1
|
Li X, Liu J, Boreland AJ, Kapadia S, Zhang S, Stillitano AC, Abbo Y, Clark L, Lai D, Liu Y, Barr PB, Meyers JL, Kamarajan C, Kuang W, Agrawal A, Slesinger PA, Dick D, Salvatore J, Tischfield J, Duan J, Edenberg HJ, Kreimer A, Hart RP, Pang ZP. Polygenic risk for alcohol use disorder affects cellular responses to ethanol exposure in a human microglial cell model. SCIENCE ADVANCES 2024; 10:eado5820. [PMID: 39514655 PMCID: PMC11546823 DOI: 10.1126/sciadv.ado5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Polygenic risk scores (PRSs) assess genetic susceptibility to alcohol use disorder (AUD), yet their molecular implications remain underexplored. Neuroimmune interactions, particularly in microglia, are recognized as notable contributors to AUD pathophysiology. We investigated the interplay between AUD PRS and ethanol in human microglia derived from iPSCs from individuals with AUD high-PRS (diagnosed with AUD) or low-PRS (unaffected). Ethanol exposure induced elevated CD68 expression and morphological changes in microglia, with differential responses between high-PRS and low-PRS microglial cells. Transcriptomic analysis revealed expression differences in MHCII complex and phagocytosis-related genes following ethanol exposure; high-PRS microglial cells displayed enhanced phagocytosis and increased CLEC7A expression, unlike low-PRS microglial cells. Synapse numbers in cocultures of induced neurons with microglia after alcohol exposure were lower in high-RPS cocultures, suggesting possible excess synapse pruning. This study provides insights into the intricate relationship between AUD PRS, ethanol, and microglial function, potentially influencing neuronal functions in developing AUD.
Collapse
Affiliation(s)
- Xindi Li
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Jiayi Liu
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Andrew J. Boreland
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Sneha Kapadia
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Alessandro C. Stillitano
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yara Abbo
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Lorraine Clark
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Dongbing Lai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter B. Barr
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jacquelyn L. Meyers
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Chella Kamarajan
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Weipeng Kuang
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washinton University School of Medicine, Saint Louis, MO 63108, USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle Dick
- Department of Psychiatry, Rutgers University Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jessica Salvatore
- Department of Psychiatry, Rutgers University Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jay Tischfield
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anat Kreimer
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ronald P. Hart
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Flores A, Fernández-Sánchez L, Kutsyr O, Lax P, Yáñez A, Gil ML, Gozalbo D, Maneu V. Non-haematopoietic Sca-1 + Cells in the Retina of Adult Mice Express Functional TLR2. Stem Cell Rev Rep 2024; 20:845-851. [PMID: 38183535 DOI: 10.1007/s12015-023-10674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
The mammal retina does not have the capacity to regenerate throughout life, although some stem and progenitor cells persist in the adult retina and might retain multipotentiality, as previously described in many tissues. In this work we demonstrate the presence of a small lineage- Sca-1+ cell population in the adult mouse retina which expresses functional TLR2 receptors as in vitro challenge with the pure TLR2 agonist Pam3CSK4 increases cell number and upregulates TLR2. Therefore, this population could be of interest in neuroregeneration studies to elucidate its role in these processes.
Collapse
Affiliation(s)
- Ana Flores
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | | | - Oksana Kutsyr
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Pedro Lax
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Alberto Yáñez
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - María Luisa Gil
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Daniel Gozalbo
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Liu S, Yan Z, Peng Y, Liu Y, Li Y, Xu D, Gong Y, Cui Z, Wu Y, Zhang Y, Wang D, Pan W, Yang X. Lentinan has a beneficial effect on cognitive deficits induced by chronic Toxoplasma gondii infection in mice. Parasit Vectors 2023; 16:454. [PMID: 38093309 PMCID: PMC10717010 DOI: 10.1186/s13071-023-06023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is increasingly considered a risk factor for neurodegenerative diseases. However, there is only limited information on the development of drugs for T. gondii infection. Lentinan from Lentinula edodes is a bioactive ingredient with the potential to enhance anti-infective immunity. The present study aimed to investigate the neuroprotective effect of lentinan on T. gondii-associated cognitive deficits in mice. METHODS A chronic T. gondii infection mouse model was established by administering 10 cysts of T. gondii by gavage. Lentinan was intraperitoneally administered 2 weeks before infection. Behavioral tests, RNA sequencing, immunofluorescence, transmission electron microscopy and Golgi-Cox staining were performed to assess the effect of lentinan on cognitive deficits and neuropathology in vivo. In vitro, the direct and indirect effects of lentinan on the proliferation of T. gondii tachyzoites were evaluated in the absence and presence of BV-2 cells, respectively. RESULTS Lentinan prevented T. gondii-induced cognitive deficits and altered the transcriptome profile of genes related to neuroinflammation, microglial activation, synaptic function, neural development and cognitive behavior in the hippocampus of infected mice. Moreover, lentinan reduced the infection-induced accumulation of microglia and downregulated the mRNA expression of proinflammatory cytokines. In addition, the neurite and synaptic ultrastructural damage in the hippocampal CA1 region due to infection was ameliorated by lentinan administration. Lentinan decreased the cyst burden in the brains of infected mice, which was correlated with behavioral performance. In line with this finding, lentinan could significantly inhibit the proliferation of T. gondii tachyzoites in the microglial cell line BV2, although lentinan had no direct inhibitory effect on parasite growth. CONCLUSIONS Lentinan prevents cognitive deficits via the improvement of neurite impairment and synaptic loss induced by T. gondii infection, which may be associated with decreased cyst burden in the brain. Overall, our findings indicate that lentinan can ameliorate T. gondii-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yunqiu Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yiling Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zeyu Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yongshui Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yumei Zhang
