1
|
Hafiane FZ, Tahri L, El Jarmouni M, Reyad AM, Fekhaoui M, Mohamed MO, Abdelrahman EA, Rizk SH, El-Sayyad GS, Elkhatib WF. Incidence, identification and antibiotic resistance of Salmonella spp. in the well waters of Tadla Plain, Morocco. Sci Rep 2024; 14:15380. [PMID: 38965268 PMCID: PMC11224349 DOI: 10.1038/s41598-024-61917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
Concerns about challenges with water availability in the Tadla Plain region of Morocco have grown as a result of groundwater contamination brought on by human activity, climate change, and insufficient groundwater management. The objective of the study is to measure the number of resistant bacteria in the groundwater of Beni Moussa and Beni Aamir, as well as to evaluate the level of water pollution in this area. 200 samples were therefore gathered from 43 wells over the course of four seasonal campaigns in 2017 and 2018. Additionally, the samples were examined to determine whether Salmonella species were present and if they were resistant to the 16 antibiotics that were tested. Salmonella spp. have been identified in 31 isolated strains in total, accounting for 18.02% of all isolated strains. Data on antibiotic resistance show that 58.1% of Salmonella spp. strains are multidrug-resistant (MDR); 38.7% of Salmonella strains are tolerant to at least six antibiotics, 19.4% to at least nine antibiotics, 9.7% to four to seven antibiotics, 6.5% to at least eleven antibiotics, and the remaining 3.2% to up to twelve antibiotics. A considerable level of resistance to cefepime (61.29%), imipenem (54.84%), ceftazidime (45.16%), ofloxacin (70.97%), and ertapenem (74.19%) was found in the data. Consequently, it is important to monitor and regulate the growth of MDR in order to prevent the groundwater's quality from declining.
Collapse
Affiliation(s)
- Fatima Zahra Hafiane
- Geo-Biodiversity and Natural Patrimony Laboratory GEOPAC Research Center Scientific Institute, Mohammed V University in Rabat, Ibn Battuta Av, B. P1040, Rabat, Morocco
| | - Latifa Tahri
- Geo-Biodiversity and Natural Patrimony Laboratory GEOPAC Research Center Scientific Institute, Mohammed V University in Rabat, Ibn Battuta Av, B. P1040, Rabat, Morocco
| | | | - Ahmed M Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohammed Fekhaoui
- Geo-Biodiversity and Natural Patrimony Laboratory GEOPAC Research Center Scientific Institute, Mohammed V University in Rabat, Ibn Battuta Av, B. P1040, Rabat, Morocco
| | - Mohamed O Mohamed
- Biotechnology and Genetic Engineering Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Samar H Rizk
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt.
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt.
| |
Collapse
|
2
|
Schachner-Gröhs I, Strohhammer T, Frick C, Campostrini L, Linke RB, Zarfel G, Farnleitner AH, Kirschner AKT. Low antimicrobial resistance in Escherichia coli isolates from two large Austrian alpine karstic spring catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164949. [PMID: 37331393 DOI: 10.1016/j.scitotenv.2023.164949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The increasing occurrence of antibiotic resistant bacteria poses a threat to global public health. Clinically relevant resistances also spread through the environment. Aquatic ecosystems in particular represent important dispersal pathways. In the past, pristine water resources have not been a study focus, although ingestion of resistant bacteria through water consumption constitutes a potentially important transmission route. This study assessed antibiotic resistances in Escherichia coli populations in two large well-protected and well-managed Austrian karstic spring catchments representing essential groundwater resources for water supply. E. coli were detected seasonally only during the summer period. By screening a representative number of 551 E. coli isolates from 13 sites in two catchments, it could be shown that the prevalence of antibiotic resistance in this study area is low. 3.4 % of the isolates showed resistances to one or two antibiotic classes, 0.5 % were resistant to three antibiotic classes. No resistances to critical and last-line antibiotics were detected. By integrating fecal pollution assessment and microbial source tracking, we could infer that ruminants were the main hosts for antibiotic resistant bacteria in the studied catchment areas. A comparison with other studies on antibiotic resistances in karstic or mountainous springs highlighted the low contamination status of the model catchments studied here, most likely due to the high protection and careful management while other, less pristine catchments showed much higher antibiotic resistances. We demonstrate that studying easily accessible karstic springs allows a holistic view on large catchments concerning the extent and origin of fecal pollution as well as antibiotic resistance. This representative monitoring approach is also in line with the proposed update of the EU Groundwater Directive (GWD).
