1
|
Morrison JM, Elshahed MS, Youssef NH. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci Rep 2016; 6:29217. [PMID: 27381262 PMCID: PMC4933900 DOI: 10.1038/srep29217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023] Open
Abstract
The anaerobic fungus Orpinomyces strain C1A is capable of growth on various types of lignocellulosic substrates, and harbors an impressive reservoir of carbohydrate active enzymes (CAZymes). Using a minimum enzyme cocktail strategy, we constituted a four-component lignocellulolytic cocktail derived from highly transcribed C1A, and evaluated its efficacy against pretreated corn stover and switchgrass. Hydrolysis yields ranged between 65–77.4%, depending on the lignocellulosic substrate and pretreatment applied. Addition of a highly expressed anaerobic fungal swollenin improved hydrolysis yields by up to 7%. Compared to the commercial cocktail CTec2, these anaerobic fungal cocktails provided comparable or slightly lower hydrolysis yields. Further, the differences in efficacy between commercial and anaerobic cocktails were often only realized after extended (168 hr) incubations. Under certain conditions, the hydrolysis yields of the anaerobic fungal cocktail was slightly superior to that realized by CTec2. We attribute the observed high hydrolysis yields to the high specific activity and affinity of the individual enzymes of the cocktail, as well as the high level of synergy and multi-functionality observed in multiple components. Collectively, this effort provides a novel platform for constructing highly effective enzymes for biofuel production and represents the first lignocellulolytic enzyme cocktail created from anaerobic fungal enzymes.
Collapse
Affiliation(s)
- Jessica M Morrison
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
2
|
Catalytic efficiency diversification of duplicate β-1,3-1,4-glucanases from Neocallimastix patriciarum J11. Appl Environ Microbiol 2012; 78:4294-300. [PMID: 22492445 DOI: 10.1128/aem.07473-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four types of β-1,3-1,4 glucanase (β-glucanase, EC 3.2.1.73) genes, designated bglA13, bglA16, bglA51, and bglM2, were found in the cDNA library of Neocallimastix patriciarum J11. All were highly homologous with each other and demonstrated a close phylogenetic relationship with and a similar codon bias to Streptococcus equinus. The presence of expansion and several predicted secondary structures in the 3' untranslated regions (3'UTRs) of bglA16 and bglM2 suggest that these two genes were duplicated recently, whereas bglA13 and bglA16, which contain very short 3'UTRs, were replicated earlier. These findings indicate that the β-glucanase genes from N. patriciarum J11 may have arisen by horizontal transfer from the bacterium and subsequent duplication in the rumen fungus. β-Glucanase genes of Streptococcus equinus, Ruminococcus albus 7, and N. patriciarum J11 were cloned and expressed by Escherichia coli. The recombinant β-glucanases cloned from S. equinus, R. albus 7, and N. patriciarum J11 were endo-acting and had similar substrate specificity, but they demonstrated different properties in other tests. The specific activities and catalytic efficiency of the bacterial β-glucanases were also significantly lower than those of the fungal β-glucanases. Our results also revealed that the activities and some characteristics of enzymes were changed during the horizontal gene transfer event. The specific activities of the fungal β-glucanases ranged from 26,529 to 41,209 U/mg of protein when barley-derived β-glucan was used as the substrate. They also demonstrated similar pH and temperature optima, substrate specificity, substrate affinity, and hydrolysis patterns. Nevertheless, BglA16 and BglM2, two recently duplicated β-glucanases, showed much higher k(cat) values than others. These results support the notion that duplicated β-glucanase genes, namely, bglA16 and bglM2, increase the reaction efficiency of β-glucanases and suggest that the catalytic efficiency of β-glucanase is likely to be a criterion determining the evolutionary fate of duplicate forms in N. patriciarum J11.
