CH4 oxidation rates and identified the active methantrophs in grazed
peat and peat protected from grazing by fencing (exclosures) for 18 years. Grazed peat
sustained a higher water table, higher CH4 concentrations and lower oxygen
(O2) concentrations than exclosed peat. Correspondingly, the highest
CH4 oxidation potentials were closer to the O2 rich surface in the
grazed than in the protected peat. A comparison of 16S rRNA genes showed that the majority
of methanotrophs in both sites belong to the genus Methylobacter. Further
analyses of pmoA transcripts revealed that several
Methylobacter OTUs were active in the peat but that different OTUs
dominated the grazed peat than the exclosed peat. We conclude that grazing influences soil
conditions, the active CH4 filter and that different
Methylobacter populations are responsible for CH4 oxidation
depending on the environmental conditions.
Collapse
Affiliation(s)
- Edda M Rainer
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Christophe V W Seppey
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
Cozannet M, Borrel G, Roussel E, Moalic Y, Allioux M, Sanvoisin A, Toffin L, Alain K. New Insights into the Ecology and Physiology of Methanomassiliicoccales from Terrestrial and Aquatic Environments. Microorganisms 2020; 9:E30. [PMID: 33374130 PMCID: PMC7824343 DOI: 10.3390/microorganisms9010030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the archaeal order Methanomassiliicoccales are methanogens mainly associated with animal digestive tracts. However, environmental members remain poorly characterized as no representatives not associated with a host have been cultivated so far. In this study, metabarcoding screening combined with quantitative PCR analyses on a collection of diverse non-host-associated environmental samples revealed that Methanomassiliicoccales were very scarce in most terrestrial and aquatic ecosystems. Relative abundance of Methanomassiliicoccales and substrates/products of methanogenesis were monitored during incubation of environmental slurries. A sediment slurry enriched in Methanomassiliicoccales was obtained from a freshwater sample. It allowed the reconstruction of a high-quality metagenome-assembled genome (MAG) corresponding to a new candidate species, for which we propose the name of Candidatus 'Methanomassiliicoccus armoricus MXMAG1'. Comparison of the annotated genome of MXMAG1 with the published genomes and MAGs from Methanomassiliicoccales belonging to the 2 known clades ('free-living'/non-host-associated environmental clade and 'host-associated'/digestive clade) allowed us to explore the putative physiological traits of Candidatus 'M. armoricus MXMAG1'. As expected, Ca. 'Methanomassiliicoccus armoricus MXMAG1' had the genetic potential to produce methane by reduction of methyl compounds and dihydrogen oxidation. This MAG encodes for several putative physiological and stress response adaptations, including biosynthesis of trehalose (osmotic and temperature regulations), agmatine production (pH regulation), and arsenic detoxication, by reduction and excretion of arsenite, a mechanism that was only present in the 'free-living' clade. An analysis of co-occurrence networks carried out on environmental samples and slurries also showed that Methanomassiliicoccales detected in terrestrial and aquatic ecosystems were strongly associated with acetate and dihydrogen producing bacteria commonly found in digestive habitats and which have been reported to form syntrophic relationships with methanogens.
Collapse
Affiliation(s)
- Marc Cozannet
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Guillaume Borrel
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institute Pasteur, 75015 Paris, France;
| | - Erwan Roussel
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Yann Moalic
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Maxime Allioux
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Amandine Sanvoisin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Laurent Toffin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| |
Collapse
|
17
|
Guggenheim C, Freimann R, Mayr MJ, Beck K, Wehrli B, Bürgmann H. Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Front Microbiol 2020; 11:579427. [PMID: 33178162 PMCID: PMC7593551 DOI: 10.3389/fmicb.2020.579427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
In stratified lakes, methane-oxidizing bacteria (MOB) are strongly mitigating methane fluxes to the atmosphere by consuming methane entering the water column from the sediments. MOB communities in lakes are diverse and vertically structured, but their spatio-temporal dynamics along the water column as well as physico-chemical parameters and interactions with other bacterial species that drive the community assembly have so far not been explored in depth. Here, we present a detailed investigation of the MOB and bacterial community composition and a large set of physico-chemical parameters in a shallow, seasonally stratified, and sub-alpine lake. Four highly resolved vertical profiles were sampled in three different years and during various stages of development of the stratified water column. Non-randomly assembled MOB communities were detected in all compartments. We could identify methane and oxygen gradients and physico-chemical parameters like pH, light, available copper and iron, and total dissolved nitrogen as important drivers of the MOB community structure. In addition, MOB were well-integrated into a bacterial-environmental network. Partial redundancy analysis of the relevance network of physico-chemical variables and bacteria explained up to 84% of the MOB abundances. Spatio-temporal MOB community changes were 51% congruent with shifts in the total bacterial community and 22% of variance in MOB abundances could be explained exclusively by the bacterial community composition. Our results show that microbial interactions may play an important role in structuring the MOB community along the depth gradient of stratified lakes.