Collapse
Affiliation(s)
- Iris Schachner-Gröhs
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Theresa Strohhammer
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Christina Frick
- Vienna City Administration, Municipal Department 39, Division of Hygiene, Rinnböckstraße 15/2, 1110 Vienna, Austria
| | - Lena Campostrini
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Rita B Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, 1060 Vienna, Austria
| | - Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics, Technische Universität Wien, Gumpendorfer Straße 1A/166, 1060 Vienna, Austria; Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Alexander K T Kirschner
- Institute of Hygiene and Applied Immunology - Water Microbiology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria; Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria.
| |
Collapse
|
3
|
An R, Qi Y, Zhang XX, Ma L. Xenogenetic evolutionary of integrons promotes the environmental pollution of antibiotic resistance genes - Challenges, progress and prospects. WATER RESEARCH 2023; 231:119629. [PMID: 36689882 DOI: 10.1016/j.watres.2023.119629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Environmental pollution of antibiotic resistance genes (ARGs) has been a great public concern. Integrons, as mobile genetic elements, with versatile gene acquisition systems facilitate the horizontal gene transfer (HGT) and pollution disseminations of ARGs. However, little is understood about the characteristics of ARGs mediated by integrons, which hampers our monitoring and control of the mobile antimicrobial resistance risks. To address these issues, we reviewed 3,322 publications concerning detection methods and pipeline, ARG diversity and evolutionary progress, environmental and geographical distribution, bacterial hosts, gene cassettes arrangements, and based on which to identify ARGs with high risk levels mediated by integrons. Diverse ARGs of 516 subtypes attributed to 12 types were capable of being carried by integrons, with 62 core ARG subtypes prevalent in pollution source, natural and human-related environments. Hosts of ARG-carrying integrons reached 271 bacterial species, most frequently carried by opportunistic pathogens Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Moreover, the observed emergence of ARGs together with their multiple arrangements indicated the accumulation of ARGs mediated by integrons, and thus pose increasing HGT risks under modern selective agents. With the concerns of public health, we urgently call for a better monitoring and control of these high-risk ARGs. Our identified Risk Rank I ARGs (aacA7, blaOXA10, catB3, catB8, dfrA5) with high mobility, reviewed key trends and noteworthy advancements, and proposed future directions could be reference and guidance for standard formulation.
Collapse
Affiliation(s)
- Ran An
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yuting Qi
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
4
|
Gros M, Mas-Pla J, Sànchez-Melsió A, Čelić M, Castaño M, Rodríguez-Mozaz S, Borrego CM, Balcázar JL, Petrović M. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159202. [PMID: 36208750 DOI: 10.1016/j.scitotenv.2022.159202] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to μg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain.
| | - Josep Mas-Pla
- Catalan Institute for Water Research (ICRA), Spain; Grup de Recerca GAiA-Geocamb, Department of Environmental Sciences, University of Girona, Spain
| | | | - Mira Čelić
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Marc Castaño
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain
| |
Collapse
|
5
|
Tapia-Arreola AK, Ruiz-Garcia DA, Rodulfo H, Sharma A, De Donato M. High Frequency of Antibiotic Resistance Genes (ARGs) in the Lerma River Basin, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113988. [PMID: 36360888 PMCID: PMC9657182 DOI: 10.3390/ijerph192113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 05/31/2023]
Abstract
The spread of beta-lactamase-producing bacteria is of great concern and the environment has been found to be a main source of contamination. Herein, it was proposed to determine the frequency of antimicrobial-resistant-Gram-negative bacteria throughout the Lerma River basin using phenotypic and molecular methods. Resistant bacteria were isolated with chromogenic media and antimicrobial susceptibility tests were used to characterize their resistance. ARGs for beta-lactams, aminoglycosides, and quinolones were detected by PCR. Species were identified by Sanger sequencing the 16S rRNA gene and the representative genomes of MDR strains were sequenced by NGS. A high variation in the number of isolates was observed in the 20 sampled sites, while observing a low diversity among the resistant bacteria. Of the 12 identified bacterial groups, C. freundii, E. coli, and S. marcescens were more predominant. A high frequency of resistance to beta-lactams, quinolones, and aminoglycosides was evidenced, where the blaCTX,qnrB, qnrS y, and aac(6')lb-cr genes were the most prevalent. C. freundii showed the highest frequency of MDR strains. Whole genome sequencing revealed that S. marcescens and K. pneumoniae showed a high number of shared virulence and antimicrobial resistance genes, while E. coli showed the highest number of unique genes. The contamination of the Lerma River with MDR strains carrying various ARGs should raise awareness among environmental authorities to assess the risks and regulations regarding the optimal hygienic and sanitary conditions for this important river that supports economic activities in the different communities in Mexico.