- Department of Pathogenic Biology, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, 323000, Zhejiang, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Cohen-Kedar S, Shaham Barda E, Rabinowitz KM, Keizer D, Abu-Taha H, Schwartz S, Kaboub K, Baram L, Sadot E, White I, Wasserberg N, Wolff-Bar M, Levy-Barda A, Dotan I. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front Immunol 2023; 14:1142492. [PMID: 36969163 PMCID: PMC10030769 DOI: 10.3389/fimmu.2023.1142492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Intestinal epithelial cells (IECs) are the first to encounter luminal microorganisms and actively participate in intestinal immunity. We reported that IECs express the β-glucan receptor Dectin-1, and respond to commensal fungi and β-glucans. In phagocytes, Dectin-1 mediates LC3-associated phagocytosis (LAP) utilizing autophagy components to process extracellular cargo. Dectin-1 can mediate phagocytosis of β-glucan-containing particles by non-phagocytic cells. We aimed to determine whether human IECs phagocytose β-glucan-containing fungal particles via LAP. METHODS Colonic (n=18) and ileal (n=4) organoids from individuals undergoing bowel resection were grown as monolayers. Fluorescent-dye conjugated zymosan (β-glucan particle), heat-killed- and UV inactivated C. albicans were applied to differentiated organoids and to human IEC lines. Confocal microscopy was used for live imaging and immuno-fluorescence. Quantification of phagocytosis was carried out with a fluorescence plate-reader. RESULTS zymosan and C. albicans particles were phagocytosed by monolayers of human colonic and ileal organoids and IEC lines. LAP was identified by LC3 and Rubicon recruitment to phagosomes and lysosomal processing of internalized particles was demonstrated by co-localization with lysosomal dyes and LAMP2. Phagocytosis was significantly diminished by blockade of Dectin-1, actin polymerization and NAPDH oxidases. CONCLUSIONS Our results show that human IECs sense luminal fungal particles and internalize them via LAP. This novel mechanism of luminal sampling suggests that IECs may contribute to the maintenance of mucosal tolerance towards commensal fungi.
Collapse
Affiliation(s)
- Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Shaham Barda
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Masha Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Keizer
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hanan Abu-Taha
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Schwartz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kawsar Kaboub
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liran Baram
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Sadot
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Ian White
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Meirav Wolff-Bar
- Department of Pathology, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Shi H, Yin Z, Koronyo Y, Fuchs DT, Sheyn J, Davis MR, Wilson JW, Margeta MA, Pitts KM, Herron S, Ikezu S, Ikezu T, Graham SL, Gupta VK, Black KL, Mirzaei M, Butovsky O, Koronyo-Hamaoui M. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3 + neurodegenerative microglia. Acta Neuropathol Commun 2022; 10:136. [PMID: 36076283 PMCID: PMC9461176 DOI: 10.1186/s40478-022-01439-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Single cell RNA sequencing studies identified novel neurodegeneration-associated microglial (MGnD/DAM) subtypes activated around cerebral amyloid plaques. Micro-RNA (miR)-155 of the TREM2-APOE pathway was shown to be a key transcriptional regulator of MGnD microglial phenotype. Despite growing interest in studying manifestations of Alzheimer's disease (AD) in the retina, a CNS organ accessible to noninvasive high-resolution imaging, to date MGnD microglia have not been studied in the AD retina. Here, we discovered the presence and increased populations of Clec7a+ and Galectin-3+ MGnD microglia in retinas of transgenic APPSWE/PS1L166P AD-model mice. Conditionally targeting MGnD microglia by miR-155 ablation via the tamoxifen-inducible CreERT2 system in APPSWE/PS1L166P mice diminished retinal Clec7a+ and Galectin-3+ microglial populations while increasing homeostatic P2ry12+ microglia. Retinal MGnD microglia were often adhering to microvessels; their depletion protected the inner blood-retina barrier and reduced vascular amyloidosis. Microglial miR-155 depletion further limits retinal inflammation. Mass spectrometry analysis revealed enhanced retinal PI3K-Akt signaling and predicted IL-8 and Spp1 decreases in mice with microglia-specific miR-155 knockout. Overall, this study identified MGnD microglia in APPSWE/PS1L166P mouse retina. Transcriptional regulation of these dysfunctional microglia mitigated retinal inflammation and vasculopathy. The protective effects of microglial miR-155 ablation should shed light on potential treatments for retinal inflammation and vascular damage during AD and other ocular diseases.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Jered W Wilson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Milica A Margeta
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Kristen M Pitts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Seiko Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Stuart L Graham
- Department of Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Clinical Medicine, Department of Molecular Sciences and Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, A6212, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: Functions and diseases. Immunology 2022; 166:268-286. [PMID: 35403700 DOI: 10.1111/imm.13479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| | - Weidi Huang
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Ophthalmology, Second Xiangya Hospital Central South University Changsha Hunan China
| | - Jiayi Chen
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Na Li
- College of Basic Medicine Chongqing Medical University Chongqing China
| | - Liming Mao
- Department of Immunology School of Medicine, Nantong University, 19 Qixiu Road Nantong Jiangsu China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| |
Collapse
|
7
|
Jin N, Sha W, Gao L. Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects. Front Cell Dev Biol 2021; 9:741368. [PMID: 34966736 PMCID: PMC8710684 DOI: 10.3389/fcell.2021.741368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerative disease (RDD) refers to a group of diseases with retinal degeneration that cause vision loss and affect people's daily lives. Various therapies have been proposed, among which stem cell therapy (SCT) holds great promise for the treatment of RDDs. Microglia are immune cells in the retina that have two activation phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 phenotypes. These cells play an important role in the pathological progression of RDDs, especially in terms of retinal inflammation. Recent studies have extensively investigated the therapeutic potential of stem cell therapy in treating RDDs, including the immunomodulatory effects targeting microglia. In this review, we substantially summarized the characteristics of RDDs and microglia, discussed the microglial changes and phenotypic transformation of M1 microglia to M2 microglia after SCT, and proposed future directions for SCT in treating RDDs.
