1
|
Hock BD, Goddard L, Dobson LJ, MacPherson SA, O'Donnell JL, McKenzie JL, McLellan AD. Impact of rheumatoid factors on the function of therapeutic monoclonals specific for PD-1/PD-L1. Cancer Immunol Immunother 2025; 74:216. [PMID: 40411581 PMCID: PMC12103427 DOI: 10.1007/s00262-025-04078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/01/2025] [Indexed: 05/26/2025]
Abstract
The efficacy of blocking antibodies against programmed death-1 (PD-1) and its ligand (PD-L1) is modulated by signalling through their Fc regions. The Fc region of anti-PD-1/PD-L1 antibodies, when cell-bound, represents a potential target for recognition by circulating rheumatoid factor (RF) autoantibodies. The resultant cell-associated immune complex may then provide different Fc signals to that of the PD-1/PD-L1 antibodies alone. However, little is known regarding the interaction of RF and therapeutic PD-1/PD-L1 antibodies. We report that PD-1 (pembrolizumab, nivolumab) and PD-L1 (avelumab) antibodies, when bound to their cellular targets, are recognised by both IgM-RF and IgA-RF components of RF+ patient serum. We further demonstrate that the presence of RF provides PD-1 antibodies with the ability to induce complement-dependent cytotoxicity (CDC) of a PD-1+ target cell line in the presence of human complement. Although RF provided avelumab with the ability to induce CDC in assays using rabbit complement, no CDC was observed in the presence of human complement. The presence of RF did not modulate the level of Fc receptor-triggered cellular cytotoxicity or neutrophil activation that was induced by PD-1/PD-L1 antibodies alone. This study demonstrates that RF has the potential to modulate the Fc-associated signals generated following binding of PD-1/PD-L1 antibodies. The impact of RF on their efficacy therefore merits further investigation.
Collapse
Affiliation(s)
- Barry D Hock
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
- Haematology Department, Christchurch Hospital, Christchurch, New Zealand.
| | - Liping Goddard
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Haematology Department, Christchurch Hospital, Christchurch, New Zealand
| | - Lachlan J Dobson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sean A MacPherson
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Haematology Department, Christchurch Hospital, Christchurch, New Zealand
| | - John L O'Donnell
- Immunology Department of Canterbury Health Laboratories, Christchurch Hospital, Christchurch, New Zealand
| | - Judith L McKenzie
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Haematology Department, Christchurch Hospital, Christchurch, New Zealand
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Panaampon J, Okada S. Promising immunotherapeutic approaches for primary effusion lymphoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:699-713. [PMID: 38966176 PMCID: PMC11220309 DOI: 10.37349/etat.2024.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 07/06/2024] Open
Abstract
Primary effusion lymphoma (PEL) is a large B-cell neoplasm usually presenting as a serious effusion in body cavities without detectable tumor masses. It is an AIDS-related non-Hodgkin's lymphoma (HL) with human herpes virus 8 (HHV8)/Kaposi sarcoma-associated herpes virus (KSHV) infection. A combination antiretroviral therapy (cART) prolongs the lifespan of AIDS and AIDS-related malignant lymphoma patients, but PEL continues to have a dismal prognosis. PEL showed disappointing outcomes with standard chemotherapy such as CHOP or CHOP-like regimens. A PEL status highlights the urgent need for new therapeutic approaches and treatment strategies and improve clinical outcomes. This review discusses the current knowledge and some recent clinical trials for PEL in the platform of immunotherapy as well as promising future immunotherapeutic approaches for PEL.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
3
|
Yuan Y, Cui Y, Zhao D, Yuan Y, Zhao Y, Li D, Jiang X, Zhao G. Complement networks in gene-edited pig xenotransplantation: enhancing transplant success and addressing organ shortage. J Transl Med 2024; 22:324. [PMID: 38566098 PMCID: PMC10986007 DOI: 10.1186/s12967-024-05136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
The shortage of organs for transplantation emphasizes the urgent need for alternative solutions. Xenotransplantation has emerged as a promising option due to the greater availability of donor organs. However, significant hurdles such as hyperacute rejection and organ ischemia-reperfusion injury pose major challenges, largely orchestrated by the complement system, and activated immune responses. The complement system, a pivotal component of innate immunity, acts as a natural barrier for xenotransplantation. To address the challenges of immune rejection, gene-edited pigs have become a focal point, aiming to shield donor organs from human immune responses and enhance the overall success of xenotransplantation. This comprehensive review aims to illuminate strategies for regulating complement networks to optimize the efficacy of gene-edited pig xenotransplantation. We begin by exploring the impact of the complement system on the effectiveness of xenotransplantation. Subsequently, we delve into the evaluation of key complement regulators specific to gene-edited pigs. To further understand the status of xenotransplantation, we discuss preclinical studies that utilize gene-edited pigs as a viable source of organs. These investigations provide valuable insights into the feasibility and potential success of xenotransplantation, offering a bridge between scientific advancements and clinical application.