Collapse
|
3
|
Jin X, Meng N, Xia LM. Expression of an endo-β-1,4-glucanase gene from orpinomyces PC-2 in Pichia pastoris. Int J Mol Sci 2011; 12:3366-80. [PMID: 21686190 PMCID: PMC3116196 DOI: 10.3390/ijms12053366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/03/2011] [Accepted: 05/23/2011] [Indexed: 12/03/2022] Open
Abstract
The endo-β-1,4-glucanase gene celE from the anaerobic fungus Orpinomyces PC-2 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K, and integrated into the genome of a methylotrophic yeast P. pastoris GS115 by electroporation. The strain with highest endo-β-1,4-glucanase activity was selected and designed as P. pastoris egE, and cultivated in shaking flasks. The culture supernatant was assayed by SDS-polyacrylamide gel electrophoresis and showed a single band at about 52 kDa. Furthermore, the recombinant P. pastoris egE was proved to possess the ability to utilize sodium carboxymethyl cellulose as a carbon source. The recombinant endoglucanase produced by P. pastoris showed maximum activity at pH 6.0 and temperature 45 °C, indicating it was a mesophilic neutral endo-β-1,4-glucanase, suitable for denim biofinishing/washing. Further research was carried out in suitable fermentation medium in shaking flasks. The most favorable methanol addition concentration was discussed and given as 1.0%. After methanol induction for 96 h, the endo-β-1,4-glucanase activity reached 72.5 IU mL−1. This is the first report on expression and characterization of endo-β-1,4-glucanase from Orpinomyces in P. pastoris. The endo-β-1,4-glucanase secreted by recombinant P. pastoris represents an attractive potential for both academic research and textile industry application.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou 310027, China; E-Mails: (X.J.); (N.M.)
| | | | | |
Collapse
|
4
|
Heterologous expression of an endo-β-1,4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0774-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 2009; 5:578-95. [PMID: 19774110 PMCID: PMC2748470 DOI: 10.7150/ijbs.5.578] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/02/2009] [Indexed: 11/28/2022] Open
Abstract
The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.
Collapse
Affiliation(s)
- Mehdi Dashtban
- 1. Biorefining Research Initiative, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| | - Heidi Schraft
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| | - Wensheng Qin
- 1. Biorefining Research Initiative, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
- 2. Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, Canada, P7B 5E1
| |
Collapse
|
6
|
Ljungdahl LG. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 2008; 1125:308-21. [PMID: 18378601 DOI: 10.1196/annals.1419.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anaerobic fungi, first described in 1975 by Orpin, live in close contact with bacteria and other microorganisms in the rumen and caecum of herbivorous animals, where they digest ingested plant food. Seventeen distinct anaerobic fungi belonging to five different genera have been described. They have been found in at least 50 different herbivorous animals. Anaerobic fungi do not possess mitochondria, but instead have hydrogenosomes, which form hydrogen and carbon dioxide from pyruvate and malate during fermentation of carbohydrates. In addition, they are very oxygen- and temperature-sensitive, and their DNA has an unusually high AT content of from 72 to 87 mol%. My initial reason for studying anaerobic fungi was because they solubilize lignocellulose and produce all enzymes needed to efficiently hydrolyze cellulose and hemicelluloses. Although some of these enzymes are found free in the medium, most of them are associated with cellulosomal and polycellulosomal complexes, in which the enzymes are attached through fungal dockerins to scaffolding proteins; this is similar to what has been found for cellulosomes from anaerobic bacteria. Although cellulosomes from anaerobic fungi share many properties with cellulosomes of anaerobic cellulolytic bacteria and have comparable structures, their structures differ in their amino acid sequences. I discuss some features of the cellulosome of the anaerobic fungus Orpinomyces sp. PC-2 and some possible uses of its enzymes in industrial settings.
Collapse
Affiliation(s)
- Lars G Ljungdahl
- Department of Biochemistry and Molecular Biology, Fred C. Davison Life Sciences Complex, University of Georgia, Athens, GA 30602-7229, USA.
| |
Collapse
|
7
|
Doi RH. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 2007; 1125:267-79. [PMID: 18096849 DOI: 10.1196/annals.1419.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cellulolytic activity of mesophilic bacteria and fungi is described, with special emphasis on the large extracellular enzyme complex called the cellulosome. The cellulosome is composed of a scaffolding protein, which is attached to various cellulolytic and hemicellulolytic enzymes, and this complex allows the organisms to degrade plant cell walls very efficently. The enzymes include a variety of cellulases, hemicellulases, and pectinases that work synergistically to degrade complex cell-wall molecules.