Collapse
|
6
|
Haenni M, Dagot C, Chesneau O, Bibbal D, Labanowski J, Vialette M, Bouchard D, Martin-Laurent F, Calsat L, Nazaret S, Petit F, Pourcher AM, Togola A, Bachelot M, Topp E, Hocquet D. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. ENVIRONMENT INTERNATIONAL 2022; 159:107047. [PMID: 34923370 DOI: 10.1016/j.envint.2021.107047] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is a major global public health concern, shared by a large number of human and animal health actors. Within the framework of a One Health approach, actions should be implemented in the environmental realm, as well as the human and animal realms. The Government of France commissioned a report to provide policy and decision makers with an evidential basis for recommending or taking future actions to mitigate AMR in the environment. We first examined the mechanisms that underlie the emergence and persistence of antimicrobial resistance in the environment. This report drew up an inventory of the contamination of aquatic and terrestrial environments by AMR and antibiotics, anticipating that the findings will be representative of some other high-income countries. Effluents of wastewater treatment plants were identified as the major source of contamination on French territory, with spreading of organic waste products as a more diffuse and incidental contamination of aquatic environments. A limitation of this review is the heterogeneity of available data in space and time, as well as the lack of data for certain sources. Comparing the French Measured Environmental Concentrations (MECs) with predicted no effect concentrations (PNECs), fluoroquinolones and trimethoprim were identified as representing high and medium risk of favoring the selection of resistant bacteria in treated wastewater and in the most contaminated rivers. All other antibiotic molecules analyzed (erythromycin, clarithromycin, azithromycin, tetracycline) were at low risk of resistance selection in those environments. However, the heterogeneity of the data available impairs their full exploitation. Consequently, we listed indicators to survey AMR and antibiotics in the environment and recommended the harmonization of sampling strategies and endpoints for analyses. Finally, the objectives and methods used for the present work could comprise a useful example for how national authorities of countries sharing common socio-geographic characteristics with France could seek to better understand and define the environmental dimension of AMR in their particular settings.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES (French Agency for Food, Environmental and Occupational Health & Safety) - Université de Lyon, Lyon, France
| | - Christophe Dagot
- Université of Limoges, RESINFIT, UMR INSERM 1092, CHU, F-87000 Limoges, France
| | - Olivier Chesneau
- Collection de l'Institut Pasteur (CIP), Microbiology Department, Institut Pasteur, Paris, France
| | - Delphine Bibbal
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Jérôme Labanowski
- Université de Poitiers, UMR CNRS 7285 IC2MP, ENSI Poitiers, Poitiers, France
| | | | - Damien Bouchard
- National Agency for Veterinary Medicinal Products, ANSES, Fougères, France
| | | | - Louisiane Calsat
- Risk Assessment Department (DER), ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Sylvie Nazaret
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Fabienne Petit
- UNIROUEN, UNICAEN, CNRS, M2C, Normandie Université Rouen, France; Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris F-75005, France
| | | | | | - Morgane Bachelot
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Edward Topp
- Agriculture and Agri-Food Canada, and University of Western Ontario, London, ON, Canada
| | - Didier Hocquet
- UMR Chronoenvironnement CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France; Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.