Collapse
Affiliation(s)
- Carole Guggenheim
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Remo Freimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Magdalena J Mayr
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Karin Beck
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Bernhard Wehrli
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
18
|
Cabrol L, Thalasso F, Gandois L, Sepulveda-Jauregui A, Martinez-Cruz K, Teisserenc R, Tananaev N, Tveit A, Svenning MM, Barret M. Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139588. [PMID: 32497884 DOI: 10.1016/j.scitotenv.2020.139588] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Arctic lakes emit methane (CH4) to the atmosphere. The magnitude of this flux could increase with permafrost thaw but might also be mitigated by microbial CH4 oxidation. Methane oxidation in oxic water has been extensively studied, while the contribution of anaerobic oxidation of methane (AOM) to CH4 mitigation is not fully understood. We have investigated four Northern Siberian stratified lakes in an area of discontinuous permafrost nearby Igarka, Russia. Analyses of CH4 concentrations in the water column demonstrated that 60 to 100% of upward diffusing CH4 was oxidized in the anoxic layers of the four lakes. A combination of pmoA and mcrA gene qPCR and 16S rRNA gene metabarcoding showed that the same taxa, all within Methylomonadaceae and including the predominant genus Methylobacter as well as Crenothrix, could be the major methane-oxidizing bacteria (MOB) in the anoxic water of the four lakes. Correlation between Methylomonadaceae and OTUs within Methylotenera, Geothrix and Geobacter genera indicated that AOM might occur in an interaction between MOB, denitrifiers and iron-cycling partners. We conclude that MOB within Methylomonadaceae could have a crucial impact on CH4 cycling in these Siberian Arctic lakes by mitigating the majority of produced CH4 before it leaves the anoxic zone. This finding emphasizes the importance of AOM by Methylomonadaceae and extends our knowledge about CH4 cycle in lakes, a crucial component of the global CH4 cycle.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix-Marseille University, Univ Toulon, CNRS, IRD, M.I.O. UM 110, Mediterranean Institute of Oceanography, Marseille, France; Institute of Ecology and Biodiversity IEB, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Escuela de Ingeniería Bioquímica, Pontificia Universidad de Valparaiso, Av Brasil 2085, Valparaiso, Chile
| | - Frédéric Thalasso
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Laure Gandois
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France
| | - Armando Sepulveda-Jauregui
- ENBEELAB, University of Magallanes, Punta Arenas, Chile; Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | | | - Roman Teisserenc
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France
| | | | - Alexander Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
19
|
van Grinsven S, Sinninghe Damsté JS, Harrison J, Villanueva L. Impact of Electron Acceptor Availability on Methane-Influenced Microorganisms in an Enrichment Culture Obtained From a Stratified Lake. Front Microbiol 2020; 11:715. [PMID: 32477281 PMCID: PMC7240106 DOI: 10.3389/fmicb.2020.00715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Methanotrophs are of major importance in limiting methane emissions from lakes. They are known to preferably inhabit the oxycline of stratified water columns, often assumed due to an intolerance to atmospheric oxygen concentrations, but little is known on the response of methanotrophs to different oxygen concentrations as well as their preference for different electron acceptors. In this study, we enriched a methanotroph of the Methylobacter genus from the oxycline and the anoxic water column of a stratified lake, which was also present in the oxic water column in the winter. We tested the response of this Methylobacter-dominated enrichment culture to different electron acceptors, i.e., oxygen, nitrate, sulfate, and humic substances, and found that, in contrast to earlier results with water column incubations, oxygen was the preferred electron acceptor, leading to methane oxidation rates of 45–72 pmol cell−1 day−1. Despite the general assumption of methanotrophs preferring microaerobic conditions, methane oxidation was most efficient under high oxygen concentrations (>600 μM). Low (<30 μM) oxygen concentrations still supported methane oxidation, but no methane oxidation was observed with trace oxygen concentrations (<9 μM) or under anoxic conditions. Remarkably, the presence of nitrate stimulated methane oxidation rates under oxic conditions, raising the methane oxidation rates by 50% when compared to oxic incubations with ammonium. Under anoxic conditions, no net methane consumption was observed; however, methanotroph abundances were two to three times higher in incubations with nitrate and sulfate compared to anoxic incubations with ammonium as the nitrogen source. Metagenomic sequencing revealed the absence of a complete denitrification pathway in the dominant methanotroph Methylobacter, but the most abundant methylotroph Methylotenera seemed capable of denitrification, which can possibly play a role in the enhanced methane oxidation rates under nitrate-rich conditions.
Collapse
Affiliation(s)
- Sigrid van Grinsven
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - John Harrison
- School of the Environment, Washington State University Vancouver, Vancouver, WA, United States
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Biderre-Petit C, Taib N, Gardon H, Hochart C, Debroas D. New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics. FEMS Microbiol Ecol 2020; 95:5092586. [PMID: 30203066 DOI: 10.1093/femsec/fiy183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Advances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle. We demonstrated that methane-producing communities were dominated by the genus Methanoregula while methane-consuming communities were dominated by the genus Methylobacter, thus confirming prior observations. Our work allowed the reconstruction of a draft of their core metabolic pathways. Hydrogenotrophs, the genes required for acetate activation in the methanogen genome, were also detected. Regarding methanotrophy, Methylobacter was present in the same areas as the non-methanotrophic, methylotrophic Methylotenera, which could suggest a relationship between these two groups. Furthermore, the presence of a large gene inventory for nitrogen metabolism (nitrate transport, denitrification, nitrite assimilation and nitrogen fixation, for instance) was detected in the Methylobacter genome.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Najwa Taib
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Hélène Gardon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Corentin Hochart
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Yang Y, Chen J, Tong T, Xie S, Liu Y. Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114106. [PMID: 32041086 DOI: 10.1016/j.envpol.2020.114106] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Freshwater lakes, especially eutrophic ones, have become a hotspot of methanogenesis. However, the effects of eutrophication and seasonality on methanogenesis activity and methanogenic microbial community remain unclear. In the current study, for two adjacent lakes at different trophic status, their methanogenesis potential in different seasons was evaluated using incubation experiments. The density, diversity, and community structure of methanogens were analyzed based on the mcrA gene. Correlation analysis and redundancy analysis were carried out to identify the environmental factors driving the variations of methanogenesis potential and methanogen community. The results showed that eutrophication could result in active methanogenesis with relatively high seasonal variance. The methanogenesis variation could be well explained by carbon input in association with algal growth, as well as the change of methanogen population density. With the dominance of Methanomicrobiales in both lakes, the hydrogenotrophic pathway had a major contribution to total methane production. The considerable proportion of Methanomassiliicocales in eutrophic lake implied that methylotrophic methanogenesis might be previously underestimated. These results added new insights towards methanogenesis process in eutrophic freshwater lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Mayr MJ, Zimmermann M, Dey J, Brand A, Wehrli B, Bürgmann H. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun Biol 2020; 3:108. [PMID: 32144394 PMCID: PMC7060174 DOI: 10.1038/s42003-020-0838-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Lakes and reservoirs contribute substantially to atmospheric concentrations of the potent greenhouse gas methane. Lake sediments produce large amounts of methane, which accumulate in the oxygen-depleted bottom waters of stratified lakes. Climate change and eutrophication may increase the number of lakes with methane storage in the future. Whether stored methane escapes to the atmosphere during annual lake overturn is a matter of controversy and depends critically on the response of the methanotroph assemblage. Here we show, by combining 16S rRNA gene and pmoA mRNA amplicon sequencing, qPCR, CARD-FISH and potential methane-oxidation rate measurements, that the methanotroph assemblage in a mixing lake underwent both a substantial bloom and ecological succession. As a result, methane oxidation kept pace with the methane supplied from methane-rich bottom water and most methane was oxidized. This aspect of freshwater methanotroph ecology represents an effective mechanism limiting methane transfer from lakes to the atmosphere.