Collapse
Affiliation(s)
- Roy H Doi
- Section of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Tsai CF, Qiu X, Liu JH. A comparative analysis of two cDNA clones of the cellulase gene family from anaerobic fungus Piromyces rhizinflata. Anaerobe 2007; 9:131-40. [PMID: 16887700 DOI: 10.1016/s1075-9964(03)00087-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 05/12/2003] [Accepted: 05/30/2003] [Indexed: 11/28/2022]
Abstract
Cellulase family and some other glycosyl hydrolases of anaerobic fungi inhabiting the digestive tract of ruminants are believed to form an enzyme complex called cellulosome. Study of the individual component of cellulosome may shed light on understanding the organization of this complex and its functional mechanism. We have analysed the primary sequences of two cellulase clones, cel5B and cel6A, isolated from the cDNA library of ruminal fungus, Piromyces rhizinflata strain 2301. The deduced amino acid sequences of the catalytic domain of Cel5B, encoded by cel5B, showed homology with the subfamily 4 of the family 5 (subfamily 5(4)) of glycosyl hydrolases, while cel6A encoded Cel6A belonged to family 6 of glycosyl hydrolases. Phylogenetic tree analysis suggested that the genes of subfamily 5(4) glycosyl hydrolases of P. rhizinflata might have been acquired from rumen bacteria. Cel5B and Cel6A were modular enzymes consisting of a catalytic domain and dockerin domain(s), but not a cellulose binding domain. The occurrence of dockerin domains indicated that both enzymes were cellulosome components. The catalytic domain of the Cel5B (Cel5B') and Cel6A (Cel6A') recombinant proteins were purified. The optimal activity conditions with carboxymethyl cellulose (CMC) as the substrate were pH 6.0 and 50 degrees C for Cel5B', and pH 6.0 and 37-45 degrees C for Cel6A'. Both Cel5B' and Cel6A' exhibited activity against CMC, barley beta-glucan, Lichenan, and oat spelt xylan. Cel5B' could also hydrolyse p-nitrophenyl-beta-d-cellobioside, Avicel and filter paper while Cel6A' did not show any activity on these substrates. It is apparent that Cel6A' acted as an endoglucanase and Cel5B' possessed both endoglucanase and exoglucanase activities. No synergic effect was observed for these recombinant enzymes in vitro on Avicel and CMC.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Institute of BioAgricultural Sciences, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | | | | |
Collapse
|
9
|
Chen H, Hopper SL, Li XL, Ljungdahl LG, Cerniglia CE. Isolation of extremely AT-rich genomic DNA and analysis of genes encoding carbohydrate-degrading enzymes from Orpinomyces sp. strain PC-2. Curr Microbiol 2006; 53:396-400. [PMID: 17019643 PMCID: PMC5875115 DOI: 10.1007/s00284-006-0098-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
An effective method for extraction of intact genomic DNA from the extremely AT-rich polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has been developed. This procedure involves removal of glycogen-like storage polysaccharides using hexadecyltrimethylammonium bromide (CTAB) and high salt washes. The DNA was digested with various restriction enzymes and was suitable for use as a PCR template, for Southern blotting, and for genomic library construction. Genomic DNA analysis of three representative genes (celE, bgl1, and xynA) encoding (hemi-) cellulolytic enzymes of the fungus revealed multiplicity of family 5 endocellulase genes (celE-like), and family 1 beta-glucosidase genes (bgl1-like), but only a single copy of family 11 xylanase gene (xynA).
Collapse
Affiliation(s)
- Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, 72079, USA.
| | | | | | | | | |
Collapse
|
10
|
Ximenes EA, Chen H, Kataeva IA, Cotta MA, Felix CR, Ljungdahl LG, Li XL. A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules. Can J Microbiol 2006; 51:559-68. [PMID: 16175204 PMCID: PMC6448567 DOI: 10.1139/w05-033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anaerobic fungus Orpinomyces sp. strain PC-2 produces a broad spectrum of glycoside hydrolases, most of which are components of a high molecular mass cellulosomal complex. Here we report about a cDNA (manA) having 1924 bp isolated from the fungus and found to encode a polypeptide of 579 amino acid residues. Analysis of the deduced sequence revealed that it had a mannanase catalytic module, a family 1 carbohydrate-binding module, and a noncatalytic docking module. The catalytic module was homologous to aerobic fungal mannanases belonging to family 5 glycoside hydrolases, but unrelated to the previously isolated mannanases (family 26) of the anaerobic fungus Piromyces. No mannanase activity could be detected in Escherichia coli harboring a manA-containing plasmid. The manA was expressed in Saccharomyces cerevisiae and ManA was secreted into the culture medium in multiple forms. The purified extracellular heterologous mannanase hydrolyzed several types of mannan but lacked activity against cellulose, chitin, or beta-glucan. The enzyme had high specific activity toward locust bean mannan and an extremely broad pH profile. It was stable for several hours at 50 degrees C, but was rapidly inactivated at 60 degrees C. The carbohydrate-binding module of the Man A produced separately in E. coli bound preferably to insoluble lignocellulosic substrates, suggesting that it might play an important role in the complex enzyme system of the fungus for lignocellulose degradation.