| |
Collapse
|
7
|
Fernández Rivas C, Porphyre T, Chase-Topping ME, Knapp CW, Williamson H, Barraud O, Tongue SC, Silva N, Currie C, Elsby DT, Hoyle DV. High Prevalence and Factors Associated With the Distribution of the Integron intI1 and intI2 Genes in Scottish Cattle Herds. Front Vet Sci 2021; 8:755833. [PMID: 34778436 PMCID: PMC8585936 DOI: 10.3389/fvets.2021.755833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Integrons are genetic elements that capture and express antimicrobial resistance genes within arrays, facilitating horizontal spread of multiple drug resistance in a range of bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3 integrons in Scottish cattle and examine whether spatial, seasonal or herd management factors influenced integron herd status. We used fecal samples collected from 108 Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015, and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2, and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1 as 76.9% (67.8-84.0%) and intI2 as 82.4% (73.9-88.6%). We did not detect intI3 in any of the herd samples tested. A regional effect was observed for intI1, highest in the North East (OR 11.5, 95% CI: 1.0-130.9, P = 0.05) and South East (OR 8.7, 95% CI: 1.1-20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was used to test for potential associations between herd status and cattle management, soil type and regional livestock density variables. Within the final multivariable model, factors associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95% CI: 1.1-36.4, P = 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI: 1.3-14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0, 95% CI: 10.4-540.5, P < 0.001). This study provides baseline estimates for integron prevalence in Scottish cattle and identifies factors that may be associated with carriage that warrant future investigation.
Collapse
Affiliation(s)
- Cristina Fernández Rivas
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, UMR5558, CNRS, VetAgro Sup, Université de Lyon, Villeurbanne Cedex, France
| | - Margo E Chase-Topping
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Charles W Knapp
- Centre for Water, Environment, Sustainability and Public Health, Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Helen Williamson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| | - Olivier Barraud
- INSERM, CHU Limoges, UMR1092, Université de Limoges, Limoges, France
| | - Sue C Tongue
- Epidemiology Research Unit, Scotland's Rural College (SRUC), An Lòchran, Inverness Campus, Inverness, United Kingdom
| | - Nuno Silva
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Carol Currie
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Derek T Elsby
- Environmental Research Institute, University of the Highlands and Islands, Thurso, United Kingdom
| | - Deborah V Hoyle
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| |
Collapse
|
8
|
Camiade M, Bodilis J, Chaftar N, Riah-Anglet W, Gardères J, Buquet S, Ribeiro AF, Pawlak B. Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS Microbiol Ecol 2020; 96:5702129. [PMID: 31930390 DOI: 10.1093/femsec/fiaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/12/2020] [Indexed: 01/04/2023] Open
Abstract
The Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles.
Collapse
Affiliation(s)
- Mathilde Camiade
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, 76821 Mont Saint Aignan cedex, France.,Institut Polytechnique UniLaSalle, Laboratoire AGHYLE, Campus de Rouen, 76130 Mont Saint Aignan cedex, France.,Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| | - Josselin Bodilis
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| | - Naouel Chaftar
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Wassila Riah-Anglet
- Institut Polytechnique UniLaSalle, Laboratoire AGHYLE, Campus de Rouen, 76130 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| | - Johan Gardères
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Sylvaine Buquet
- Normandie Université, UNIROUEN, IRSTEA, Laboratoire ECODIV, 76821 Mont Saint Aignan cedex, France
| | - Angela Flores Ribeiro
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Barbara Pawlak
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, 76821 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| |
Collapse
|
9
|
Nnadozie CF, Odume ON. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113067. [PMID: 31465907 DOI: 10.1016/j.envpol.2019.113067] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 05/12/2023]
Abstract
Freshwater environments are susceptible to possible contamination by residual antibiotics that are released through different sources, such as agricultural runoffs, sewage discharges and leaching from nearby farms. Freshwater environment can thus become reservoirs where an antibiotic impact microorganisms, and is an important public health concern. Degradation and dilution processes are fundamental for predicting the actual risk of antibiotic resistance dissemination from freshwater reservoirs. This study reviews major approaches for detecting and quantifying antibiotic resistance bacteria (ARBs) and genes (ARGs) in freshwater and their prevalence in these environments. Finally, the role of dilution, degradation, transmission and the persistence and fate of ARB/ARG in these environments are also reviewed. Culture-based single strain approaches and molecular techniques that include polymerase chain reaction (PCR), quantitative polymerase chain reaction (qPCR) and metagenomics are techniques for quantifying ARB and ARGs in freshwater environments. The level of ARBs is extremely high in most of the river systems (up to 98% of the total detected bacteria), followed by lakes (up to 77% of the total detected bacteria), compared to dam, pond, and spring (<1%). Of most concern is the occurrence of extended-spectrum β-lactamase producing Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus (VRE), which cause highly epidemic infections. Dilution and natural degradation do not completely eradicate ARBs and ARGs in the freshwater environment. Even if the ARBs in freshwater are effectively inactivated by sunlight, their ARG-containing DNA can still be intact and capable of transferring resistance to non-resistant strains. Antibiotic resistance persists and is preserved in freshwater bodies polluted with high concentrations of antibiotics. Direct transmission of indigenous freshwater ARBs to humans as well as their transitory insertion in the microbiota can occur. These findings are disturbing especially for people that rely on freshwater resources for drinking, crop irrigation, and food in form of fish.
