1
|
Zhao M, Qiao C, Cui Z, Zhang W, Yang S, Zhu C, Du F, Ning T, Xie S, Liu S, Li P, Xu J, Zhu S. Moluodan promotes DSS-induced intestinal inflammation involving the reprogram of macrophage function and polarization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117393. [PMID: 37952735 DOI: 10.1016/j.jep.2023.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moluodan (MLD) is a traditional Chinese medicine that is composed of 18 herbal medicines based on traditional Chinese medicine theory and practice. It has long been used in treating chronic gastritis and its components were traditionally used in dealing with intestinal inflammation. However, its specific pharmacological mechanism is still unclear. AIM OF THE STUDY The upper and lower digestive tract diseases are correlated. In clinical practice, some chronic gastritis patients are also accompanied by intestinal inflammation. Due to the unclear pharmacological mechanism of MLD and its effect on intestinal inflammation, there is doubt whether MLD is still suitable for this type of patient. Therefore, this study aims to elucidate the pharmacological mechanism of MLD and identify its effect in the mouse model of intestinal inflammation. MATERIALS AND METHODS Mice intestinal inflammation model was induced by 2.5% dextran sulfate sodium (DSS). The mice were given different concentrations of MLD via oral gavage (0.25, 0.5 g/kg b.w.). Pharmacodynamic indicators were assessed including body weight, colon length, disease activity index (DAI), bloody stool score, inflammatory factors, histological change, etc. RAW264.7 macrophage cells were used for in vitro experiments that illuminated the role of MLD in reprogramming macrophage function and polarization. RT-qPCR and western blots were performed to measure the mRNA and protein levels of macrophage polarization marker and effector molecules. The functions of polarized macrophages were tested using ROS detection probes, Edu assay and wound healing assay. RESULTS The administration of MLD exhibited obvious hemostatic effects, while unexpectedly accentuating various aspects of the DSS-induced intestinal inflammation in mice, including increased body weight loss and colon shortening, elevated disease activity index, and intensified colonic tissue damage. Additionally, MLD treatment induced more severe inflammatory cell infiltration and higher proinflammatory cytokines expression in colon tissue. Further results showed that MLD promoted M1 macrophage polarization and stimulated its proinflammatory cytokines expression, while only slightly affecting the function of M2 macrophage. Western blot analysis revealed that MLD induced the phosphorylation of AKT and NF-κB. The polarization of M1 macrophages induced by MLD was inhibited by either an Akt inhibitor or a NF-κB inhibitor. CONCLUSIONS Although MLD has an obvious hemostatic effect, it generally promoted the severity of DSS-induced colitis in mice by facilitating macrophage polarization toward the M1 phenotype through the AKT/NF-κB pathway. Our study suggested that MLD may not be suitable for colitis, especially during the acute inflammation stage.
Collapse
Affiliation(s)
- Mengran Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Chen Qiao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Zilu Cui
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Wen Zhang
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Congmin Zhu
- School of Biomedical Engineering, Capital Medical University, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, China
| | - Feng Du
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Sian Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China.
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China.
| |
Collapse
|
3
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022; 166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Exposure to mercury (Hg) mostly occurs through diet, where it is mainly found as inorganic Hg [Hg(II)] or methylmercury (MeHg). In vivo studies have linked its exposure with neurological and renal diseases, however, its toxic effects upon the gastrointestinal tract are largely unknown. In order to evaluate the effect of Hg on intestinal mucosa, a bicameral system was employed with co-cultures of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1 macrophages. Cells were exposed to Hg(II) and MeHg (0.1, 0.5, 1 mg/L) during 11 days. The results evidenced a greater pro-inflammatory response in cells exposed to Hg with increments of IL-8 (15-126%) and IL-1β release (39-63%), mainly induced by macrophages which switched to a M1 phenotype. A pro-oxidant response was also observed in both cell types with an increase in ROS/RNS levels (44-140%) and stress proteins expression. Intestinal cells treated with Hg displayed structural abnormalities, hypersecretion of mucus and defective tight junctions. An increased paracellular permeability (123-170%) at the highest concentrations of Hg(II) and MeHg and decreased capacity to restore injuries in the cell monolayer were also observed. All these toxic effects were governed by various inflammatory signalling pathways (p38 MAPK, JNK and NF-κB).
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
4
|
Promotion of the inflammatory response in mid colon of complement component 3 knockout mice. Sci Rep 2022; 12:1700. [PMID: 35105928 PMCID: PMC8807838 DOI: 10.1038/s41598-022-05708-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
To determine whether complement component 3 (C3) deficiency affects its receptor downstream-mediated inflammatory response, the current study was undertaken to measure alterations in the inducible nitric oxide synthase (iNOS)‑mediated cyclooxygenase‑2 (COX‑2) induction pathway, inflammasome pathway, nuclear factor-κB (NF-κB) activation, and inflammatory cytokine expressions in the mid colon of C3 knockout (KO) mice. Significant enhancement was observed in expressions of key components of the iNOS‑mediated COX‑2 induction pathway, and in the phosphorylation of mitogen‑activated protein (MAP) kinase members. A similar pattern of increase was also observed in the expression levels of inflammasome proteins in C3 KO mice. Moreover, compared to WT mice, C3 KO mice showed remarkably enhanced phosphorylation of NF-κB and Inhibitor of κB-α (IκB-α), which was reflected in entirety as increased expressions of Tumor necrosis factor (TNF), IL-6 and IL-1α. However, the levels of E-cadherin, tight junction channels and ion channels expressions were lower in the C3 KO mice, although myeloperoxidase (MPO) activity for neutrophils was slightly increased. Taken together, results of the current study indicate that C3 deficiency promotes inflammatory responses in the mid colon of C3 KO mice through activation of the iNOS‑mediated COX‑2 induction pathway, Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-inflammasome pathway and NF-κB signaling pathway, and the enhancement of inflammatory cytokine expressions.