Collapse
Affiliation(s)
- Eduardo A. Ximenes
- Laboratorio De Enzimologia, Departmento De Biologia Celular, Universidade De Brasilia, Asa Norte, Brasilia-DF-Brazil 70910-900, Brazil
| | - Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | - Irina A. Kataeva
- Department of Biochemistry and Molecular Biology and Center for Biological Resource Recovery, The University of Georgia, Athens, GA 30602-7229, USA
| | - Michael A. Cotta
- Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA/ARS, 1815 N. University Street, Peoria, IL 61604, USA
| | - Carlos R. Felix
- Laboratorio De Enzimologia, Departmento De Biologia Celular, Universidade De Brasilia, Asa Norte, Brasilia-DF-Brazil 70910-900, Brazil
| | - Lars G. Ljungdahl
- Department of Biochemistry and Molecular Biology and Center for Biological Resource Recovery, The University of Georgia, Athens, GA 30602-7229, USA
| | | |
Collapse
|
11
|
Yoda K, Toyoda A, Mukoyama Y, Nakamura Y, Minato H. Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A. Appl Environ Microbiol 2005; 71:5787-93. [PMID: 16204489 PMCID: PMC1265948 DOI: 10.1128/aem.71.10.5787-5793.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) was cloned and expressed in Escherichia coli, and its enzymatic properties were characterized. The cel5A gene consists of a 3,444-bp open reading frame and encodes a 1,148-amino-acid protein with a molecular mass of 127,047 Da. Cel5A is a modular enzyme consisting of an N-terminal signal peptide, two glycosyl hydrolase family 5 catalytic modules, two novel carbohydrate-binding modules (CBMs), two linker sequences, and a C-terminal sequence with an unknown function. The amino acid sequences of the two catalytic modules and the two CBMs are 94% and 73% identical to each other, respectively. Two regions that consisted of one CBM and one catalytic module were tandemly connected via a linker sequence. The CBMs did not exhibit significant sequence similarity with any other CBMs. Analyses of the hydrolytic activity of the recombinant Cel5A (rCel5A) comprising the CBMs and the catalytic modules showed that the enzyme is an endoglucanase with activities with carboxymethyl cellulose, lichenan, acid-swollen cellulose, and oat spelt xylan. To investigate the functions of the CBMs and the catalytic modules, truncated derivatives of rCel5A were constructed and characterized. There were no differences in the hydrolytic activities with various polysaccharides or in the hydrolytic products obtained from cellooligosaccharides between the two catalytic modules. Both CBMs had the same substrate affinity with intact rCel5A. Removal of the CBMs from rCel5A reduced the catalytic activities with various polysaccharides remarkably. These observations show that CBMs play an important role in the catalytic function of the enzyme.