Collapse
Affiliation(s)
- Magdalena J Mayr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Matthias Zimmermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Jason Dey
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Andreas Brand
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Bernhard Wehrli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.
| |
Collapse
|
23
|
Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling. Biochem Soc Trans 2020; 47:1895-1907. [PMID: 31819955 DOI: 10.1042/bst20180565] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Research on methanogenic Archaea has experienced a revival, with many novel lineages of methanogens recently being found through cultivation and suggested via metagenomics approaches, respectively. Most of these lineages comprise Archaea (potentially) capable of methanogenesis from methylated compounds, a pathway that had previously received comparably little attention. In this review, we provide an overview of these new lineages with a focus on the Methanomassiliicoccales. These lack the Wood-Ljungdahl pathway and employ a hydrogen-dependent methylotrophic methanogenesis pathway fundamentally different from traditional methylotrophic methanogens. Several archaeal candidate lineages identified through metagenomics, such as the Ca. Verstraetearchaeota and Ca. Methanofastidiosa, encode genes for a methylotrophic methanogenesis pathway similar to the Methanomassiliicoccales. Thus, the latter are emerging as a model system for physiological, biochemical and ecological studies of hydrogen-dependent methylotrophic methanogens. Methanomassiliicoccales occur in a large variety of anoxic habitats including wetlands and animal intestinal tracts, i.e. in the major natural and anthropogenic sources of methane emissions, respectively. Especially in ruminant animals, they likely are among the major methane producers. Taken together, (hydrogen-dependent) methylotrophic methanogens are much more diverse and widespread than previously thought. Considering the role of methane as potent greenhouse gas, resolving the methanogenic nature of a broad range of putative novel methylotrophic methanogens and assessing their role in methane emitting environments are pressing issues for future research on methanogens.
Collapse
|
24
|
van Grinsven S, Sinninghe Damsté JS, Abdala Asbun A, Engelmann JC, Harrison J, Villanueva L. Methane oxidation in anoxic lake water stimulated by nitrate and sulfate addition. Environ Microbiol 2020; 22:766-782. [PMID: 31814267 PMCID: PMC7027835 DOI: 10.1111/1462-2920.14886] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022]
Abstract
Methanotrophic bacteria play a key role in limiting methane emissions from lakes. It is generally assumed that methanotrophic bacteria are mostly active at the oxic-anoxic transition zone in stratified lakes, where they use oxygen to oxidize methane. Here, we describe a methanotroph of the genera Methylobacter that is performing high-rate (up to 72 μM day-1 ) methane oxidation in the anoxic hypolimnion of the temperate Lacamas Lake (Washington, USA), stimulated by both nitrate and sulfate addition. Oxic and anoxic incubations both showed active methane oxidation by a Methylobacter species, with anoxic rates being threefold higher. In anoxic incubations, Methylobacter cell numbers increased almost two orders of magnitude within 3 days, suggesting that this specific Methylobacter species is a facultative anaerobe with a rapid response capability. Genomic analysis revealed adaptations to oxygen-limitation as well as pathways for mixed-acid fermentation and H2 production. The denitrification pathway was incomplete, lacking the genes narG/napA and nosZ, allowing only for methane oxidation coupled to nitrite-reduction. Our data suggest that Methylobacter can be an important driver of the conversion of methane in oxygen-limited lake systems and potentially use alternative electron acceptors or fermentation to remain active under oxygen-depleted conditions.
Collapse
Affiliation(s)
- Sigrid van Grinsven
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research, and Utrecht UniversityDen BurgThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research, and Utrecht UniversityDen BurgThe Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research, and Utrecht UniversityDen BurgThe Netherlands
| | - Julia C. Engelmann
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research, and Utrecht UniversityDen BurgThe Netherlands
| | - John Harrison
- Washington State University Vancouver, School of the EnvironmentVancouverWA98686USA
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research, and Utrecht UniversityDen BurgThe Netherlands
| |
Collapse
|
25
|
Lambrecht N, Katsev S, Wittkop C, Hall SJ, Sheik CS, Picard A, Fakhraee M, Swanner ED. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. GEOBIOLOGY 2020; 18:54-69. [PMID: 31592570 DOI: 10.1111/gbi.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/20/2019] [Accepted: 08/31/2019] [Indexed: 05/28/2023]
Abstract
Meromictic lakes with anoxic bottom waters often have active methane cycles whereby methane is generally produced biogenically under anoxic conditions and oxidized in oxic surface waters prior to reaching the atmosphere. Lakes that contain dissolved ferrous iron in their deep waters (i.e., ferruginous) are rare, but valuable, as geochemical analogues of the conditions that dominated the Earth's oceans during the Precambrian when interactions between the iron and methane cycles could have shaped the greenhouse regulation of the planet's climate. Here, we explored controls on the methane fluxes from Brownie Lake and Canyon Lake, two ferruginous meromictic lakes that contain similar concentrations (max. >1 mM) of dissolved methane in their bottom waters. The order Methanobacteriales was the dominant methanogen detected in both lakes. At Brownie Lake, methanogen abundance, an increase in methane concentration with respect to depths closer to the sediment, and isotopic data suggest methanogenesis is an active process in the anoxic water column. At Canyon Lake, methanogenesis occurred primarily in the sediment. The most abundant aerobic methane-oxidizing bacteria present in both water columns were associated with the Gammaproteobacteria, with little evidence of anaerobic methane oxidizing organisms being present or active. Direct measurements at the surface revealed a methane flux from Brownie Lake that was two orders of magnitude greater than the flux from Canyon Lake. Comparison of measured versus calculated turbulent diffusive fluxes indicates that most of the methane flux at Brownie Lake was non-diffusive. Although the turbulent diffusive methane flux at Canyon Lake was attenuated by methane oxidizing bacteria, dissolved methane was detected in the epilimnion, suggestive of lateral transport of methane from littoral sediments. These results highlight the importance of direct measurements in estimating the total methane flux from water columns, and that non-diffusive transport of methane may be important to consider from other ferruginous systems.