Collapse
Affiliation(s)
- Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Weiwei Sha
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
8
|
Deerhake ME, Shinohara ML. Emerging roles of Dectin-1 in noninfectious settings and in the CNS. Trends Immunol 2021; 42:891-903. [PMID: 34489167 DOI: 10.1016/j.it.2021.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
Dectin-1 is a C-type lectin receptor (CLR) expressed on the surface of various mammalian myeloid cells. Dectin-1 recognizes β-glucans and elicits antifungal proinflammatory immune responses. Recent studies have begun to examine the biology of Dectin-1 in previously less explored settings, such as homeostasis, sterile inflammation, and in the central nervous system. Indeed, in certain contexts, Dectin-1 is now known to promote tolerance, and anti-inflammatory and neuroprotective responses. In this review, we provide an overview of the current understanding of the roles of Dectin-1 in immunology beyond the context of fungal infections, mainly focusing on in vivo neuroimmunology studies, which could reveal new therapeutic approaches to modify innate immune responses in neurologic disorders.
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
9
|
Dixon MA, Greferath U, Fletcher EL, Jobling AI. The Contribution of Microglia to the Development and Maturation of the Visual System. Front Cell Neurosci 2021; 15:659843. [PMID: 33967697 PMCID: PMC8102829 DOI: 10.3389/fncel.2021.659843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.
Collapse
Affiliation(s)
- Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Histopathology of Age-Related Macular Degeneration and Implications for Pathogenesis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33847998 DOI: 10.1007/978-3-030-66014-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Aging is associated with a number of histological changes in the choroid, Bruch's membrane, RPE, and neuroretina. Outside of the normal physiologic aging spectrum of changes, abnormal deposits such as basal laminar deposits, basal linear deposits, and soft drusen are known to be associated with AMD. Progression of AMD to advanced stages involving geographic atrophy, choroidal neovascularization, and/or disciform scars can result in debilitating vision loss. Knowledge of the angiogenic pathway and its components that stimulate neovascularization has led to the development of a new paradigm of intravitreal anti-VEGF pharmacotherapy in the management of neovascular AMD. Currently however, there are no available treatments for the modification of disease progression in non-neovascular AMD, or for the treatment of geographic atrophy. Further understanding of the histopathology of AMD and the molecular mechanisms that contribute to pathogenesis of the disease may reveal additional therapeutic targets.
Collapse
|
11
|
Kumar S, Matthews QL, Sims B. Effects of Cocaine on Human Glial-Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 8:563441. [PMID: 33505956 PMCID: PMC7830252 DOI: 10.3389/fcell.2020.563441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Microglia are important myeloid cells present in the brain parenchyma that serve a surveillance function in the central nervous system. Microglial cell activation results in neuroinflammation that, when prolonged, can disrupt immune homeostasis and neurogenesis. Activated microglia-derived extracellular vesicles (EVs) may be involved in the propagation of inflammatory responses and modulation of cell-to-cell communication. However, a complete understanding of how EVs are regulated by drugs of abuse, such as cocaine, is still lacking. FINDINGS Cocaine exposure reduced human microglial cell (HMC3) viability, decreased expression of CD63 and dectin-1 in HMC3-derived EVs, and increased expression of the apoptotic marker histone H2A.x in HMC3-derived EVs. CONCLUSION Cocaine impacts HMC3 cell viability and specific EV protein expression, which could disrupt cellular signaling and cell-to-cell communication.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, University of Alabama, Birmingham, AL, United States
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
| | - Brian Sims
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
12
|
Zhu F, Feng D, Ding C, Zhang T, Chen J, Yu Z, Zhao L, Xu Y, Zhu W, Gong J. Fungal Dysbiosis Aggravates Pouchitis in a Rat Model of Ileal Pouch Anal Anastomosis. Inflamm Bowel Dis 2020; 26:1831-1842. [PMID: 32608473 DOI: 10.1093/ibd/izaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although the interaction between gut microbiota and pouchitis after ileal pouch anal anastomosis (IPAA) for ulcerative colitis (UC) has been confirmed, evidence of commensal mycobiota in the etiology of pouchitis is still lacking. This study aimed to investigate the role of fungi in the pathogenesis of pouchitis. METHODS Fecal samples were collected from UC patients with or without pouchitis after IPAA. Experimental pouchitis was induced by 5% dextran sulfate sodium for 7 consecutive days in a rat model of IPAA. Fungal dysbiosis was induced by 0.5% fluconazole (Flu), and commensal fungal recognition through dectin-1 was blocked by 5% laminarin. Fecal fungal composition was analyzed using internal transcribed spacer 2 sequencing. Severity of pouchitis and activation of the CARD9-nuclear factor kappa-B pathway was determined among different groups. RESULTS Patients with pouchitis had a lower alpha (α) diversity in mycobiota composition and a higher abundance of Saccharomyces at the genus level compared with those with a normal pouch. In the rat model of pouchitis, Flu treatment decreased fungal burden but induced fungal dysbiosis, characterized by increased α diversity, a decreased relative abundance of Kazachstania, and increased Polythrincium and Saccharomyces. In addition, Flu treatment worsened dextran sulfate sodium pouchitis, as indicated by increased mortality, weight loss, higher histological score, and CD4+ cell infiltration. Laminarin also increased the severity of pouchitis. In the Flu and laminarin groups, the expression of interferon-γ, tumor necrosis factor-α, CARD9, and phosphorylated nuclear factor kappa-B inhibitor alpha was decreased. CONCLUSIONS Patients with pouchitis had altered fungal composition. Fungal dysbiosis or recognition deficiency by the host may exacerbate experimental pouchitis. Strategies targeting commensal mycobiota may provide therapeutic potential against pouchitis, especially for antibiotic-refractory patients.