Collapse
Affiliation(s)
- Kazutoyo Yoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
| | | | | | | | | |
Collapse
|
12
|
Ding SY, Lamed R, Bayer EA, Himmel ME. The bacterial scaffoldin: structure, function and potential applications in the nanosciences. GENETIC ENGINEERING 2004; 25:209-25. [PMID: 15260240 DOI: 10.1007/978-1-4615-0073-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Natural protein complexes may provide the best templates for nanometer-scale technology and new biomaterials. The bacterial cellulosome is becoming a well-understood multi-protein complex found in cellulolytic microorganisms. The scaffoldin subunits of the bacterial cellulosome function to organize and position other protein subunits into the complex. The scaffoldins can also serve as an attachment device for harnessing the cellulosome onto the cell surface and/or for its targeting to substrate. Biochemical and molecular biological evidence have identified a receptor/adaptor type of protein domain pair, called "cohesin and dockerin," which is responsible for cellulosome self-assembly. The recognition between cohesin and dockerin is generally type and/or species specific. More than 80 cohesin and 100 dockerin sequences have been found, mostly from anaerobic bacteria. X-ray crystallography and NMR have been used to determine the three-dimensional structures of representative cohesin and dockerin domains, respectively. The cohesin peptide is about 140 amino acids in length and highly conserved in sequence and domain structure. The dockerin domain comprises about 70 amino acids and contains two 22 amino acid duplicated regions, each of which includes an "F-hand" modification of the EF-hand calcium-binding motif. Biochemical evidence and site-directed mutagenesis have confirmed that the two F-hand motifs are required for function and calcium dependence; at least two amino acids from each motif are critical for cohesin-dockerin recognition. In this report, we review the structure and function of the scaffoldin of the bacterial cellulosome and emphasize a detailed sequence analysis of the cohesin and dockerin domains. We also speculate about potential applications in nanoscience that may be based on cohesin-dockerin recognition.
Collapse
Affiliation(s)
- Shi-You Ding
- National Bioenergy Center, National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401, USA
| | | | | | | |
Collapse
|
13
|
Harhangi HR, Akhmanova A, Steenbakkers PJM, Jetten MSM, van der Drift C, Op den Camp HJM. Genomic DNA analysis of genes encoding (hemi-)cellulolytic enzymes of the anaerobic fungus Piromyces sp. E2. Gene 2003; 314:73-80. [PMID: 14527719 DOI: 10.1016/s0378-1119(03)00705-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaerobic fungi contain more than one copy of genes encoding (hemi-)cellulases in their genome. The arrangement of these genes on the chromosomes was not known. A genomic DNA (gDNA) library of Piromyces sp. E2 was screened with different probes specific for (hemi-)cellulolytic enzymes. This screening resulted in three gDNA clones with genes encoding glycoside hydrolase enzymes of families 1 (beta-glucosidase), 6 (exoglucanase) and 26 (mannanase). Each clone contained two or more genes of the same family. Comparison of the gene copies on a clone revealed that they were highly homologous, and in addition, 54-75% of the substitutions was synonymous. One of the mannanase genes contained an intron. PCR with selected primers resulted in a gDNA clone with a new representative (cel9B) of glycoside hydrolase family 9 (endoglucanase). Comparison with cel9A revealed that cel9B had 67% homology on the nucleotide level. Furthermore, three introns were present. All results of this paper taken together provided evidence for duplications of (hemi-)cellulolytic genes, which resulted in clusters of almost identical genes arranged head-to-tail on the genome. In contrast to other eukaryotes, this phenomenon appears frequently in anaerobic fungi.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Devillard E, Bera-Maillet C, Flint HJ, Scott KP, Newbold CJ, Wallace RJ, Jouany JP, Forano E. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose. Biochem J 2003; 373:495-503. [PMID: 12693992 PMCID: PMC1223500 DOI: 10.1042/bj20021784] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Revised: 04/04/2003] [Accepted: 04/14/2003] [Indexed: 11/17/2022]
Abstract
A new xylanase gene, xyn10B, was isolated from the ruminal protozoan Polyplastron multivesiculatum and the gene product was characterized. XYN10B is the first protozoan family 10 glycoside hydrolase characterized so far and is a modular enzyme comprising a family 22 carbohydrate-binding module (CBM) preceding the catalytic domain. The CBM22 was shown to be a true CBM. It showed high affinity for soluble arabinoxylan and is the first example of a CBM22 that binds strongly to celluloses of various crystallinities. The enzymic properties of XYN10B were also analysed. Its optimal temperature and pH for activity were 39 degrees C and 7.0 respectively; these values being close to those of the ruminal ecosystem. The phylogenetic relationships between the XYN10B CBM22 or catalytic domain and related sequences from ruminal and non-ruminal bacteria and eukaryotes are reported. The xyn10B gene is shown to lack introns.