Collapse
Affiliation(s)
- Chika F Nnadozie
- Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
| | - Oghenekaro Nelson Odume
- Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
10
|
Jacobs K, Wind L, Krometis LA, Hession WC, Pruden A. Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1038-1046. [PMID: 31589689 DOI: 10.2134/jeq2018.12.0441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff.
Collapse
|
11
|
Chen Z, Yu D, He S, Ye H, Zhang L, Wen Y, Zhang W, Shu L, Chen S. Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City. Front Microbiol 2017; 8:1133. [PMID: 28670309 PMCID: PMC5472731 DOI: 10.3389/fmicb.2017.01133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli) and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream) in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE), followed by ampicillin (AM), piperacillin (PIP), trimethoprim/sulfamethoxazole (SXT), and chloramphenicol (C). The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP), as well as quinolones (ciprofloxacin and levofloxacin) and cephalosporins or gentamicin (GM). Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87%) contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.
Collapse
Affiliation(s)
- Zhaojun Chen
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Daojun Yu
- Department of Clinical Laboratory, Hangzhou First People's HospitalHangzhou, China
| | - Songzhe He
- Department of Clinical Laboratory, Guilin Medical University Affiliated HospitalGuilin, China
| | - Hui Ye
- Department of Automatic Monitoring, Hangzhou Environmental Monitoring CenterHangzhou, China
| | - Lei Zhang
- Dean's Office, Hangzhou Prevention and Treatment Center for Occupational DiseasesHangzhou, China
| | - Yanping Wen
- Department of Microbiology Laboratory, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Wenhui Zhang
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Liping Shu
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| | - Shuchang Chen
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and PreventionHangzhou, China
| |
Collapse
|
12
|
Petit F, Clermont O, Delannoy S, Servais P, Gourmelon M, Fach P, Oberlé K, Fournier M, Denamur E, Berthe T. Change in the Structure of Escherichia coli Population and the Pattern of Virulence Genes along a Rural Aquatic Continuum. Front Microbiol 2017; 8:609. [PMID: 28458656 PMCID: PMC5394106 DOI: 10.3389/fmicb.2017.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the diversity of the Escherichia coli population, focusing on the occurrence of pathogenic E. coli, in surface water draining a rural catchment. Two sampling campaigns were carried out in similar hydrological conditions (wet period, low flow) along a river continuum, characterized by two opposite density gradients of animals (cattle and wild animals) and human populations. While the abundance of E. coli slightly increased along the river continuum, the abundance of both human and ruminant-associated Bacteroidales markers, as well as the number of E. coli multi-resistant to antibiotics, evidenced a fecal contamination originating from animals at upstream rural sites, and from humans at downstream urban sites. A strong spatial modification of the structure of the E. coli population was observed. At the upstream site close to a forest, a higher abundance of the B2 phylogroup and Escherichia clade strains were observed. At the pasture upstream site, a greater proportion of both E and B1 phylogroups was detected, therefore suggesting a fecal contamination of mainly bovine origin. Conversely, in downstream urban sites, A, D, and F phylogroups were more abundant. To assess the occurrence of intestinal pathogenic strains, virulence factors [afaD, stx1, stx2, eltB (LT), estA (ST), ipaH, bfpA, eae, aaiC and aatA] were screened among 651 E. coli isolates. Intestinal pathogenic strains STEC O174:H21 (stx2) and EHEC O26:H11 (eae, stx1) were isolated in water and sediments close to the pasture site. In contrast, in the downstream urban site aEPEC/EAEC and DAEC of human origin, as well as extra-intestinal pathogenic E. coli belonging to clonal group A of D phylogroup, were sampled. Even if the estimated input of STEC (Shiga toxin-producing E. coli) - released in water at the upstream pasture site - at the downstream site was low, we show that STEC could persist in sediment. These results show that, the run-off of small cattle farms contributed, as much as the wastewater effluent, in the dissemination of pathogenic E. coli in both water and sediments, even if the microbiological quality of the water was good or to average quality according to the French water index.