Collapse
|
5
|
Karunaratne ND, Newkirk RW, Ames NP, Van Kessel AG, Bedford MR, Classen HL. Effects of exogenous β-glucanase on ileal digesta soluble β-glucan molecular weight, digestive tract characteristics, and performance of coccidiosis vaccinated broiler chickens fed hulless barley-based diets with and without medication. PLoS One 2021; 16:e0236231. [PMID: 33939708 PMCID: PMC8092798 DOI: 10.1371/journal.pone.0236231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Limited use of medication in poultry feed led to the investigation of exogenous enzymes as antibiotic alternatives for controlling enteric disease. The objective of this study was to evaluate the effects of diet β-glucanase (BGase) and medication on β-glucan depolymerization, digestive tract characteristics, and growth performance of broilers. Materials and methods Broilers were fed hulless barley (HB) based diets with BGase (Econase GT 200P from AB Vista; 0 and 0.1%) and medication (Bacitracin and Salinomycin Na; with and without) arranged as a 2 × 2 factorial. In Experiment 1, 160 broilers were housed in cages from d 0 to 28. Each treatment was assigned to 10 cages. In Experiment 2, broilers (2376) were housed in floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to one floor pen in each of nine rooms. Results In Experiment 1, the soluble β-glucan weighted average molecular weight (Mw) in the ileal digesta was lower with medication in the 0% BGase treatments. Peak molecular weight (Mp) and Mw were lower with BGase regardless of medication. The maximum molecular weight for the smallest 10% β-glucan (MW-10%) was lower with BGase addition. In Experiment 2, Mp was lower with medication in 0% BGase treatments. Beta-glucanase resulted in lower Mp regardless of medication, and the degree of response was lower with medication. The MW-10% was lower with BGase despite antibiotic addition. Body weight gain and feed efficiency were higher with medication regardless of BGase use through-out the trial (except d 11–22 feed efficiency). Beta-glucanase resulted in higher body weight gain after d 11 and worsened and improved feed efficiency before and after d 11, respectively, in unmedicated treatments. Conclusion BGase and medication caused the depolymerization of soluble ileal β-glucan. Beta-glucanase acted as a partial replacement for diet medication by increasing growth performance in coccidiosis vaccinated broilers.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rex W. Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Nancy P. Ames
- Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Oncel S, Gupta R, Wang Q, Basson MD. ZINC40099027 Promotes Gastric Mucosal Repair in Ongoing Aspirin-Associated Gastric Injury by Activating Focal Adhesion Kinase. Cells 2021; 10:908. [PMID: 33920786 PMCID: PMC8071155 DOI: 10.3390/cells10040908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs cause gastric ulcers and gastritis. No drug that treats GI injury directly stimulates mucosal healing. ZINC40099027 (ZN27) activates focal adhesion kinase (FAK) and heals acute indomethacin-induced small bowel injury. We investigated the efficacy of ZN27 in rat and human gastric epithelial cells and ongoing aspirin-associated gastric injury. ZN27 (10 nM) stimulated FAK activation and wound closure in rat and human gastric cell lines. C57BL/6J mice were treated with 300 mg/kg/day aspirin for five days to induce ongoing gastric injury. One day after the initial injury, mice received 900 µg/kg/6 h ZN27, 10 mg/kg/day omeprazole, or 900 µg/kg/6 h ZN27 plus 10 mg/kg/day omeprazole. Like omeprazole, ZN27 reduced gastric injury vs. vehicle controls. ZN27-treated mice displayed better gastric architecture, with thicker mucosa and less hyperemia, inflammation, and submucosal edema, and lost less weight than vehicle controls. Gastric pH, serum creatinine, serum alanine aminotransferase (ALT), and renal and hepatic histology were unaffected by ZN27. Blinded scoring of pFAK-Y-397 immunoreactivity at the edge of ZN27-treated lesions demonstrated increased FAK activation, compared to vehicle-treated lesions, confirming target activation in vivo. These results suggest that ZN27 ameliorates ongoing aspirin-associated gastric mucosal injury by a pathway involving FAK activation. ZN27-derivatives may be useful to promote gastric mucosal repair.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA;
| | - Rashmi Gupta
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA; (R.G.); (Q.W.)
| | - Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA; (R.G.); (Q.W.)
| | - Marc D. Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA;
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA; (R.G.); (Q.W.)
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
7
|
Sodagari HR, Farzaei MH, Bahramsoltani R, Abdolghaffari AH, Mahmoudi M, Rezaei N. Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2015; 9:807-20. [PMID: 25586636 DOI: 10.1586/17474124.2015.1002086] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is thought to result from a chronic or relapsing activation of the immune system in the GI tract. A growing body of evidence confirms the health benefits of dietary anthocyanins as plant-derived natural agents. The aim of this review is to provide an overview of several natural products rich in anthocyanins used worldwide for the treatment of IBD. Anthocyanins possess both protective and therapeutic functions in the management of IBD by alleviating oxidative stress processes, cytoprotective functions, downregulation of inflammatory cytokines and suppressing cellular signaling pathways of inflammatory processes. In conclusion, the consumption of anthocyanin-rich natural formulations must be promoted on the basis of their possible function in the prevention and treatment of gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | | | | | | | | |
Collapse
|