Collapse
Affiliation(s)
- Estelle Devillard
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Harhangi HR, Freelove ACJ, Ubhayasekera W, van Dinther M, Steenbakkers PJM, Akhmanova A, van der Drift C, Jetten MSM, Mowbray SL, Gilbert HJ, Op den Camp HJM. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:30-9. [PMID: 12850270 DOI: 10.1016/s0167-4781(03)00112-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic fungi possess high cellulolytic activities, which are organised in high molecular mass (HMM) complexes. Besides catalytic modules, the cellulolytic enzyme components of these complexes contain non-catalytic modules, known as dockerins, that play a key role in complex assembly. Screening of a genomic and a cDNA library of two Piromyces species resulted in the isolation of two clones containing inserts of 5.5 kb (Piromyces sp. E2) and 1.5 kb (Piromyces equi). Both clones contained the complete coding region of a glycoside hydrolase (GH) from family 6, consisting of a 20 amino acid signal peptide, a 76 (sp. E2)/81 (P. equi) amino acid stretch comprising two fungal non-catalytic docking domains (NCDDs), a 24 (sp. E2)/16 (P. equi) amino acid linker, and a 369 amino acid catalytic module. Homology modelling of the catalytic module strongly suggests that the Piromyces enzymes will be processive cellobiohydrolases. The catalytic residues and all nearby residues are conserved. The reaction is thus expected to proceed via a classical single-displacement (inverting) mechanism that is characteristic of this family of GHs. The enzyme, defined as Cel6A, encoded by the full-length Piromyces E2 sequence was expressed in Escherichia coli. The recombinant protein expressed had a molecular mass of 55 kDa and showed activity against Avicel, supporting the observed relationship of the sequence to those of known cellobiohydrolases. Affinity-purified cellulosomes of Piromyces sp. E2 were analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis. A major band was detected with the molecular weight of Cel6A. A tryptic fingerprint of this protein confirmed its identity.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kataeva IA, Seidel RD, Shah A, West LT, Li XL, Ljungdahl LG. The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol 2002; 68:4292-300. [PMID: 12200278 PMCID: PMC124122 DOI: 10.1128/aem.68.9.4292-4300.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibronectin type 3 homology domains (Fn3) as found in the cellobiohydrolase CbhA of Clostridium thermocellum are common among bacterial extracellular glycohydrolases. The function of these domains is not clear. CbhA is modular and composed of an N-terminal family IV carbohydrate-binding domain (CBDIV), an immunoglobulin-like domain, a family 9 glycosyl hydrolase catalytic domain (Gh9), two Fn3-like domains (Fn3(1,2)), a family III carbohydrate-binding domain (CBDIII), and a dockerin domain. Efficiency of cellulose hydrolysis by truncated forms of CbhA increased in the following order: Gh9 (lowest efficiency), Gh9-Fn3(1,2) (more efficient), and Gh9-Fn3(1,2)-CBDIII (greatest efficiency). Thermostability of the above constructs decreased in the following order: Gh9 (most stable), Gh9-Fn3(1,2), and then Gh9-Fn3(1,2)-CBDIII (least stable). Mixing of Orpinomyces endoglucanase CelE with Fn3(1,2,) or Fn3(1,2)-CBDIII increased efficiency of hydrolysis of acid-swollen cellulose (ASC) and filter paper. Scanning electron microscopic studies of filter paper treated with Fn3(1,2), Fn3(1,2)-CBDIII, or CBDIII showed that the surface of the cellulose fibers had been loosened up and crenellated by Fn3(1,2) and Fn3(1,2)-CBDIII and to a lesser extent by CBDIII. X-ray diffraction analysis did not reveal changes in the crystallinity of the filter paper. CBDIII bound to ASC and filter paper with capacities of 2.45 and 0.73 micro moles g(-1) and relative affinities (K(r)) of 1.12 and 2.13 liters g(-1), respectively. Fn3(1,2) bound weakly to both celluloses. Fn3(1,2)-CBD bound to ASC and filter paper with capacities of 3.22 and 0.81 micro moles g(-1) and K(r)s of 1.14 and 1.98 liters g(-1), respectively. Fn3(1,2) and CBDIII contained 2 and 1 mol of calcium per mol, respectively. The results suggest that Fn3(1,2) aids the hydrolysis of cellulose by modifying its surface. This effect is enhanced by the presence of CBDIII, which increases the concentration of Fn3(1,2) on the cellulose surface.