Collapse
Affiliation(s)
- Feng Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dengyu Feng
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Ding
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tenghui Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Zeqian Yu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Zhao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Xu
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Gaojian T, Dingfei Q, Linwei L, Xiaowei W, Zheng Z, Wei L, Tong Z, Benxiang N, Yanning Q, Wei Z, Jian C. Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway. Cell Death Discov 2020; 6:97. [PMID: 33083018 PMCID: PMC7538575 DOI: 10.1038/s41420-020-00333-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disease; however, there is no effective treatment for spinal cord injury. Neuroinflammation involves the activation of resident microglia and the infiltration of macrophages is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Parthenolide (PN) has been reported to exert anti-inflammatory effects in fever, migraines, arthritis, and superficial inflammation; however, the role of PN in SCI therapeutics has not been clarified. In this study, we showed that PN could improve the functional recovery of spinal cord in mice as revealed by increased BMS scores and decreased cavity of spinal cord injury in vivo. Immunofluorescence staining experiments confirmed that PN could promote axonal regeneration, increase myelin reconstitution, reduce chondroitin sulfate formation, inhibit scar hyperplasia, suppress the activation of A1 neurotoxic reactive astrocytes and facilitate shift from M1 to M2 polarization of microglia/macrophages. To verify how PN exerts its effects on microglia/macrophages polarization, we performed the mechanism study in vitro in microglia cell line BV-2. PN could significantly reduce M1 polarization in BV2 cells and partially rescue the decrease in the expression of M2 phenotype markers of microglia/macrophage induced by LPS, but no significant effect on M2 polarization stimulated with IL-4 was observed. Further study demonstrated PN inhibited NF-κB signal pathway directly or indirectly, and suppressed activation of signal transducer and activator of transcription 1 or 3 (STAT1/3) via reducing the expression of HDAC1 and subsequently increasing the levels of STAT1/3 acetylation. Overall, our study illustrated that PN may be a promising strategy for traumatic SCI.
Collapse
Affiliation(s)
- Tao Gaojian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
- Department of Pain Management, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 China
| | - Qian Dingfei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Li Linwei
- Department of Orthopedic, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 China
| | - Wang Xiaowei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhou Zheng
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Liu Wei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhu Tong
- Department of Pain Management, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 China
| | - Ning Benxiang
- Department of Pain Management, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 China
| | - Qian Yanning
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhou Wei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chen Jian
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
14
|
Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans. PLoS Pathog 2020; 16:e1008328. [PMID: 32936835 PMCID: PMC7521896 DOI: 10.1371/journal.ppat.1008328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/28/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022] Open
Abstract
Candida albicans cells depend on the energy derived from amino acid catabolism to induce and sustain hyphal growth inside phagosomes of engulfing macrophages. The concomitant deamination of amino acids is thought to neutralize the acidic microenvironment of phagosomes, a presumed requisite for survival and initiation of hyphal growth. Here, in contrast to an existing model, we show that mitochondrial-localized NAD+-dependent glutamate dehydrogenase (GDH2) catalyzing the deamination of glutamate to α-ketoglutarate, and not the cytosolic urea amidolyase (DUR1,2), accounts for the observed alkalization of media when amino acids are the sole sources of carbon and nitrogen. C. albicans strains lacking GDH2 (gdh2-/-) are viable and do not extrude ammonia on amino acid-based media. Environmental alkalization does not occur under conditions of high glucose (2%), a finding attributable to glucose-repression of GDH2 expression and mitochondrial function. Consistently, inhibition of oxidative phosphorylation or mitochondrial translation by antimycin A or chloramphenicol, respectively, prevents alkalization. GDH2 expression and mitochondrial function are derepressed as glucose levels are lowered from 2% (~110 mM) to 0.2% (~11 mM), or when glycerol is used as primary carbon source. Using time-lapse microscopy, we document that gdh2-/- cells survive, filament and escape from primary murine macrophages at rates indistinguishable from wildtype. In intact hosts, such as in fly and murine models of systemic candidiasis, gdh2-/- mutants are as virulent as wildtype. Thus, although Gdh2 has a critical role in central nitrogen metabolism, Gdh2-catalyzed deamination of glutamate is surprisingly dispensable for escape from macrophages and virulence. Consistently, using the pH-sensitive dye (pHrodo), we observed no significant difference between wildtype and gdh2-/- mutants in phagosomal pH modulation. Following engulfment of fungal cells, the phagosomal compartment is rapidly acidified and hyphal growth initiates and sustained under consistently acidic conditions within phagosomes. Together, our results demonstrate that amino acid-dependent alkalization is not essential for hyphal growth, survival in macrophages and hosts. An accurate understanding of the microenvironment within macrophage phagosomes and the metabolic events underlying the survival of phagocytized C. albicans cells and their escape are critical to understanding the host-pathogen interactions that ultimately determine the pathogenic outcome. Candida albicans is a commensal component of the human microflora and the most common fungal pathogen. The incidence of candidiasis is low in healthy populations. Consequently, environmental factors, such as interactions with innate immune cells, play critical roles. Macrophages provide the first line of defense and rapidly internalize C. albicans cells within specialized intracellular compartments called phagosomes. The microenvironment within phagosomes is dynamic and ill defined, but has a low pH, and contains potent hydrolytic enzymes and oxidative stressors. Despite the inhospitable conditions, phagocytized C. albicans cells catabolize amino acids to obtain energy to survive and grow. Here, we have critically examined amino acid catabolism and ammonia extrusion in C. albicans, the latter is thought to neutralize the phagosomal pH and induce the switch of morphologies from round “yeast-like” to elongated hyphal cells that can pierce the phagosomal membrane leading to escape from macrophages. We report that Gdh2, which catalyzes the deamination of glutamate to α-ketoglutarate, is responsible for the observed environmental alkalization when C. albicans catabolize amino acids in vitro. However, the phagosomes formed as macrophages engulf wildtype or gdh2-/- cells rapidly become acidified, indicating that Gdh2 has no apparent role in modulating phagosomal pH. Strikingly, and similar to wildtype cells, gdh2-/- cells initiate and sustain hyphal growth enabling them to escape from macrophages. Also, Gdh2 is dispensable for virulent growth in systemic models of infection. These results provide new insights into host-pathogen interactions that determine the pathogenic outcome of C. albicans infections.