Collapse
Affiliation(s)
- Nicholas Lambrecht
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA
| | - Sergei Katsev
- Department of Physics, University of Minnesota Duluth, Duluth, MN, USA
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
| | - Chad Wittkop
- Department of Chemistry and Geology, Minnesota State University, Mankato, MN, USA
| | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Cody S Sheik
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Aude Picard
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Mojtaba Fakhraee
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
26
|
Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol 2019; 22:738-751. [PMID: 31769176 DOI: 10.1111/1462-2920.14877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Abstract
Lake methane (CH4 ) emissions are largely controlled by aerobic methane-oxidizing bacteria (MOB) which mostly belong to the classes Alpha- and Gammaproteobacteria (Alpha- and Gamma-MOB). Despite the known metabolic and ecological differences between the two MOB groups, their main environmental drivers and their relative contribution to CH4 oxidation rates across lakes remain unknown. Here, we quantified the two MOB groups through CARD-FISH along the water column of six temperate lakes and during incubations in which we measured ambient CH4 oxidation rates. We found a clear niche separation of Alpha- and Gamma-MOB across lake water columns, which is mostly driven by oxygen concentration. Gamma-MOB appears to dominate methanotrophy throughout the water column, but Alpha-MOB may also be an important player particularly in well-oxygenated bottom waters. The inclusion of Gamma-MOB cell abundance improved environmental models of CH4 oxidation rate, explaining part of the variation that could not be explained by environmental factors alone. Altogether, our results show that MOB composition is linked to CH4 oxidation rates in lakes and that information on the MOB community can help predict CH4 oxidation rates and thus emissions from lakes.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Shoji D Thottathil
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), Barcelona, E-08003, Spain
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
27
|
Čanković M, Žučko J, Radić ID, Janeković I, Petrić I, Ciglenečki I, Collins G. Microbial diversity and long-term geochemical trends in the euxinic zone of a marine, meromictic lake. Syst Appl Microbiol 2019; 42:126016. [PMID: 31635887 DOI: 10.1016/j.syapm.2019.126016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 01/04/2023]
Abstract
Hypoxic and anoxic niches of meromictic lakes are important sites for studying the microbial ecology of conditions resembling ancient Earth. The expansion and increasing global distribution of such environments also means that information about them serves to understand future phenomena. In this study, a long-term chemical dataset (1996-2015) was explored together with seasonal (in 2015) information on the diversity and abundance of bacterial and archaeal communities residing in the chemocline, monimolimnion and surface sediment of the marine meromictic Rogoznica Lake. The results of quantitative PCR assays, and high-throughput sequencing, targeting 16S rRNA genes and transcripts, revealed a clear vertical structure of the microbial community with Gammaproteobacteria (Halochromatium) and cyanobacteria (Synechococcus spp.) dominating the chemocline, Deltaproteobacteria and Bacteroidetes dominating the monimolimnion, and significantly more abundant archaeal populations in the surface sediment, most of which affiliated to Nanoarchaeota. Seasonal changes in the community structure and abundance were not pronounced. Diversity in Rogoznica Lake was found to be high, presumably as a consequence of stable environmental conditions accompanied by high dissolved carbon and nutrient concentrations. Long-term data indicated that Rogoznica Lake exhibited climate changes that could alter its physico-chemical features and, consequently, induce structural and physiological changes within its microbial community.
Collapse
Affiliation(s)
- Milan Čanković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Jurica Žučko
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia
| | - Iris Dupčić Radić
- Institute for Marine and Coastal Research, University of Dubrovnik, Ul. kneza Damjana Jude 12, 20 000, Dubrovnik, Croatia
| | - Ivica Janeković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Irena Ciglenečki
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Gavin Collins
- Microbial Communities Laboratory, Microbiology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
28
|
Niche partitioning of methane-oxidizing bacteria along the oxygen-methane counter gradient of stratified lakes. ISME JOURNAL 2019; 14:274-287. [PMID: 31624343 DOI: 10.1038/s41396-019-0515-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/13/2019] [Accepted: 08/25/2019] [Indexed: 12/30/2022]
Abstract
Lakes are a significant source of atmospheric methane, although methane-oxidizing bacteria consume most methane diffusing upward from anoxic sediments. Diverse methane-oxidizing bacteria form an effective methane filter in the water column of stratified lakes, yet, niche partitioning of different methane-oxidizing bacteria along the oxygen-methane counter gradient remains poorly understood. In our study, we reveal vertical distribution patterns of active methane-oxidizing bacteria along the oxygen-methane counter gradient of four lakes, based on amplicon sequencing analysis of 16S rRNA and pmoA genes, and 16S rRNA and pmoA transcripts, and potential methane oxidation rates. Differential distribution patterns indicated that ecologically different methane-oxidizing bacteria occupied the methane-deficient and oxygen-deficient part above and below the oxygen-methane interface. The interface sometimes harbored additional taxa. Within the dominant Methylococcales, an uncultivated taxon (CABC2E06) occurred mainly under methane-deficient conditions, whereas Crenothrix-related taxa preferred oxygen-deficient conditions. Candidatus Methylomirabilis limnetica (NC10 phylum) abundantly populated the oxygen-deficient part in two of four lakes. We reason that the methane filter in lakes is structured and that methane-oxidizing bacteria may rely on niche-specific adaptations for methane oxidation along the oxygen-methane counter gradient. Niche partitioning of methane-oxidizing bacteria might support greater overall resource consumption, contributing to the high effectivity of the lacustrine methane filter.
Collapse
|
29
|
García-García N, Tamames J, Linz AM, Pedrós-Alió C, Puente-Sánchez F. Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions. ISME JOURNAL 2019; 13:2969-2983. [PMID: 31417155 DOI: 10.1038/s41396-019-0487-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/28/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
Microdiversity can lead to different ecotypes within the same species. These are assumed to provide stability in time and space to those species. However, the role of microdiversity in the stability of whole microbial communities remains underexplored. Understanding the drivers of microbial community stability is necessary to predict community response to future disturbances. Here, we analyzed 16S rRNA gene amplicons from eight different temperate bog lakes at the 97% OTU and amplicon sequence variant (ASV) levels and found ecotypes within the same OTU with different distribution patterns in space and time. We observed that these ecotypes are adapted to different values of environmental factors such as water temperature and oxygen concentration. Our results showed that the existence of several ASVs within a OTU favored its persistence across changing environmental conditions. We propose that microdiversity aids the stability of microbial communities in the face of fluctuations in environmental factors.
Collapse
Affiliation(s)
- Natalia García-García
- Microbiome Analysis Laboratory, Systems Biology Department, Centro Nacional de Biotecnología, CSIC, C/Darwin no. 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Javier Tamames
- Microbiome Analysis Laboratory, Systems Biology Department, Centro Nacional de Biotecnología, CSIC, C/Darwin no. 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Alexandra M Linz
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI, 53726, USA
| | - Carlos Pedrós-Alió
- Microbiome Analysis Laboratory, Systems Biology Department, Centro Nacional de Biotecnología, CSIC, C/Darwin no. 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Fernando Puente-Sánchez
- Microbiome Analysis Laboratory, Systems Biology Department, Centro Nacional de Biotecnología, CSIC, C/Darwin no. 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Zakharenko AS, Galachyants YP, Morozov IV, Shubenkova OV, Morozov AA, Ivanov VG, Pimenov NV, Krasnopeev AY, Zemskaya TI. Bacterial Communities in Areas of Oil and Methane Seeps in Pelagic of Lake Baikal. MICROBIAL ECOLOGY 2019; 78:269-285. [PMID: 30483839 DOI: 10.1007/s00248-018-1299-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
We have assessed the diversity of bacteria near oil-methane (area I) and methane (area II) seeps in the pelagic zone of Lake Baikal using massive parallel sequencing of 16S rRNA, pmoA, and mxaF gene fragments amplified from total DNA. At depths from the surface to 100 m, sequences belonging to Cyanobacteria dominated. In the communities to a depth of 200 m of the studied areas, Proteobacteria dominated the deeper layers of the water column. Alphaproteobacteria sequences were predominant in the community near the oil-methane seep, while the community near the methane seep was characterized by the prevalence of Alpha- and Gammaproteobacteria. Among representatives of these classes, type I methanotrophs prevailed in the 16S rRNA gene libraries from the near-bottom area, and type II methanotrophs were detected in minor quantities at different depths. In the analysis of the libraries of the pmoA and mxaF functional genes, we observed the different taxonomic composition of methanotrophic bacteria in the surface and deep layers of the water column. All pmoA sequences from area I were type II methanotrophs and were detected at a depth of 300 m, while sequences of type I methanotrophs were the most abundant in deep layers of the water column of area II. All mxaF gene sequences belonged to Methylobacterium representatives. Based on comparative analyses of 16S rRNA, pmoA, and mxaF gene fragment libraries, we suggest that there must be a wider spectrum of functional genes facilitating methane oxidation that were not detected with the primers used.