Collapse
Affiliation(s)
- Yinglin Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan Cui
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dayue Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanshuang Zhao
- Department of Pharmacy, The People's Hospital of Leshan, Leshan, China
| | - Danni Li
- Department of Pharmacy, Longquanyi District of Chengdu Maternity & Child Health Care Hospital, Chengdu, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14:1394. [PMID: 36914633 PMCID: PMC10011572 DOI: 10.1038/s41467-023-37029-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Collapse
|
5
|
Shrestha P, Astter Y, Davis DA, Zhou T, Yuan CM, Ramaswami R, Wang HW, Lurain K, Yarchoan R. Daratumumab induces cell-mediated cytotoxicity of primary effusion lymphoma and is active against refractory disease. Oncoimmunology 2023; 12:2163784. [PMID: 36632565 PMCID: PMC9828731 DOI: 10.1080/2162402x.2022.2163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Primary effusion lymphoma (PEL), an aggressive non-Hodgkin lymphoma caused by Kaposi sarcoma-associated herpesvirus (KSHV), lacks standard therapy and has a median survival of 10-22 months with combination chemotherapy. PEL is a tumor of plasmablast-like B cells generally expressing CD38, the target of daratumumab (Dara). Initially, we assessed PEL cells from eight patients and established that each expressed high levels of CD38 by flow cytometry. PEL cell lines were also evaluated and most had high CD38 expression. We then assessed Dara's effects on complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) of PEL cell lines as well as its clinical benefits on two patients with PEL. Despite high CD38 expression, Dara did not induce CDC of PEL cell lines, due in part to high levels of the complement-inhibitory proteins, CD55 and CD59. However, Dara induced significant and dose-dependent increases in ADCC, particularly in those lines with high CD38 levels. Two FDA-approved drugs, all trans-retinoic acid (ATRA) and pomalidomide (Pom), significantly increased surface CD38 levels in low-CD38 expressing PEL cell lines, resulting in increased Dara-induced ADCC. Two patients with refractory PEL were treated with Dara alone or in combination with Pom. One patient with leptomeningeal PEL had a complete response to Dara and Pom combination treatment. Others had improvement in performance status and resolution of malignant ascites with Dara alone. Together, these data support the use of Dara monotherapy or in combination with ATRA or Pom as a potential therapeutic option for PEL.
Collapse
Affiliation(s)
- Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yana Astter
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ting Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Constance M. Yuan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA,CONTACT Robert Yarchoan National Institutes of Health, Building 10, Rm. 6N106, 10 Center Drive, Bethesda, MD20892-1868, USA
| |
Collapse
|
6
|
Xi J, Zheng W, Chen M, Zou Q, Tang C, Zhou X. Genetically engineered pigs for xenotransplantation: Hopes and challenges. Front Cell Dev Biol 2023; 10:1093534. [PMID: 36712969 PMCID: PMC9878146 DOI: 10.3389/fcell.2022.1093534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/14/2023] Open
Abstract
The shortage of donor resources has greatly limited the application of clinical xenotransplantation. As such, genetically engineered pigs are expected to be an ideal organ source for xenotransplantation. Most current studies mainly focus on genetically modifying organs or tissues from donor pigs to reduce or prevent attack by the human immune system. Another potential organ source is interspecies chimeras. In this paper, we reviewed the progress of the genetically engineered pigs from the view of immunologic barriers and strategies, and discussed the possibility and challenges of the interspecies chimeras.
Collapse
|
7
|
Lu T, Yang B, Wang R, Qin C. Xenotransplantation: Current Status in Preclinical Research. Front Immunol 2020; 10:3060. [PMID: 32038617 PMCID: PMC6989439 DOI: 10.3389/fimmu.2019.03060] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.