Collapse
|
15
|
Hernández-Chávez MJ, Franco B, Clavijo-Giraldo DM, Hernández NV, Estrada-Mata E, Mora-Montes HM. Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction. FEMS Yeast Res 2019; 18:4989128. [PMID: 29718196 DOI: 10.1093/femsyr/foy053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Candida tropicalis is an opportunistic fungal pathogen responsible for mucosal and systemic infections. The cell wall is the initial contact point between a fungal cell and the host immune system, and mannoproteins are important components that play key roles when interacting with host cells. In Candida albicans, mannans are modified by mannosyl-phosphate moieties, named phosphomannans, which can work as molecular scaffolds to synthesize β1,2-mannooligosaccharides, and MNN4 is a positive regulator of the phosphomannosylation pathway. Here, we showed that C. tropicalis also displays phosphomannans on the cell surface, but the amount of this cell wall component varies depending on the fungal strain. We also identified a functional ortholog of CaMNN4 in C. tropicalis. Disruption of this gene caused depletion of phosphomannan content. The C. tropicalis mnn4Δ did not show defects in the ability to stimulate cytokine production by human mononuclear cells but displayed virulence attenuation in an insect model of candidiasis. When the mnn4Δ-macrophage interaction was analyzed, results showed that presence of cell wall phosphomannan was critical for C. tropicalis phagocytosis. Finally, our results strongly suggest a differential role for phosphomannans during phagocytosis of C. albicans and C. tropicalis.
Collapse
Affiliation(s)
- Marco J Hernández-Chávez
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Bernardo Franco
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Diana M Clavijo-Giraldo
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Nahúm V Hernández
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Eine Estrada-Mata
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| |
Collapse
|
16
|
Noailles A, Kutsyr O, Maneu V, Ortuño-Lizarán I, Campello L, de Juan E, Gómez-Vicente V, Cuenca N, Lax P. The Absence of Toll-Like Receptor 4 Mildly Affects the Structure and Function in the Adult Mouse Retina. Front Cell Neurosci 2019; 13:59. [PMID: 30873007 PMCID: PMC6401850 DOI: 10.3389/fncel.2019.00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
The innate immune Toll-like receptor (TLR) family plays essential roles in cell proliferation, survival and function of the central nervous system. However, the way in which TLRs contribute to the development and maintenance of proper retinal structure and function remains uncertain. In this work, we assess the effect of genetic TLR4 deletion on the morphology and function of the retina in mice. Visual acuity and retinal responsiveness were evaluated in TLR4 knockout and wild type C57BL/6J control mice by means of an optomotor test and electroretinography, respectively, from P20 to P360. Retinal structure was also analyzed in both strains using confocal and electron microscopy. ERG data showed impaired retinal responsiveness in TLR4 KO mice, in comparison to wild type animals. The amplitudes of the scotopic a-waves were less pronounced in TLR4-deficient mice than in wild-type animals from P30 to P360, and TLR4 KO mice presented scotopic b-wave amplitudes smaller than those of age-matched control mice at all ages studied (P20 to P360). Visual acuity was also relatively poorer in TLR4 KO as compared to C57BL/6J mice from P20 to P360, with significant differences at P30 and P60. Immunohistochemical analysis of retinal vertical sections showed no differences between TLR4 KO and C57BL/6J mice, in terms of either photoreceptor number or photoreceptor structure. Horizontal cells also demonstrated no morphological differences between TLR4 KO and wild-type mice. However, TLR4 KO mice exhibited a lower density of bipolar cells (15% less at P30) and thus fewer bipolar cell dendrites than the wild type control mouse, even though both confocal and electron microscopy images showed no morphologic abnormalities in the synaptic contacts between the photoreceptors and second order neurons. Microglial cell density was significantly lower (26% less at P30) in TLR4 KO mice as compared to wild-type control mice. These results suggest that TLR4 deletion causes functional alterations in terms of visual response and acuity, probably through the loss of bipolar cells and microglia, but this receptor is not essential for the processing of visual information in the retina.
Collapse
Affiliation(s)
- Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Emilio de Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.,Institute Ramón Margalef, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
17
|
Lipoteichoic acid anchor triggers Mincle to drive protective immunity against invasive group A Streptococcus infection. Proc Natl Acad Sci U S A 2018; 115:E10662-E10671. [PMID: 30352847 DOI: 10.1073/pnas.1809100115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes a range of diseases, including fatal invasive infections. However, the mechanisms by which the innate immune system recognizes GAS are not well understood. We herein report that the C-type lectin receptor macrophage inducible C-type lectin (Mincle) recognizes GAS and initiates antibacterial immunity. Gene expression analysis of myeloid cells upon GAS stimulation revealed the contribution of the caspase recruitment domain-containing protein 9 (CARD9) pathway to the antibacterial responses. Among receptors signaling through CARD9, Mincle induced the production of inflammatory cytokines, inducible nitric oxide synthase, and reactive oxygen species upon recognition of the anchor of lipoteichoic acid, monoglucosyldiacylglycerol (MGDG), produced by GAS. Upon GAS infection, Mincle-deficient mice exhibited impaired production of proinflammatory cytokines, severe bacteremia, and rapid lethality. GAS also possesses another Mincle ligand, diglucosyldiacylglycerol; however, this glycolipid interfered with MGDG-induced activation. These results indicate that Mincle plays a central role in protective immunity against acute GAS infection.