Collapse
Affiliation(s)
- Aleksandra S Zakharenko
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia.
| | - Yuriy P Galachyants
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Igor V Morozov
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga V Shubenkova
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Alexey A Morozov
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Vyacheslav G Ivanov
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Nikolay V Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Andrey Y Krasnopeev
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Tamara I Zemskaya
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| |
Collapse
|
31
|
Bai YN, Wang XN, Lu YZ, Fu L, Zhang F, Lau TC, Zeng RJ. Microbial selenite reduction coupled to anaerobic oxidation of methane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:168-174. [PMID: 30878925 DOI: 10.1016/j.scitotenv.2019.03.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) is the process of coupling the anaerobic oxidation of methane (AOM) with denitrification, which plays an important part in controlling the flow of methane in anoxic niches. In this study, we explored the feasibility of microbial selenite reduction using methane by DAMO culture. Isotopic 13CH4 and long-term experiments showed that selenite reduction was coupled to methane oxidation, and selenite was ultimately reduced to Se (0) by the analyses of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The introduction of nitrate, the original electron acceptor in the DAMO culture, inhibited selenite reduction. Meanwhile, the microbial community of DAMO culture was significantly changed when the electron acceptor was changed from nitrate to selenite after long-term selenite reduction. High-throughput 16S rRNA gene sequencing indicated that Methylococcus (26%) became the predominant microbe performing selenite reduction and methane oxidation and the possible pathways of AOM accompanied with selenite reduction were proposed. This study revealed more potential relation during the biogeochemical cycle of carbon, nitrogen, and selenium.
Collapse
Affiliation(s)
- Ya-Nan Bai
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiu-Ning Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Yong-Ze Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Ling Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Fang Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Tai-Chu Lau
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Raymond J Zeng
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
32
|
Bodelier PLE, Pérez G, Veraart AJ, Krause SMB. Methanotroph Ecology, Environmental Distribution and Functioning. METHANOTROPHS 2019. [DOI: 10.1007/978-3-030-23261-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Martinez-Cruz K, Sepulveda-Jauregui A, Casper P, Anthony KW, Smemo KA, Thalasso F. Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments. WATER RESEARCH 2018; 144:332-340. [PMID: 30053624 DOI: 10.1016/j.watres.2018.07.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic oxidation of methane (AOM) is a microbial process that consumes dissolved methane (CH4) in anoxic sediments and soils and mitigates CH4 release to the atmosphere. The degree to which AOM limits global biospheric CH4 emissions is not fully understood. In marine sediments, where the process was first described, AOM is responsible for oxidizing >90% of the CH4 produced. More recently, AOM has been observed in soils, peatlands, and freshwater ecosystems. In lakes, where sediment anoxia, organic carbon turnover, and CH4 production are common, AOM is not well studied but could represent a significant CH4 sink and constraint on emissions. Here, we present evidence for the occurrence of AOM in the sediment of thirteen lakes that span a global climatic and trophic gradient. We further quantified and modeled AOM patterns and studied potential microbial controls of AOM using laboratory incubations of sediment and stable isotope measurements in three of the thirteen lakes. We demonstrate that AOM is widespread in freshwater lake sediments and accounts for 29%-34% (95% confidence interval) of the mean total CH4 produced in surface and near-surface lake sediments.
Collapse
Affiliation(s)
- Karla Martinez-Cruz
- Cinvestav, Department of Biotechnology and Bioengineering, 2508 IPN Ave., San Pedro Zacatenco, 07360, Mexico City, Mexico; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775, Stechlin, Germany; University of Magallanes, Department of Science and Natural Resources, 01890, Manuel Bulnes Ave., Punta Arenas, Chile
| | - Armando Sepulveda-Jauregui
- Cinvestav, Department of Biotechnology and Bioengineering, 2508 IPN Ave., San Pedro Zacatenco, 07360, Mexico City, Mexico; University of Alaska Fairbanks, Water and Environmental Research Center, 1760 Tanana Loop, Fairbanks, 99775, Alaska, USA
| | - Peter Casper
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Katey Walter Anthony
- University of Alaska Fairbanks, Water and Environmental Research Center, 1760 Tanana Loop, Fairbanks, 99775, Alaska, USA
| | - Kurt A Smemo
- Skidmore College, Environmental Studies and Sciences Program, 815 N. Broadway, Saratoga Springs, 12866, New York, USA
| | - Frederic Thalasso
- Cinvestav, Department of Biotechnology and Bioengineering, 2508 IPN Ave., San Pedro Zacatenco, 07360, Mexico City, Mexico; University of Alaska Fairbanks, Water and Environmental Research Center, 1760 Tanana Loop, Fairbanks, 99775, Alaska, USA.
| |
Collapse
|
34
|
Keshri J, Pradeep Ram AS, Nana PA, Sime-Ngando T. Taxonomical Resolution and Distribution of Bacterioplankton Along the Vertical Gradient Reveals Pronounced Spatiotemporal Patterns in Contrasted Temperate Freshwater Lakes. MICROBIAL ECOLOGY 2018; 76:372-386. [PMID: 29340714 DOI: 10.1007/s00248-018-1143-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
We examined the relationship between viruses and co-occurring bacterial communities across spatiotemporal scale in two contrasting freshwater lakes, namely meromictic Lake Pavin and dimictic Lake Aydat (Central France). Next-generation sequencing of 16S rRNA genes suggested distinct patterns in bacterioplankton community composition (BCC) between the lakes over depths and seasons. BCC were generally dominated by members of Actinobacteria, Proteobacteria, and Bacteroidetes covering about 95% of all sequences. Oxygen depletion at the bottom waters in Aydat and existence of permanent anoxia in the monimolimnion of Pavin resulted in the occurrence and dominance of lesser known members of lake communities such as Methylotenera, Methylobacter, Gallionella, Sulfurimonas, and Syntrophus in Pavin and Methylotenera and Sulfuritalea in Aydat. Differences in BCC appeared strongly related to dissolved oxygen concentration, temperature, viral infection, and virus-to-bacteria ratio. UniFrac analysis indicated a clear distinction in BCC when the percentage of viral infected bacterial cells and virus-to-bacteria ratio exceeded a threshold level of 10% and 5, respectively, suggesting a link between viruses and their potential bacterial host communities. Our study revealed that in both the lakes, the prevailing environmental factors across time and space structured and influenced the adaptation of bacterial communities to specific ecological niches.