Collapse
Affiliation(s)
- Tianyu Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Bochao Yang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ruolin Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
8
|
Liu F, Dai S, Feng D, Peng X, Qin Z, Kearns AC, Huang W, Chen Y, Ergün S, Wang H, Rappaport J, Bryda EC, Chandrasekhar A, Aktas B, Hu H, Chang SL, Gao B, Qin X. Versatile cell ablation tools and their applications to study loss of cell functions. Cell Mol Life Sci 2019; 76:4725-4743. [PMID: 31359086 PMCID: PMC6858955 DOI: 10.1007/s00018-019-03243-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
Abstract
Targeted cell ablation is a powerful approach for studying the role of specific cell populations in a variety of organotypic functions, including cell differentiation, and organ generation and regeneration. Emerging tools for permanently or conditionally ablating targeted cell populations and transiently inhibiting neuronal activities exhibit a diversity of application and utility. Each tool has distinct features, and none can be universally applied to study different cell types in various tissue compartments. Although these tools have been developed for over 30 years, they require additional improvement. Currently, there is no consensus on how to select the tools to answer the specific scientific questions of interest. Selecting the appropriate cell ablation technique to study the function of a targeted cell population is less straightforward than selecting the method to study a gene's functions. In this review, we discuss the features of the various tools for targeted cell ablation and provide recommendations for optimal application of specific approaches.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shen Dai
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiao Peng
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Zhongnan Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alison C Kearns
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Yong Chen
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, 261053, Weifang, People's Republic of China
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximillan University, 97070, Wurzburg, Germany
| | - Hong Wang
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Jay Rappaport
- Division of Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Elizabeth C Bryda
- Rat Resource and Research Center, University of Missouri, 4011 Discovery Drive, Columbia, MO, 65201, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences, 340D Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, USA
| | - Bertal Aktas
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA, 19140, USA.
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, 70433, USA.
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Liu F, Liu J, Yuan Z, Qing Y, Li H, Xu K, Zhu W, Zhao H, Jia B, Pan W, Guo J, Zhang X, Cheng W, Wang W, Zhao HY, Wei HJ. Generation of GTKO Diannan Miniature Pig Expressing Human Complementary Regulator Proteins hCD55 and hCD59 via T2A Peptide-Based Bicistronic Vectors and SCNT. Mol Biotechnol 2019; 60:550-562. [PMID: 29916131 DOI: 10.1007/s12033-018-0091-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pig-to-human organ transplantation has drawn attention in recent years due to the potential use of pigs as an alternative source of human donor organs. While GGTA1 knockout (GTKO) can protect xenografts from hyperacute rejection, complement-dependent cytotoxicity might still contribute to this type of rejection. To prolong the xenograft survival, we utilized a T2A-mediated pCMV-hCD55-T2A-hCD59-Neo vector and transfected the plasmid into GTKO Diannan miniature pig fetal fibroblasts. After G418 selection combined with single-cell cloning culture, four colonies were obtained, and three of these were successfully transfected with the hCD55 and hCD59. One of the three colonies was selected as donor cells for somatic cell nuclear transfer (SCNT). Then, the reconstructed embryos were transferred into eight recipient gilts, resulting in four pregnancies. Three of the pregnant gilts delivered, yielding six piglets. Only one piglet carried hCD55 and hCD59 genetic modification. The expression levels of the GGTA1, hCD55, and hCD59 in the tissues and fibroblasts of the piglet were determined by q-PCR, fluorescence microscopy, immunohistochemical staining, and western blotting analyses. The results showed the absence of GGTA1 and the coexpression of the hCD55 and hCD59. However, the mRNA expression levels of hCD55 and hCD59 in the GTKO/hCD55/hCD59 pig fibroblasts were lower than that in human 293T cells, which may be caused by low copy number and/or CMV promoter methylation. Furthermore, we performed human complement-mediated cytolysis assays using human serum solutions from 0 to 60%. The result showed that the fibroblasts of this triple-gene modified piglet had greater survival rates than that of wild-type and GTKO controls. Taken together, these results indicate that T2A-mediated polycistronic vector system combined with SCNT can effectively generate multiplex genetically modified pigs, additional hCD55 and hCD59 expression on top of a GTKO genetic background markedly enhance the protective effect towards human serum-mediated cytolysis than those of GTKO alone. Thus, we suggest that GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pig will be a more eligible donor for xenotransplantation.
Collapse
Affiliation(s)
- Fengjuan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinji Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zaimei Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yubo Qing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Honghui Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Wanyun Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoyu Jia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Weirong Pan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuezeng Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Wenmin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Wang
- Hunan Xeno Life Science Co., Ltd, Changsha, 410600, China.
- Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital Central-South University, Changsha, 410013, China.