Collapse
|
18
|
Goyal S, Castrillón-Betancur JC, Klaile E, Slevogt H. The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front Immunol 2018; 9:1261. [PMID: 29915598 PMCID: PMC5994417 DOI: 10.3389/fimmu.2018.01261] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fungi, usually present as commensals, are a major cause of opportunistic infections in immunocompromised patients. Such infections, if not diagnosed or treated properly, can prove fatal. However, in most cases healthy individuals are able to avert the fungal attacks by mounting proper antifungal immune responses. Among the pattern recognition receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal immunity. CLRs can recognize carbohydrate ligands, such as β-glucans and mannans, which are mainly found on fungal cell surfaces. They induce proinflammatory immune reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production from innate effector cells, as well as activation of adaptive immunity via Th17 responses. CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can recognize many disease-causing fungi and also collaborate with each other as well as other PRRs in mounting a fungi-specific immune response. Mutations in these receptors affect the host response and have been linked to a higher risk in contracting fungal infections. This review focuses on how CLRs on various immune cells orchestrate the antifungal response and on the contribution of single nucleotide polymorphisms in these receptors toward the risk of developing such infections.
Collapse
Affiliation(s)
- Surabhi Goyal
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Juan Camilo Castrillón-Betancur
- Septomics Research Center, Jena University Hospital, Jena, Germany.,International Leibniz Research School for Microbial and Biomolecular Interactions, Leibniz Institute for Natural Product Research and Infection Biology/Hans Knöll Institute, Jena, Germany
| | - Esther Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
19
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
20
|
Xu S, Shinohara ML. Tissue-Resident Macrophages in Fungal Infections. Front Immunol 2017; 8:1798. [PMID: 29312319 PMCID: PMC5732976 DOI: 10.3389/fimmu.2017.01798] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022] Open
Abstract
Invasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
21
|
Martínez-Álvarez JA, Pérez-García LA, Mellado-Mojica E, López MG, Martínez-Duncker I, Lópes-Bezerra LM, Mora-Montes HM. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Front Microbiol 2017; 8:843. [PMID: 28539922 PMCID: PMC5423980 DOI: 10.3389/fmicb.2017.00843] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes.
Collapse
Affiliation(s)
- José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| | - Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| | - Erika Mellado-Mojica
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Mercedes G López
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicada, Universidad Autónoma del Estado de MorelosCuernavaca, Mexico
| | - Leila M Lópes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro StateRio de Janeiro, Brazil
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| |
Collapse
|
22
|
Maneu V, Noailles A, Gómez-Vicente V, Carpena N, Cuenca N, Gil ML, Gozalbo D. Immunosuppression, peripheral inflammation and invasive infection from endogenous gut microbiota activate retinal microglia in mouse models. Microbiol Immunol 2017; 60:617-25. [PMID: 27466067 DOI: 10.1111/1348-0421.12405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 11/29/2022]
Abstract
Although its actual role in the progression of degenerative processes is not fully known, the persistent activated state of retinal microglia and the concurrent secretion of inflammatory mediators may contribute to neuronal death and permanent vision loss. Our objective was to determine whether non-ocular conditions (immunosuppression and peripheral inflammation) could lead to activation of retinal microglia. Mouse models of immunosuppression induced by cyclophosphamide and/or peripheral inflammation by chemically induced sublethal colitis in C57BL/6J mice were used. Retinal microglia morphology, spatial distribution and complexity, as well as MHCII and CD11b expression levels were determined by flow cytometry and confocal immunofluorescence analysis with anti-CD11b, anti-IBA1 and anti-MHCIIRT1B antibodies. Retinas of mice with double treatment showed changes in microglial morphology, spatial distribution and expression levels of CD11b and MHCII. These effects were higher than those observed with any treatment separately. In addition, we also observed in these mice: (i) translocation of endogenous bacteria from gut to liver, and (ii) upregulation of TLR2 expression in retinal microglia. Using a mouse model of immunosuppression and gut colonization by Candida albicans, translocation of fungal cells was confirmed to occur in wild type and, to a higher extent, in TLR2 KO mice, which are more susceptible to fungal invasion; interestingly microglial changes were also higher in TLR2 KO mice. Hence, non-ocular injuries (immunosuppression, peripheral inflammation and invasive infection from endogenous gut microbiota) can activate retinal microglia and therefore could affect the progression of neurodegenerative disorders and should be taken into account to improve therapeutic options.
Collapse
Affiliation(s)
- Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Pabellon 13, Carretera San Vicente del Raspeig s/n, 03690-San Vicente del Raspeig, Alicante, Spain
| | - Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Pabellón 13, Carretera San Vicente del Raspeig s/n, 03690-San Vicente del Raspeig, Alicante, 46100-Burjassot, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Pabellon 13, Carretera San Vicente del Raspeig s/n, 03690-San Vicente del Raspeig, Alicante, Spain
| | - Nuria Carpena
- Department of Microbiology and Ecology, University of Valencia, Facultad de Farmacia, Avda Vicent Andrés Estellés s/n, 46100-Burjassot, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Pabellón 13, Carretera San Vicente del Raspeig s/n, 03690-San Vicente del Raspeig, Alicante, 46100-Burjassot, Spain
| | - M Luisa Gil
- Department of Microbiology and Ecology, University of Valencia, Facultad de Farmacia, Avda Vicent Andrés Estellés s/n, 46100-Burjassot, Spain
| | - Daniel Gozalbo
- Department of Microbiology and Ecology, University of Valencia, Facultad de Farmacia, Avda Vicent Andrés Estellés s/n, 46100-Burjassot, Spain.