Collapse
Affiliation(s)
- J Keshri
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 1 Impasse Amélie Murat, BP 80026, 63178, Aubière Cedex, France
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Centre, 50250, Bet Dagan, Israel
| | - A S Pradeep Ram
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 1 Impasse Amélie Murat, BP 80026, 63178, Aubière Cedex, France.
| | - P A Nana
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 1 Impasse Amélie Murat, BP 80026, 63178, Aubière Cedex, France
| | - T Sime-Ngando
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 1 Impasse Amélie Murat, BP 80026, 63178, Aubière Cedex, France
| |
Collapse
|
35
|
Methane stimulates massive nitrogen loss from freshwater reservoirs in India. Nat Commun 2018; 9:1265. [PMID: 29593290 PMCID: PMC5871758 DOI: 10.1038/s41467-018-03607-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2018] [Indexed: 11/08/2022] Open
Abstract
The fate of the enormous amount of reactive nitrogen released to the environment by human activities in India is unknown. Here we show occurrence of seasonal stratification and generally low concentrations of dissolved inorganic combined nitrogen, and high molecular nitrogen (N2) to argon ratio, thus suggesting seasonal loss to N2 in anoxic hypolimnia of several dam-reservoirs. However, 15N-experiments yielded low rates of denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium-except in the presence of methane (CH4) that caused ~12-fold increase in denitrification. While nitrite-dependent anaerobic methanotrophs belonging to the NC10 phylum were present, previously considered aerobic methanotrophs were far more abundant (up to 13.9%) in anoxic hypolimnion. Methane accumulation in anoxic freshwater systems seems to facilitate rapid loss of reactive nitrogen, with generally low production of nitrous oxide (N2O), through widespread coupling between methanotrophy and denitrification, potentially mitigating eutrophication and emissions of CH4 and N2O to the atmosphere.
Collapse
|
36
|
Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:23-31. [PMID: 28686892 DOI: 10.1016/j.scitotenv.2017.06.187] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 05/25/2023]
Abstract
Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.
Collapse
Affiliation(s)
- Karla Martinez-Cruz
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Armando Sepulveda-Jauregui
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Katey Walter Anthony
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Frederic Thalasso
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| |
Collapse
|
37
|
Rissanen AJ, Karvinen A, Nykänen H, Peura S, Tiirola M, Mäki A, Kankaala P. Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two shallow boreal lakes. FEMS Microbiol Ecol 2017. [PMID: 28637304 DOI: 10.1093/femsec/fix078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of anaerobic CH4 oxidation in controlling lake sediment CH4 emissions remains unclear. Therefore, we tested how relevant EAs (SO42-, NO3-, Fe3+, Mn4+, O2) affect CH4 production and oxidation in the sediments of two shallow boreal lakes. The changes induced to microbial communities by the addition of Fe3+ and Mn4+ were studied using next-generation sequencing targeting the 16S rRNA and methyl-coenzyme M reductase (mcrA) genes and mcrA transcripts. Putative anaerobic CH4-oxidizing archaea (ANME-2D) and bacteria (NC 10) were scarce (up to 3.4% and 0.5% of archaeal and bacterial 16S rRNA genes, respectively), likely due to the low environmental stability associated with shallow depths. Consequently, the potential anaerobic CH4 oxidation (0-2.1 nmol g-1dry weight (DW)d-1) was not enhanced by the addition of EAs, nor important in consuming the produced CH4 (0.6-82.5 nmol g-1DWd-1). Instead, the increased EA availability suppressed CH4 production via the outcompetition of methanogens by anaerobically respiring bacteria and via the increased protection of organic matter from microbial degradation induced by Fe3+ and Mn4+. Future studies could particularly assess whether anaerobic CH4 oxidation has any ecological relevance in reducing CH4 emissions from the numerous CH4-emitting shallow lakes in boreal and tundra landscapes.
Collapse
Affiliation(s)
- Antti J Rissanen
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, FI-33101 Tampere, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Anu Karvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Hannu Nykänen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Sari Peura
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Science for Life Laboratories, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Marja Tiirola
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Anita Mäki
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Paula Kankaala
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| |
Collapse
|
38
|
Delwiche KB, Hemond HF. Methane Bubble Size Distributions, Flux, and Dissolution in a Freshwater Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13733-13739. [PMID: 29116771 DOI: 10.1021/acs.est.7b04243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The majority of methane produced in many anoxic sediments is released via ebullition. These bubbles are subject to dissolution as they rise, and dissolution rates are strongly influenced by bubble size. Current understanding of natural methane bubble size distributions is limited by the difficulty in measuring bubble sizes over wide spatial or temporal scales. Our custom optical bubble size sensors recorded bubble sizes and release timing at 8 locations in Upper Mystic Lake, MA continuously for 3 months. Bubble size distributions were spatially heterogeneous even over relatively small areas experiencing similar flux, suggesting that localized sediment conditions are important to controlling bubble size. There was no change in bubble size distributions over the 3 month sampling period, but mean bubble size was positively correlated with daily ebullition flux. Bubble data was used to verify the performance of a widely used bubble dissolution model, and the model was then used to estimate that bubble dissolution accounts for approximately 10% of methane accumulated in the hypolimnion during summer stratification, and at most 15% of the diffusive air-water-methane flux from the epilimnion.
Collapse
Affiliation(s)
- Kyle B Delwiche
- Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Harold F Hemond
- Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Laskar F, Das Purkayastha S, Sen A, Bhattacharya MK, Misra BB. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems. J Basic Microbiol 2017; 58:101-119. [PMID: 29083035 DOI: 10.1002/jobm.201700341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
About half of the global methane (CH4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea.