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
10
|
Affiliation(s)
- M D Dooldeniya
- Department of Immunology, Imperial College, Hammersmith Campus, London W12 0NN, UK
| | - A N Warrens
- Department of Immunology, Imperial College, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
11
|
Pritchett EM, Lamont SJ, Schmidt CJ. Transcriptomic changes throughout post-hatch development in Gallus gallus pituitary. J Mol Endocrinol 2017; 58:43-55. [PMID: 27856505 PMCID: PMC5148799 DOI: 10.1530/jme-16-0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/04/2022]
Abstract
The pituitary gland is a neuroendocrine organ that works closely with the hypothalamus to affect multiple processes within the body including the stress response, metabolism, growth and immune function. Relative tissue expression (rEx) is a transcriptome analysis method that compares the genes expressed in a particular tissue to the genes expressed in all other tissues with available data. Using rEx, the aim of this study was to identify genes that are uniquely or more abundantly expressed in the pituitary when compared to all other collected chicken tissues. We applied rEx to define genes enriched in the chicken pituitaries at days 21, 22 and 42 post-hatch. rEx analysis identified 25 genes shared between all time points, 295 genes shared between days 21 and 22 and 407 genes unique to day 42. The 25 genes shared by all time points are involved in morphogenesis and general nervous tissue development. The 295 shared genes between days 21 and 22 are involved in neurogenesis and nervous system development and differentiation. The 407 unique day 42 genes are involved in pituitary development, endocrine system development and other hormonally related gene ontology terms. Overall, rEx analysis indicates a focus on nervous system/tissue development at days 21 and 22. By day 42, in addition to nervous tissue development, there is expression of genes involved in the endocrine system, possibly for maturation and preparation for reproduction. This study defines the transcriptome of the chicken pituitary gland and aids in understanding the expressed genes critical to its function and maturation.
Collapse
Affiliation(s)
| | | | - Carl J Schmidt
- Animal and Food ScienceUniversity of Delaware, Newark, Delaware, USA
| |
Collapse
|
12
|
Wang Y, Du Y, Zhou X, Wang L, Li J, Wang F, Huang Z, Huang X, Wei H. Efficient generation of B2m-null pigs via injection of zygote with TALENs. Sci Rep 2016; 6:38854. [PMID: 27982048 PMCID: PMC5159787 DOI: 10.1038/srep38854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Donor major histocompatibility complex class I (MHC I) molecules are the main targets of the host immune response after organ allotransplantation. Whether and how MHC I-deficiency of pig donor tissues affects rejection after xenotransplantation has not been assessed. Beta2-microglobulin (B2M) is indispensable for the assembly of MHC I receptors and therefore provides an effective target to disrupt cell surface MHC I expression. Here, we report the one-step generation of mutant pigs with targeted disruptions in B2m by injection of porcine zygotes with B2m exon 2-specific TALENs. After germline transmission of mutant B2m alleles, we obtained F1 pigs with biallelic B2m frameshift mutations. F1 pigs lacked detectable B2M expression in tissues derived from the three germ layers, and their lymphocytes were devoid of MHC I surface receptors. Skin grafts from B2M deficient pigs exhibited remarkably prolonged survival on xenogeneic wounds compared to tissues of non-mutant littermates. Mutant founder pigs with bi-allelic disruption in B2m and B2M deficient F1 offspring did not display visible abnormalities, suggesting that pigs are tolerant to B2M deficiency. In summary, we show the efficient generation of pigs with germline mutations in B2m, and demonstrate a beneficial effect of donor MHC I-deficiency on xenotransplantation.
Collapse
Affiliation(s)
- Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yinan Du
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China
| | - Xiaoyang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Lulu Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jian Li
- Department of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Fengchao Wang
- Institute of Combined Injury, College of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhengen Huang
- Research Institute of Burns, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Wiles K, Fishman JM, De Coppi P, Birchall MA. The Host Immune Response to Tissue-Engineered Organs: Current Problems and Future Directions. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:208-19. [DOI: 10.1089/ten.teb.2015.0376] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Martin A. Birchall
- UCL Ear Institute & Royal National Throat, Nose and Ear Hospital, London, United Kingdom
| |
Collapse
|
14
|
Modulation of host CD59 expression by varicella-zoster virus in human xenografts in vivo. Virology 2016; 491:96-105. [PMID: 26891237 DOI: 10.1016/j.virol.2016.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 01/06/2023]
Abstract
Varicella-zoster virus (VZV) is the causative agent of both chickenpox (varicella) and shingles (zoster). VZV survives host defenses, even with an intact immune system, and disseminates in the host before causing disease. To date, several diverse immunomodulatory strategies used by VZV to undermine host immunity have been identified; however, few studies have addressed the complement evasion strategies used by this virus. Here, we show that expression of CD59, which is a key member of host regulators of complement activation (RCA), is significantly upregulated in response to VZV infection in human T cells and dorsal root ganglia (DRG) but not in human skin xenografts in SCID-hu mice in vivo. This is the first report demonstrating that VZV infection upregulates host CD59 expression in a tissue-specific manner in vivo, which may aid VZV in complement evasion and pathogenesis.