Collapse
Affiliation(s)
- Fabienne Petit
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France.,Sorbonne Universités, UPMC, CNRS, EPHE, UMR 7619 METISParis, France
| | - Olivier Clermont
- INSERM UMR1137, IAME, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Sabine Delannoy
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Platform, Maisons-AlfortFrance
| | - Pierre Servais
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la PlaineBruxelles, Belgium
| | - Michèle Gourmelon
- Institut Français de Recherche pour l'Exploitation de la Mer, RBE-SG2M-LSEMPlouzané, France
| | - Patrick Fach
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Platform, Maisons-AlfortFrance
| | - Kenny Oberlé
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France
| | | | - Erick Denamur
- INSERM UMR1137, IAME, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Thierry Berthe
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France
| |
Collapse
|
13
|
Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water. Braz J Microbiol 2016; 47:337-44. [PMID: 26991286 PMCID: PMC4874607 DOI: 10.1016/j.bjm.2016.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 08/17/2015] [Indexed: 11/24/2022] Open
Abstract
Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3′ conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.
Collapse
|
14
|
Laroche-Ajzenberg E, Flores Ribeiro A, Bodilis J, Riah W, Buquet S, Chaftar N, Pawlak B. Conjugative multiple-antibiotic resistance plasmids in Escherichia coli
isolated from environmental waters contaminated by human faecal wastes. J Appl Microbiol 2014; 118:399-411. [DOI: 10.1111/jam.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/14/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - A. Flores Ribeiro
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - J. Bodilis
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - W. Riah
- Agri'Terr Laboratory; ESITPA; Mont Saint Aignan France
| | - S. Buquet
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - N. Chaftar
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - B. Pawlak
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| |
Collapse
|
15
|
Flores Ribeiro A, Bodilis J, Alonso L, Buquet S, Feuilloley M, Dupont JP, Pawlak B. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:370-8. [PMID: 24875257 DOI: 10.1016/j.scitotenv.2014.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 05/14/2023]
Abstract
Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods.
Collapse
Affiliation(s)
- Angela Flores Ribeiro
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France; UMR 6143 Morphodynamique Continentale et Côtière (M2C), Université de Rouen, Place Emile Blondel, Bâtiment IRESE A, 76821 Mont Saint Aignan, France.
| | - Josselin Bodilis
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Lise Alonso
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Sylvaine Buquet
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Jean-Paul Dupont
- UMR 6143 Morphodynamique Continentale et Côtière (M2C), Université de Rouen, Place Emile Blondel, Bâtiment IRESE A, 76821 Mont Saint Aignan, France
| | - Barbara Pawlak
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| |
Collapse
|
16
|
Vogeleer P, Tremblay YDN, Mafu AA, Jacques M, Harel J. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 2014; 5:317. [PMID: 25071733 PMCID: PMC4076661 DOI: 10.3389/fmicb.2014.00317] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a heterogeneous species that can be part of the normal flora of humans but also include strains of medical importance. Among pathogenic members, Shiga-toxin producing E. coli (STEC) are some of the more prominent pathogenic E. coli within the public sphere. STEC disease outbreaks are typically associated with contaminated beef, contaminated drinking water, and contaminated fresh produce. These water- and food-borne pathogens usually colonize cattle asymptomatically; cows will shed STEC in their feces and the subsequent fecal contamination of the environment and processing plants is a major concern for food and public safety. This is especially important because STEC can survive for prolonged periods of time outside its host in environments such as water, produce, and farm soil. Biofilms are hypothesized to be important for survival in the environment especially on produce, in rivers, and in processing plants. Several factors involved in biofilm formation such as curli, cellulose, poly-N-acetyl glucosamine, and colanic acid are involved in plant colonization and adherence to different surfaces often found in meat processing plants. In food processing plants, contamination of beef carcasses occurs at different stages of processing and this is often caused by the formation of STEC biofilms on the surface of several pieces of equipment associated with slaughtering and processing. Biofilms protect bacteria against several challenges, including biocides used in industrial processes. STEC biofilms are less sensitive than planktonic cells to several chemical sanitizers such as quaternary ammonium compounds, peroxyacetic acid, and chlorine compounds. Increased resistance to sanitizers by STEC growing in a biofilm is likely to be a source of contamination in the processing plant. This review focuses on the role of biofilm formation by STEC as a means of persistence outside their animal host and factors associated with biofilm formation.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Yannick D N Tremblay