Collapse
Affiliation(s)
- Folguni Laskar
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Aniruddha Sen
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Biswapriya B Misra
- Department of Genetics, Texas Biomedical Research Institute, San Antonio 78227, Texas, USA
| |
Collapse
|
40
|
Cohan FM. Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0014-2016. [PMID: 29027519 PMCID: PMC11687548 DOI: 10.1128/microbiolspec.mtbp-0014-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Any two lineages, no matter how distant they are now, began their divergence as one population splitting into two lineages that could coexist indefinitely. The rate of origin of higher-level taxa is therefore the product of the rate of speciation times the probability that two new species coexist long enough to reach a particular level of divergence. Here I have explored these two parameters of disparification in bacteria. Owing to low recombination rates, sexual isolation is not a necessary milestone of bacterial speciation. Rather, irreversible and indefinite divergence begins with ecological diversification, that is, transmission of a bacterial lineage to a new ecological niche, possibly to a new microhabitat but at least to new resources. Several algorithms use sequence data from a taxon of focus to identify phylogenetic groups likely to bear the dynamic properties of species. Identifying these newly divergent lineages allows us to characterize the genetic bases of speciation, as well as the ecological dimensions upon which new species diverge. Speciation appears to be least frequent when a given lineage has few new resources it can adopt, as exemplified by photoautotrophs, C1 heterotrophs, and obligately intracellular pathogens; speciation is likely most rapid for generalist heterotrophs. The genetic basis of ecological divergence may determine whether ecological divergence is irreversible and whether lineages will diverge indefinitely into the future. Long-term coexistence is most likely when newly divergent lineages utilize at least some resources not shared with the other and when the resources themselves will coexist into the remote future.
Collapse
|
41
|
Camacho A, Walter XA, Picazo A, Zopfi J. Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments. Front Microbiol 2017; 8:323. [PMID: 28377745 PMCID: PMC5359306 DOI: 10.3389/fmicb.2017.00323] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Photoferrotrophy, the process by which inorganic carbon is fixed into organic matter using light as an energy source and reduced iron [Fe(II)] as an electron donor, has been proposed as one of the oldest photoautotrophic metabolisms on Earth. Under the iron-rich (ferruginous) but sulfide poor conditions dominating the Archean ocean, this type of metabolism could have accounted for most of the primary production in the photic zone. Here we review the current knowledge of biogeochemical, microbial and phylogenetic aspects of photoferrotrophy, and evaluate the ecological significance of this process in ancient and modern environments. From the ferruginous conditions that prevailed during most of the Archean, the ancient ocean evolved toward euxinic (anoxic and sulfide rich) conditions and, finally, much after the advent of oxygenic photosynthesis, to a predominantly oxic environment. Under these new conditions photoferrotrophs lost importance as primary producers, and now photoferrotrophy remains as a vestige of a formerly relevant photosynthetic process. Apart from the geological record and other biogeochemical markers, modern environments resembling the redox conditions of these ancient oceans can offer insights into the past significance of photoferrotrophy and help to explain how this metabolism operated as an important source of organic carbon for the early biosphere. Iron-rich meromictic (permanently stratified) lakes can be considered as modern analogs of the ancient Archean ocean, as they present anoxic ferruginous water columns where light can still be available at the chemocline, thus offering suitable niches for photoferrotrophs. A few bacterial strains of purple bacteria as well as of green sulfur bacteria have been shown to possess photoferrotrophic capacities, and hence, could thrive in these modern Archean ocean analogs. Studies addressing the occurrence and the biogeochemical significance of photoferrotrophy in ferruginous environments have been conducted so far in lakes Matano, Pavin, La Cruz, and the Kabuno Bay of Lake Kivu. To date, only in the latter two lakes a biogeochemical role of photoferrotrophs has been confirmed. In this review we critically summarize the current knowledge on iron-driven photosynthesis, as a remains of ancient Earth biogeochemistry.
Collapse
Affiliation(s)
- Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Xavier A. Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of EnglandBristol, UK
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Jakob Zopfi
- Aquatic and Stable Isotope Biogeochemistry, Department of Environmental Sciences, University of BaselBasel, Switzerland
| |
Collapse
|
42
|
Zadereev ES, Gulati RD, Camacho A. Biological and Ecological Features, Trophic Structure and Energy Flow in Meromictic Lakes. ECOLOGY OF MEROMICTIC LAKES 2017. [DOI: 10.1007/978-3-319-49143-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
43
|
Savvichev AS, Kokryatskaya NM, Zabelina SA, Rusanov II, Zakharova EE, Veslopolova EF, Lunina ON, Patutina EO, Bumazhkin BK, Gruzdev DS, Sigalevich PA, Pimenov NV, Kuznetsov BB, Gorlenko VM. Microbial processes of the carbon and sulfur cycles in an ice-covered, iron-rich meromictic lake Svetloe (Arkhangelsk region, Russia). Environ Microbiol 2016; 19:659-672. [PMID: 27862807 DOI: 10.1111/1462-2920.13591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/28/2016] [Indexed: 12/01/2022]
Abstract
Biogeochemical, isotope geochemical and microbiological investigation of Lake Svetloe (White Sea basin), a meromictic freshwater was carried out in April 2014, when ice thickness was ∼0.5 m, and the ice-covered water column contained oxygen to 23 m depth. Below, the anoxic water column contained ferrous iron (up to 240 μμM), manganese (60 μM), sulfide (up to 2 μM) and dissolved methane (960 μM). The highest abundance of microbial cells revealed by epifluorescence microscopy was found in the chemocline (redox zone) at 23-24.5 m. Oxygenic photosynthesis exhibited two peaks: the major one (0.43 μmol C L-1 day-1 ) below the ice and the minor one in the chemocline zone, where cyanobacteria related to Synechococcus rubescens were detected. The maximum of anoxygenic photosynthesis (0.69 μmol C L-1 day-1 ) at the oxic/anoxic interface, for which green sulfur bacteria Chlorobium phaeoclathratiforme were probably responsible, exceeded the value for oxygenic photosynthesis. Bacterial sulfate reduction peaked (1.5 μmol S L-1 day-1 ) below the chemocline zone. The rates of methane oxidation were as high as 1.8 μmol CH4 L-1 day-1 at the oxi/anoxic interface and much lower in the oxic zone. Small phycoerythrin-containing Synechococcus-related cyanobacteria were probably involved in accumulation of metal oxides in the redox zone.
Collapse
Affiliation(s)
- Alexander S Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia M Kokryatskaya
- Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Svetlana A Zabelina
- Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Igor I Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena E Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena F Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N Lunina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Patutina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Boris K Bumazhkin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Gruzdev
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Boris B Kuznetsov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Oswald K, Jegge C, Tischer J, Berg J, Brand A, Miracle MR, Soria X, Vicente E, Lehmann MF, Zopfi J, Schubert CJ. Methanotrophy under Versatile Conditions in the Water Column of the Ferruginous Meromictic Lake La Cruz (Spain). Front Microbiol 2016; 7:1762. [PMID: 27891115 PMCID: PMC5104750 DOI: 10.3389/fmicb.2016.01762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 11/13/2022] Open
Abstract
Lakes represent a considerable natural source of methane to the atmosphere compared to their small global surface area. Methanotrophs in sediments and in the water column largely control methane fluxes from these systems, yet the diversity, electron accepting capacity, and nutrient requirements of these microorganisms have only been partially identified. Here, we investigated the role of electron acceptors alternative to oxygen and sulfate in microbial methane oxidation at the oxycline and in anoxic waters of the ferruginous meromictic Lake La Cruz, Spain. Active methane turnover in a zone extending well below the oxycline was evidenced by stable carbon isotope-based rate measurements. We observed a strong methane oxidation potential throughout the anoxic water column, which did not vary substantially from that at the oxic/anoxic interface. Both in the redox-transition and anoxic zones, only aerobic methane-oxidizing bacteria (MOB) were detected by fluorescence in situ hybridization and sequencing techniques, suggesting a close coupling of cryptic photosynthetic oxygen production and aerobic methane turnover. Additions of nitrate, nitrite and to a lesser degree iron and manganese oxides also stimulated bacterial methane consumption. We could not confirm a direct link between the reduction of these compounds and methane oxidation and we cannot exclude the contribution of unknown anaerobic methanotrophs. Nevertheless, our findings from Lake La Cruz support recent laboratory evidence that aerobic methanotrophs may be able to utilize alternative terminal electron acceptors under oxygen limitation.