Collapse
|
15
|
Kourtzelis I, Ferreira A, Mitroulis I, Ricklin D, Bornstein SR, Waskow C, Lambris JD, Chavakis T. Complement inhibition in a xenogeneic model of interactions between human whole blood and porcine endothelium. Horm Metab Res 2015; 47:36-42. [PMID: 25350518 PMCID: PMC4383746 DOI: 10.1055/s-0034-1390452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Xenotransplantation (xeno-Tx) is considered as an alternative solution to overcome the shortage of human donor organs. However, the success of xeno-Tx is hindered by immune reactions against xenogeneic cells (e. g. of porcine origin). More specifically, activation of innate immune mechanisms such as complement and triggering of the coagulation cascade occur shortly after xeno-Tx, and adhesion of human leukocytes to porcine endothelium is another early critical step mediating the immune attack. To investigate the therapeutic potential of complement inhibition in the context of xenogeneic interactions, we have employed a whole-blood model in the present study. Incubation of human blood with porcine endothelial cells (PAECs) led to activation of complement and coagulation as well as to increased leukocyte adhesion. The observed responses can be attributed to the pig-to-human xenogeneicity, since the presence of human endothelium induced a minor cellular and plasmatic inflammatory response. Importantly, complement inhibition using a potent complement C3 inhibitor, compstatin analogue Cp40, abrogated the adhesion of leukocytes and, more specifically, the attachment of neutrophils to porcine endothelium. Moreover, Cp40 inhibited the activation of PAECs and leukocytes, since the levels of the adhesion molecules E-selectin, ICAM-1, ICAM-2, and VCAM-1 on PAECs and the surface expression of integrin CD11b on neutrophils were significantly decreased. Along the same line, inhibition of CD11b resulted in decreased leukocyte adhesion. Taken together, our findings provide a better understanding of the mechanisms regulating the acute innate immune complications in the context of xeno-Tx and could pave the way for complement-targeting therapeutic interventions.
Collapse
Affiliation(s)
- I. Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| | - A. Ferreira
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| | - I. Mitroulis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - D. Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S. R. Bornstein
- Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
| | - C. Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute of Immunology, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - J. D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T. Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Zeyland J, Lipiński D, Słomski R. The current state of xenotransplantation. J Appl Genet 2014; 56:211-8. [PMID: 25487710 PMCID: PMC4412840 DOI: 10.1007/s13353-014-0261-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/29/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
Pigs as a source of grafts for xenotransplantation can help to overcome the rapidly growing shortage of human donors. However, in the case of pig-to-human transplantation, the antibody-xenoantigen complexes lead to the complement activation and immediate hyperacute rejection. Methods eliminating hyperacute rejection (HAR) include α1,3-galactosyltransferase (GGTA1) inactivation, regulation of the complement system and modification of the oligosaccharide structure of surface proteins. The humoral immune response control and reduction of the risk of coagulation disorders are the priority tasks in attempts to overcome acute humoral xenograft rejection that may occur after the elimination of HAR. The primary targets for research are connected with the identification of obstacles and development of strategies to tackle them. Because of the magnitude of factors involved in the immune, genetic engineers face a serious problem of producing multitransgenic animals in the shortest possible time.
Collapse
Affiliation(s)
- J Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Dojazd 11, 60-632, Poland,
| | | | | |
Collapse
|
17
|
On the three-finger protein domain fold and CD59-like proteins in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2482. [PMID: 24205416 PMCID: PMC3812095 DOI: 10.1371/journal.pntd.0002482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined. Schistosomes are parasites that reside for many years in the blood stream, demanding efficient mechanisms of evading immune response effectors such as complement deposition. A group of genes similar to human CD59, an important complement inhibitor in mammals, were identified in the schistosome genome. Computer predictions of protein structure indicated substantial similarity of the schistosome proteins and the mammalian CD59 family of proteins, which due to their three-finger-shaped spatial conformation are members of the Three-Finger Protein Domain fold superfamily (TFPD). Members of this family of schistosome proteins were also shown to be expressed predominantly during the mammalian stages when worms are exposed to complement and found to be present at the host-interactive surface of schistosomes. Three different methods were employed to test the possible involvement of these proteins in complement inhibition. Our results strongly suggest that these proteins are not involved in the inhibition of complement and that further studies are needed to establish their functional role(s) in schistosomes.