| |
Collapse
|
23
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
24
|
Koutsouras GW, Ramos RL, Martinez LR. Role of microglia in fungal infections of the central nervous system. Virulence 2016; 8:705-718. [PMID: 27858519 DOI: 10.1080/21505594.2016.1261789] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most fungi are capable of disseminating into the central nervous system (CNS) commonly being observed in immunocompromised hosts. Microglia play a critical role in responding to these infections regulating inflammatory processes proficient at controlling CNS colonization by these eukaryotic microorganisms. Nonetheless, it is this inflammatory state that paradoxically yields cerebral mycotic meningoencephalitis and abscess formation. As peripheral macrophages and fungi have been investigated aiding our understanding of peripheral disease, ascertaining the key interactions between fungi and microglia may uncover greater abilities to treat invasive fungal infections of the brain. Here, we present the current knowledge of microglial physiology. Due to the existing literature, we have described to greater extent the opportunistic mycotic interactions with these surveillance cells of the CNS, highlighting the need for greater efforts to study other cerebral fungal infections such as those caused by geographically restricted dimorphic and rare fungi.
Collapse
Affiliation(s)
- George W Koutsouras
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Raddy L Ramos
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Luis R Martinez
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| |
Collapse
|
25
|
Saric A, Grinstein S, Freeman SA. Measurement of Autolysosomal pH by Dual-Wavelength Ratio Imaging. Methods Enzymol 2016; 588:15-29. [PMID: 28237098 DOI: 10.1016/bs.mie.2016.09.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cellular components sequestered by autophagosomes during macroautophagy must be degraded and their components recycled in order to maintain homeostasis. To this end cells orchestrate the fusion of autophagosomes with lysosomes, degradative organelles that are rich in hydrolases. Most of the lysosomal enzymes function optimally at low pH, and products of macromolecular catabolism are cotransported with protons across the autolysosomal membrane. These functions are facilitated by the ability of lysosomes to pump protons inward, acidifying their lumen. Clearly, proper homeostasis of the luminal pH is crucial for autolysosomal function. We describe a method for the measurement of the absolute pH of individual autolysosomes in live cells. This technique involves measurement of the fluorescence of a pH-sensitive probe initially delivered to lysosomes and subsequently determined to have reached autolysosomes. By measuring the fluorescence at two separate wavelengths and calculating their ratio, potential artifacts introduced by photobleaching or by changes in autolysosome size, shape, or positioning are minimized. Combining such ratio determinations with an in situ calibration procedure enables absolute measurements of pH, which are superior to the qualitative estimates obtained with fluorescent weak bases such as LysoTracker.
Collapse
Affiliation(s)
- A Saric
- Ryerson University, Toronto, ON, Canada
| | - S Grinstein
- Hospital for Sick Children, Toronto, ON, Canada; Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada.
| | - S A Freeman
- Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
26
|
Inhibition of Dectin-1 Signaling Ameliorates Colitis by Inducing Lactobacillus-Mediated Regulatory T Cell Expansion in the Intestine. Cell Host Microbe 2016; 18:183-97. [PMID: 26269954 DOI: 10.1016/j.chom.2015.07.003] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/10/2015] [Accepted: 07/07/2015] [Indexed: 02/07/2023]
Abstract
Dectin-1, the receptor for β-glucans, protects the host against fungal infection; however, its role in intestinal immunity is incompletely understood. We found that Dectin-1-deficient (Clec7a(-/-)) mice were refractory to both dextran sodium sulfate (DSS)- and CD45RB(high)CD4(+) T cell-induced colitis, and that this resistance was associated with an increase in regulatory T (Treg) cells. The proportion of lactobacilli, especially Lactobacillus murinus, in the commensal microflora was increased in Clec7a(-/-) mouse colons, and accompanied by a decrease in antimicrobial peptides induced by Dectin-1 signaling. L. murinus colonization increased Treg cells in the colon. Oral administration of laminarin, a Dectin-1 antagonist, suppressed the development of DSS-colitis, associated with an increase of L. murinus and Treg cells. Human patients with inflammatory bowel disease were found to have a decreased proportion of closely related Lactobacillus species. These observations suggest that Dectin-1 regulates the homeostasis of intestinal immunity by controlling Treg cell differentiation through modification of microbiota.
Collapse
|
27
|
Estrada-Mata E, Navarro-Arias MJ, Pérez-García LA, Mellado-Mojica E, López MG, Csonka K, Gacser A, Mora-Montes HM. Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Front Microbiol 2016; 6:1527. [PMID: 26793173 PMCID: PMC4710749 DOI: 10.3389/fmicb.2015.01527] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/18/2015] [Indexed: 01/30/2023] Open
Abstract
The systemic infections caused by members of the Candida parapsilosis complex are currently associated to high morbility and mortality rates, and are considered as relevant as those caused by Candida albicans. Since the fungal cell wall is the first point of contact with the host cells, here we performed a comparison of this organelle in members of the C. parapsilosis complex, and its relevance during interaction with human peripheral blood mononuclear cells (PBMCs). We found that the wall of the C. parapsilosis complex members is similar in composition, but differs to that from C. albicans, with less mannan content and more β-glucan and porosity levels. Furthermore, lectin-based analysis showed increased chitin and β1,3-glucan exposure at the surface of C. parapsilosis sensu lato when compared to C. albicans. Yeast cells of members of the C. parapsilosis complex stimulated more cytokine production by human PBMCs than C. albicans cells; and this significantly changed upon removal of O-linked mannans, indicating this wall component plays a significant role in cytokine stimulation by C. parapsilosis sensu lato. When inner wall components were exposed on the wall surface, C. parapsilosis sensu stricto and C. metapsilosis, but not C. orthopsilosis, stimulated higher cytokine production. Moreover, we found a strong dependency on β1,3-glucan recognition for the members of the C. parapsilosis complex, but not for live C. albicans cells; whereas TLR4 was required for TNFα production by the three members of the complex, and stimulation of IL-6 by C. orthopsilosis. Mannose receptor had a significant role during TNFα and IL-1β stimulation by members of the complex. Finally, we demonstrated that purified N- and O-mannans from either C. parapsilosis sensu lato or C. albicans are capable to block the recognition of these pathogens by human PBMCs. Together; our results suggest that the innate immune recognition of the members of the C. parapsilosis complex is differential of that reported for C. albicans. In addition, we propose that purified cell wall mannans can be used as antagonist to block specific receptors on innate immune cells.