Collapse
Affiliation(s)
- Kirsten Oswald
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaum, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of TechnologyZurich, Switzerland
| | - Corinne Jegge
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaum, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL, Swiss Federal Institute of TechnologyLausanne, Switzerland
| | - Jana Tischer
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Jasmine Berg
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Andreas Brand
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaum, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of TechnologyZurich, Switzerland
| | - María R Miracle
- Department of Microbiology and Ecology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia Burjassot, Spain
| | - Xavier Soria
- Department of Microbiology and Ecology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia Burjassot, Spain
| | - Eduardo Vicente
- Department of Microbiology and Ecology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia Burjassot, Spain
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Jakob Zopfi
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Carsten J Schubert
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, Switzerland
| |
Collapse
|
45
|
Abstract
One theory of bacterial speciation states that bacterial and animal species share the property of cohesion, meaning that diversity within a species is constrained. A new study provides direct evidence that genome-wide sweeps can limit diversity within bacterial species.
Collapse
Affiliation(s)
- Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
46
|
Bornemann M, Bussmann I, Tichy L, Deutzmann J, Schink B, Pester M. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance. FEMS Microbiol Ecol 2016; 92:fiw123. [PMID: 27267930 DOI: 10.1093/femsec/fiw123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/14/2022] Open
Abstract
Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters.
Collapse
Affiliation(s)
- Maren Bornemann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Ingeborg Bussmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Meeresstation Helgoland, Kurpromenade 201, D-27498 Helgoland, Germany
| | - Lucas Tichy
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Jörg Deutzmann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany Department of Civil and Environmental Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
47
|
Baatar B, Chiang PW, Rogozin DY, Wu YT, Tseng CH, Yang CY, Chiu HH, Oyuntsetseg B, Degermendzhy AG, Tang SL. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia. PLoS One 2016; 11:e0150847. [PMID: 26934492 PMCID: PMC4775032 DOI: 10.1371/journal.pone.0150847] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.
Collapse
Affiliation(s)
- Bayanmunkh Baatar
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Ting Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | - Cheng-Yu Yang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Hui Chiu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Bolormaa Oyuntsetseg
- School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | | | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Biderre-Petit C, Dugat-Bony E, Mege M, Parisot N, Adrian L, Moné A, Denonfoux J, Peyretaillade E, Debroas D, Boucher D, Peyret P. Distribution of Dehalococcoidia in the Anaerobic Deep Water of a Remote Meromictic Crater Lake and Detection of Dehalococcoidia-Derived Reductive Dehalogenase Homologous Genes. PLoS One 2016; 11:e0145558. [PMID: 26734727 PMCID: PMC4703385 DOI: 10.1371/journal.pone.0145558] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/04/2015] [Indexed: 12/29/2022] Open
Abstract
Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
- * E-mail:
| | - Eric Dugat-Bony
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Mickaël Mege
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
| | - Nicolas Parisot
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research–UFZ, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Anne Moné
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
| | - Jérémie Denonfoux
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Eric Peyretaillade
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Didier Debroas
- Laboratoire “Microorganismes: Génome et Environnement,” Clermont Université, Université Blaise Pascal, F-63000, Clermont-Ferrand, France
- Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171, Aubière, France
| | - Delphine Boucher
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| | - Pierre Peyret
- Clermont Université, Université d’Auvergne, EA 4678 CIDAM, BP 10448, F-63001, Clermont-Ferrand, France
| |
Collapse
|
49
|
Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol 2015; 6:1346. [PMID: 26696968 PMCID: PMC4678205 DOI: 10.3389/fmicb.2015.01346] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of BonnBonn, Germany
| |
Collapse
|
50
|
Jobard M, Pessiot J, Nouaille R, Fonty G, Sime-Ngando T. Microbial diversity in support of anaerobic biomass valorization. Crit Rev Biotechnol 2015; 37:1-10. [PMID: 26516020 DOI: 10.3109/07388551.2015.1100584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial diversity provides an immense reservoir of functions and supports key steps in maintaining ecosystem balance through matter decomposition processes and nutrient recycling. The use of microorganisms for biomolecule production is now common, but often involves single-strain cultures. In this review, we highlight the significance of using ecosystem-derived microbial diversity for biotechnological researches. In the context of organic matter mineralization, diversity of microorganisms is essential and enhances the degradation processes. We focus on anaerobic production of biomolecules of interest from discarded biomass, which is an important issue in the context of organic waste valorization and processing. Organic waste represents an important and renewable raw material but remains underused. It is commonly accepted that anaerobic mineralization of organic waste allows the production of diverse interesting molecules within several fields of application. We provide evidence that complex and diversified microbial communities isolated from ecosystems, i.e. microbial consortia, offer considerable advantages in degrading complex organic waste, to yield biomolecules of interest. We defend our opinion that this approach is more efficient and offers enhanced potential compared to the approaches that use single strain cultures.
Collapse
Affiliation(s)
- M Jobard
- a AFYREN SAS, Biopole Clermont Limagne , Saint-Beauzire Cedex , France
| | - J Pessiot
- a AFYREN SAS, Biopole Clermont Limagne , Saint-Beauzire Cedex , France.,b Laboratoire "Microorganismes: Génome et Environnement" , Clermont Université, Université Blaise Pascal , Clermont-Ferrand , France , and
| | - R Nouaille
- a AFYREN SAS, Biopole Clermont Limagne , Saint-Beauzire Cedex , France
| | - G Fonty
- b Laboratoire "Microorganismes: Génome et Environnement" , Clermont Université, Université Blaise Pascal , Clermont-Ferrand , France , and
| | - T Sime-Ngando
- b Laboratoire "Microorganismes: Génome et Environnement" , Clermont Université, Université Blaise Pascal , Clermont-Ferrand , France , and.,c CNRS, UMR 6023, LMGE , Aubiere , France
| |
Collapse
|