Collapse
|
18
|
Yang X, Deng J, Jiang Z, Liao DJ, Jiang H. Protective effects of different combinations of human MCP, DAF, and CD59 on complement-dependent cytolysis in NIH 3T3 cells. EXP CLIN TRANSPLANT 2012; 10:49-54. [PMID: 22309420 DOI: 10.6002/ect.2011.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To analyze the protective effects against complement-mediated cytolysis of the MCP, DAF, and CD59 human complement regulatory proteins, alone and in combination, on NIH 3T3 mouse fibroblast cells. MATERIALS AND METHODS We constructed 3 double and 3 single-human complement regulatory protein plasmids (pIRES-hMCP-hDAF, pIRES-hMCP-hCD59, pIRES-hDAF-hCD59, pIRES-A-hMCP, pIRES-B-hDAF, and pIRES-B-hCD59). The plasmids were transfected into NIH 3T3 cells, and stable transfectants were obtained by treatment with 200 kg/m3 G418 for 2 weeks. Normal human serum (50%) as a source of complement was added to the culture medium of stable transfectants. The 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide assay was used to analyze the protective ability of different human complement regulatory protein plasmids on complement-dependent cytolysis. RESULTS The viability of double-human complement regulatory protein stable transfectants was significantly higher than that of single-human complement regulatory protein stable transfectants (P < .05). Among the double-transfectants, cells expressing pIRES-hMCP-hDAF and pIRES-hMCPhCD59 survived better than cells expressing pIREShDAF- hCD59 (91.75% ± 3.30% and 84.88% ± 2.36% vs 66.19% ± 6.52%; P < .05). Among the single transfectants, cells expressing pIRES-A-hMCP or pIRES-B-hDAF survived better than cells expressing pIRES-B-hCD59 or pIRES empty vector (53.76% ± 3.84% and 56.32% ± 2.83% vs 43.28% ± 0.96% and 40.27% ± 1.11%; P < .05). CONCLUSIONS These results suggest that the MCP+DAF and MCP+CD59 combinations could be more effective than DAF+CD59 in protecting the NIH 3T3 cells from injury caused by complement-dependent cytolysis, whereas MCP or DAF alone is stronger than CD59 alone in inhibiting membrane attack complex formation.
Collapse
Affiliation(s)
- Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Guangxi Academy of Sciences, Nanning 530003, China
| | | | | | | | | |
Collapse
|
19
|
Hunter P. Xeno's paradox: why pig cells are better for tissue transplants than human cells. EMBO Rep 2009; 10:554-7. [PMID: 19488043 DOI: 10.1038/embor.2009.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
20
|
Cytolytic assessment of hyperacute rejection and production of nuclear transfer embryos using hCD46-transgenic porcine embryonic germ cells. ZYGOTE 2009; 17:101-8. [DOI: 10.1017/s096719940800511x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryHuman complement regulatory protein hCD46 may reduce the hyperacute rejection (HAR) in pig-to-human xenotransplantation. In this study, anhCD46gene was introduced into porcine embryonic germ (EG) cells. Treatment of human serum did not affect the survival of hCD46-transgenic EG cells, whereas the treatment significantly reduced the survival of non-transgenic EG cells (p< 0.01). The transgenic EG cells presumably capable of alleviating HAR were transferred into enucleated oocytes. Among 235 reconstituted oocytes, 35 (14.9%) developed to the blastocyst stage. Analysis of individual embryos indicated that 80.0% (28/35) of embryos contained the transgene hCD46. The result of the present study demonstrates resistance of hCD46-transgenic EG cells against HAR, and the usefulness of the transgenic approach may be predicted by this cytolytic assessment prior to actual production of transgenic pigs. Subsequently performed EG cell nuclear transfer gave rise to hCD46-transgenic embryos. Further study on the transfer of these embryos to recipients may produce hCD46-transgenic pigs.