Collapse
Affiliation(s)
- Eine Estrada-Mata
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| | - María J Navarro-Arias
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| | - Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| | - Erika Mellado-Mojica
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Mercedes G López
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Katalin Csonka
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Attila Gacser
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| |
Collapse
|
28
|
Volden TA, Reyelts CD, Hoke TA, Arikkath J, Bonasera SJ. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia. J Neuroimmune Pharmacol 2015; 10:655-65. [PMID: 26260923 DOI: 10.1007/s11481-015-9628-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.
Collapse
Affiliation(s)
- T A Volden
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - C D Reyelts
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - T A Hoke
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - J Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - S J Bonasera
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,University of Nebraska Medical Center, 3028 Durham Research Center II, Omaha, NE, 68198-5039, USA.
| |
Collapse
|
29
|
|
30
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
31
|
The role of Human Dectin-1 Y238X Gene Polymorphism in recurrent vulvovaginal candidiasis infections. Mol Biol Rep 2014; 41:6763-8. [PMID: 25008994 DOI: 10.1007/s11033-014-3562-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is defined as having four or more symptomatic vulvovaginal candidiasis (VVC) attacks within a year. This study aimed to investigate whether Human Dectin-1 Y238X Gene Polymorphism plays a role in RVVC pathogenesis. In order to examine and explore this aim, an experimental study was undergone. The clinical study design was conducted with 50 women diagnosed with RVVC and had four or more symptomatic VVC attacks who were included in the experimental group; while 50 women who did not have previous RVVC history and diagnosis and did not have vaginal discharge and itching in the past year were included in the control group. Blood samples were collected from these patients and transferred to EDTA tubes, to investigate the Dectin-1 Y238X gene polymorphism, and stored at -80°. When Dectin-1 genotypes were compared, there was no significant difference between the two groups (p = 0.452, p = 0.615, p = 0.275). History of familial RVVC was significantly higher in the experimental group (p = 0.001). When the multivariate analysis was used to evaluate factors that could determine RVVC frequency, history of familial RVVC was found to increase the frequency of RVVC attacks by 3.3 units. This study is the first-of-its-kind to investigate the correlation between Dectin-1 Y238X polymorphism, which has not been previously studied in the Turkish population, and RVVC. The result of this study suggests that there is no correlation between this polymorphism and RVVC.
Collapse
|
32
|
Yan J, Wu B, Huang B, Huang S, Jiang S, Lu F. Dectin-1-CD37 association regulates IL-6 expression during Toxoplasma gondii infection. Parasitol Res 2014; 113:2851-60. [PMID: 24870248 DOI: 10.1007/s00436-014-3946-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii can establish chronic infection and is characterized by the formation of tissue cysts in the brain. Although T. gondii can infect any kind of nucleated cells, macrophages and related mononuclear phagocytes are its preferred targets in vivo. Microglial cells are the resident macrophages in the central nervous system. It has been reported that CD37, a tetraspanin molecule, is expressed exclusively in the immune system; Dectin-1, an important pattern-recognition receptor, is expressed on the surface of murine primary microglia. The Dectin-1-CD37 association can affect Dectin-1-mediated IL-6 secretion. However, there is no report concerning the relationship among the expressions of Dectin-1, IL-6, and CD37 during T. gondii infection. In the present study, Kunming outbred mice were infected with Prugniaud (Pru), a type II strain of T. gondii by oral gavage, and BV-2 murine microglial cells were cocultured with RH tachyzoites of T. gondii. By H&E and immunohistochemical staining, the results showed that marked inflammation and a significantly increased activation of Iba1-positive microglial cells were observed in the brain tissues of mice infected with T. gondii Pru strain at 5 weeks postinfection (p.i.) in comparison of uninfected controls. Using quantitative real-time PCR detection, Dectin-1 messenger RNA (mRNA) expressions were significantly upregulated in both brains at 3 (P < 0.01), 5 (P < 0.01), 7 (P < 0.01), and 9 (P < 0.05) weeks p.i. and spleens at 3, 5, 7, and 9 weeks p.i. (P < 0.01). IL-6 expressions showed similar dynamic tendency as that of Dectin-1 in both the brains and spleens at the same times in comparison of uninfected controls; CD37 expressions were significantly increased in the brain tissues at all the times (P < 0.01) and no significant differences in the spleens at 3 weeks p.i. but significantly downregulated in the spleens at 5, 7, and 9 weeks p.i. (P < 0.01). In vitro study showed that compared with uninfected controls, the mRNA expressions of Dectin-1 at 2, 4, 8, and 10 h (P < 0.01); IL-6 at 8 and 10 h (P < 0.01); and CD37 at 4 (P < 0.05), 8 (P < 0.01), and 10 h (P < 0.01) were significantly upregulated in BV-2 murine microglial cells stimulated with RH tachyzoites of T. gondii. Our data suggested that the expression of Dectin-1 was positively correlated with that of IL-6 in toxoplasmic encephalitis (TE) mouse model; Dectin-1 interaction with tetraspanin CD37 regulated IL-6 expression in both the brain tissues of TE mouse model and in the T. gongdii-infected BV-2 murine microglial cells.
Collapse
Affiliation(s)
- Junping Yan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | | | | | | | | | | |
Collapse
|