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Akier A Mafu
- Food Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| |
Collapse
|
17
|
Janezic KJ, Ferry B, Hendricks EW, Janiga BA, Johnson T, Murphy S, Roberts ME, Scott SM, Theisen AN, Hung KF, Daniel SL. Phenotypic and Genotypic Characterization of Escherichia coli Isolated from Untreated Surface Waters. Open Microbiol J 2013; 7:9-19. [PMID: 23539437 PMCID: PMC3606946 DOI: 10.2174/1874285801307010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/22/2022] Open
Abstract
A common member of the intestinal microbiota in humans and animals is Escherichia coli. Based on the presence of virulence factors, E. coli can be potentially pathogenic. The focus of this study was to isolate E. coli from untreated surface waters (37 sites) in Illinois and Missouri and determine phenotypic and genotypic diversity among isolates. Water samples positive for fecal coliforms based on the Colisure® test were streaked directly onto Eosin Methylene Blue (EMB) agar (37°C) or transferred to EC broth (44.5°C). EC broth cultures producing gas were then streaked onto EMB agar. Forty-five isolates were identified as E. coli using API 20E and Enterotube II identification systems, and some phenotypic variation was observed in metabolism and fermentation. Antibiotic susceptibility of each isolate was also determined using the Kirby-Bauer Method. Differential responses to 10 antimicrobial agents were seen with 7, 16, 2, and 9 of the isolates resistant to ampicillin, cephalothin, tetracycline, and triple sulfonamide, respectively. All of the isolates were susceptible or intermediate to amoxicillin, ciprofloxacin, polymyxin B, gentamicin, imipenem, and nalidixic acid. Genotypic variation was assessed through multiplex Polymerase Chain Reaction for four virulence genes (stx1 and stx2 [shiga toxin], eaeA [intimin]; and hlyA [enterohemolysin]) and one housekeeping gene (uidA [β-D-glucuronidase]). Genotypic variation was observed with two of the isolates possessing the virulence gene (eaeA) for intimin. These findings increase our understanding of the diversity of E. coli in the environment which will ultimately help in the assessment of this organism and its role in public health.
Collapse
Affiliation(s)
- Kristopher J Janezic
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maal-Bared R, Bartlett KH, Bowie WR, Hall ER. Phenotypic antibiotic resistance of Escherichia coli and E. coli O157 isolated from water, sediment and biofilms in an agricultural watershed in British Columbia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:315-323. [PMID: 23202379 DOI: 10.1016/j.scitotenv.2012.10.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 05/22/2023]
Abstract
This study examined the distribution of antibiotic resistant Escherichia coli and E. coli O157 isolated from water, sediment and biofilms in an intensive agricultural watershed (Elk Creek, British Columbia) between 2005 and 2007. It also examined physical and chemical water parameters associated with antibiotic resistance. Broth microdilution techniques were used to determine minimum inhibitory concentrations (MIC) for E. coli (n=214) and E. coli O157 (n=27) recovered isolates for ampicillin, cefotaxime, ciprofloxacin, nalidixic acid, streptomycin and tetracycline. Both E. coli and E. coli O157 isolates showed highest frequency of resistance to tetracycline, ampicillin, streptomycin and nalidixic acid; respectively. For E. coli, the highest frequency of resistance was observed at the most agriculturally-impacted site, while the lowest frequency of resistance was found at the headwaters. Sediment and river rock biofilms were the most likely to be associated with resistant E. coli, while water was the least likely. While seasonality (wet versus dry) had no relationship with resistance frequency, length of biofilm colonization of the substratum in the aquatic environment only affected resistance frequency to nalidixic acid and tetracycline. Multivariate logistic regressions showed that water depth, nutrient concentrations, temperature, dissolved oxygen and salinity had statistically significant associations with frequency of E. coli resistance to nalidixic acid, streptomycin, ampicillin and tetracycline. The results indicate that antibiotic resistant E. coli and E. coli O157 were prevalent in an agricultural stream. Since E. coli is adept at horizontal gene transfer and prevalent in biofilms and sediment, where ample opportunities for genetic exchange with potential environmental pathogens present themselves, resistant isolates may present a risk to ecosystem, wildlife and public health.
Collapse
Affiliation(s)
- Rasha Maal-Bared
- Resource Management and Environmental Studies, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|