Collapse
|
21
|
Host complement regulatory protein CD59 is transported to the chlamydial inclusion by a Golgi apparatus-independent pathway. Infect Immun 2009; 77:1285-92. [PMID: 19168743 DOI: 10.1128/iai.01062-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chlamydia is an obligate intracellular bacterium that grows and replicates inside a cytoplasmic inclusion. We report that a host protein, CD59, which regulates complement function at the surfaces of uninfected cells, can be detected at the membrane of the chlamydial inclusion. This localization to the inclusion membrane was specific for CD59 and not a general feature of other glycosylphosphatidylinositol (GPI)-anchored proteins or representative cell surface proteins. Using differential permeabilization studies, we showed that CD59 is localized to the luminal but not the cytoplasmic face of the inclusion membrane, consistent with membrane association via its GPI anchor. Furthermore, CD59 was present at the inclusion even when we prevented it from associating with membrane microdomains via the GPI anchor or when we inhibited general protein transport to the cell surface, indicating that a conventional Golgi apparatus-dependent trafficking mechanism was not involved. Based on these findings, we propose that selected host proteins are trafficked to the inclusion by a Golgi apparatus-independent pathway during a Chlamydia infection.
Collapse
|
22
|
Xu L, Zhao Z, Sheng J, Zhu C, Liu H, Jiang D, Mao X, Guo M, Li W. Co-expression of human complement regulatory proteins DAF and MCP with an IRES-mediated dicistronic mammalian vector enhances their cell protective effects. BIOCHEMISTRY (MOSCOW) 2008; 73:1025-30. [DOI: 10.1134/s0006297908090101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Hara H, Long C, Lin YJ, Tai HC, Ezzelarab M, Ayares D, Cooper DKC. In vitro investigation of pig cells for resistance to human antibody-mediated rejection. Transpl Int 2008; 21:1163-74. [PMID: 18764834 DOI: 10.1111/j.1432-2277.2008.00736.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although human complement-dependent cytotoxicity (CDC) of alpha1,3-galactosyltransferase gene-knockout (GTKO) pig cells is significantly weaker than that of wild-type (WT) cells, successful xenotransplantation will require pigs with multiple genetic modifications. Sera from healthy humans were tested by (i) flow cytometry for binding of IgM/IgG, and (ii) CDC assay against peripheral blood mononuclear cells and porcine aortic endothelial cells from five types of pig - WT, GTKO, GTKO transgenic for H-transferase (GTKO/HT), WT transgenic for human complement regulatory protein CD46 (CD46) and GTKO/CD46. There was significantly higher mean IgM/IgG binding to WT and CD46 cells than to GTKO, GTKO/HT, and GTKO/CD46, but no difference between GTKO, GTKO/HT, and GTKO/CD46 cells. There was significantly higher mean CDC to WT than to GTKO, GTKO/HT, CD46, and GTKO/CD46 cells, but no difference between GTKO and GTKO/HT. Lysis of GTKO/CD46 cells was significantly lower than that of GTKO or CD46 cells. CD46 expression provided partial protection against serum from a baboon sensitized to a GTKO pig heart. GTKO/CD46 cells were significantly resistant to lysis by human serum and sensitized baboon serum. In conclusion, the greatest protection from CDC was obtained by the combination of an absence of Gal expression and the presence of CD46 expression, but the expression of HT appeared to offer no advantage over GTKO. Organs from GTKO/CD46 pigs are likely to be significantly less susceptible to CDC.
Collapse
Affiliation(s)
- Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Xu L, Wu W, Zhao Z, Shao H, Liu W, Liu H, Li W. Cooperation between Human DAF and CD59 in Protecting Cells from Human Complement-mediated Lysis. BMB Rep 2006; 39:743-8. [PMID: 17129411 DOI: 10.5483/bmbrep.2006.39.6.743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complement (C) regulatory proteins decay accelerating factor (DAF, CD55) and CD59 could protect host cells using different mechanisms from C-mediated damage at two distinct levels within the C pathway. Co-expression of DAF and CD59 would be an effective strategy to help overcome host C-induced xenograft hyperacute rejection. In this study, we made a construct of recombinant expression vector containing DAF and CD59 cDNA and the stable cell lines were obtained by G418 selection. Extraneous genes integration and co-expression were identified by PCR, RT-PCR and Western blot analysis. Human c-mediated cytolysis assays showed that NIH/3T3 cells transfected stably with pcDNA3-CD59, pcDNA3-DAF, and pcDNA3-CD59DAF-DP were protected from Cmediated damage and that synchronously expressed human CD59 and DAF provided the most excellent protection for host cells as compared with either human CD59 or DAF expressed alone. Therefore, the construct represents an effective and efficacy strategy to overcome C-mediated damage in cells and, ultimately, in animals.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee JH, Lee HJ, Nahm KM, Jeon HY, Hwang WS, Paik NW, Rho HM. Effects of combined expression of human complement regulatory proteins and H-transferase on the inhibition of complement-mediated cytolysis in porcine embryonic fibroblasts. Transplant Proc 2006; 38:1618-21. [PMID: 16797369 DOI: 10.1016/j.transproceed.2006.02.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Indexed: 11/19/2022]
Abstract
The expression of human complement regulatory proteins (CRP) and H-transferase (HT) in porcine cells is one of the strategies for suppression of hyperacute rejection (HAR) of xenotransplants in human recipients. In this study, we investigated the inhibitory effect of combined expression of human complement regulators and HT on human serum-mediated cytolysis in porcine embryonic fibroblasts. For the combinated expression of human CRPs in transformed pig cells, cDNAs of human DAF, MCP, and CD59 were cloned into the same insertional plasmid under the control of pCMV IE and LTR. The double combination of CRPs, hDAF-hMCP, and hMCP-hCD59 survived over 50% in the presence of 50% human serum, compared to the control. Moreover, the cell viability was increased more than 65% and 80% in the combination of human DAF-CD59 and DAF-MCP-CD59, respectively. In addition, the combination of HT gene to hDAF-hCD59 vector increased the viability close to 80%, similar to the triple combination of CRPs. These observations suggest that the combined expression of human CRPs and HT in the same insertional vector may be more effective in protecting porcine cells from human complement-mediated cytolysis.
Collapse
Affiliation(s)
- J H Lee
- Indang Institute of Molecular Biology, Inje University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Ramírez P, Montoya MJ, Ríos A, García Palenciano C, Majado M, Chávez R, Muñoz A, Fernández OM, Sánchez A, Segura B, Sansano T, Acosta F, Robles R, Sánchez F, Fuente T, Cascales P, González F, Ruiz D, Martínez L, Pons JA, Rodríguez JI, Yélamos J, Cowan P, d'Apice A, Parrilla P. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc 2005; 37:4103-4106. [PMID: 16386637 DOI: 10.1016/j.transproceed.2005.09.186] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The search for alternative sources for transplant organs leads us to the search for animals as an inexhaustible source of organs. The objective of this study was to analyze whether livers from polytransgenic pigs expressing the human complement regulatory proteins CD55 (hDAF), CD59, and alfa alpha1,2-fucosyltransferase (H-transferase), protected against hyperacute rejection after orthotopic liver xenotransplantation to a baboon and also to study pig liver function in a nonhuman primate. MATERIALS AND METHODS Nine liver transplants from pig to baboon were divided into two groups: a control group (n = 4) of genetically unmodified pigs and an experimental group (n = 5) of pigs transgenic for CD55, CD59, and H-transferase as donors. All the donating piglets obtained through hysterectomy were maintained in specific pathogen-free conditions. The selection of transgenic pig donors followed demonstration of transgene expression using monoclonal antibodies (antiCD55, antiCD59) and immunohistological studies on liver biopsies. RESULTS All animals in the control group developed hyperacute rejection with survival rates less than 16 hours without function of transplanted livers. In the experimental group none of the animals suffered hyperacute rejection. Survival in this group was between 13 and 24 hours. The livers were functional, producing bile and maintaining above 35% prothrombin activity. Only in one case was there primary dysfunction of the xenograft. CONCLUSION Polytransgenic livers for complement regulatory proteins prevent hyperacute rejection when xenotransplanted into a baboon.
Collapse
Affiliation(s)
- P Ramírez
- Liver Transplant Unit, Department of Surgery, Virgen Arrixaca University Hospital, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- M D Dooldeniya
- Department of Immunology, Imperial College, Hammersmith Campus, London W12 0NN, UK
| | | |
Collapse
|
28
|
Nottle MB, D'Apice AJF, Cowan PJ, Boquest AC, Harrison SJ, Grupen CG. Transgenic perspectives in xenotransplantation, 2001. Xenotransplantation 2002; 9:305-8. [PMID: 12199862 DOI: 10.1034/j.1399-3089.2002.t01-1-02036.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mark B Nottle
- Reproductive Biotechnology Division, BresaGen Limited, PO Box254, Rundle Mall 5000, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
A novel simple method to purify recombinant soluble human complement receptor type 1 (sCR1) from CHO cell culture. BIOTECHNOL BIOPROC E 2002. [DOI: 10.1007/bf02935882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|