Collapse
Affiliation(s)
- Irina A Kataeva
- Department of Biochemistry and Molecular Biology and Center for Biological Resources Recovery, The University of Georgia, Athens, Georgia 30602-7229, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Steenbakkers PJ, Li XL, Ximenes EA, Arts JG, Chen H, Ljungdahl LG, Op Den Camp HJ. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J Bacteriol 2001; 183:5325-33. [PMID: 11514516 PMCID: PMC95415 DOI: 10.1128/jb.183.18.5325-5333.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method is presented for the specific isolation of genes encoding cellulosome components from anaerobic fungi. The catalytic components of the cellulosome of anaerobic fungi typically contain, besides the catalytic domain, mostly two copies of a 40-amino-acid cysteine-rich, noncatalytic docking domain (NCDD) interspaced by short linkers. Degenerate primers were designed to anneal to the highly conserved region within the NCDDs of the monocentric fungus Piromyces sp. strain E2 and the polycentric fungus Orpinomyces sp. strain PC-2. Through PCR using cDNA from Orpinomyces sp. and genomic DNA from Piromyces sp. as templates, respectively, 9 and 19 PCR products were isolated encoding novel NCDD linker sequences. Screening of an Orpinomyces sp. cDNA library with four of these PCR products resulted in the isolation of new genes encoding cellulosome components. An alignment of the partial NCDD sequence information obtained and an alignment of database-accessible NCDD sequences, focusing on the number and position of cysteine residues, indicated the presence of three structural subfamilies within fungal NCDDs. Furthermore, evidence is presented that the NCDDs in CelC from the polycentric fungus Orpinomyces sp. strain PC-2 specifically recognize four proteins in a cellulosome preparation, indicating the presence of multiple scaffoldins.
Collapse
Affiliation(s)
- P J Steenbakkers
- Department of Microbiology, Faculty of Science, University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Rosewich UL, Kistler HC. Role of Horizontal Gene Transfer in the Evolution of Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:325-363. [PMID: 11701846 DOI: 10.1146/annurev.phyto.38.1.325] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although evidence for horizontal gene transfer (HGT) in eukaryotes remains largely anecdotal, literature on HGT in fungi suggests that it may have been more important in the evolution of fungi than in other eukaryotes. Still, HGT in fungi has not been widely accepted because the mechanisms by which it may occur are unknown, because it is usually not directly observed but rather implied as an outcome, and because there are often equally plausible alternative explanations. Despite these reservations, HGT has been justifiably invoked for a variety of sequences including plasmids, introns, transposons, genes, gene clusters, and even whole chromosomes. In some instances HGT has also been confirmed under experimental conditions. It is this ability to address the phenomenon in an experimental setting that makes fungi well suited as model systems in which to study the mechanisms and consequences of HGT in eukaryotic organisms.
Collapse
Affiliation(s)
- U Liane Rosewich
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| |
Collapse
|
19
|
Kataeva I, Li XL, Chen H, Choi SK, Ljungdahl LG. Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination. J Bacteriol 1999; 181:5288-95. [PMID: 10464199 PMCID: PMC94034 DOI: 10.1128/jb.181.17.5288-5295.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellulolytic and hemicellulolytic complex of Clostridium thermocellum, termed cellulosome, consists of up to 26 polypeptides, of which at least 17 have been sequenced. They include 12 cellulases, 3 xylanases, 1 lichenase, and CipA, a scaffolding polypeptide. We report here a new cellulase gene, celK, coding for CelK, a 98-kDa major component of the cellulosome. The gene has an open reading frame (ORF) of 2,685 nucleotides coding for a polypeptide of 895 amino acid residues with a calculated mass of 100,552 Da. A signal peptide of 27 amino acid residues is cut off during secretion, resulting in a mature enzyme of 97,572 Da. The nucleotide sequence is highly similar to that of cbhA (V. V. Zverlov et al., J. Bacteriol. 180:3091-3099, 1998), having an ORF of 3,690 bp coding for the 1,230-amino-acid-residue CbhA of the same bacterium. Homologous regions of the two genes are 86.5 and 84.3% identical without deletion or insertion on the nucleotide and amino acid levels, respectively. Both have domain structures consisting of a signal peptide, a family IV cellulose binding domain (CBD), a family 9 glycosyl hydrolase domain, and a dockerin domain. A striking distinction between the two polypeptides is that there is a 330-amino-acid insertion in CbhA between the catalytic domain and the dockerin domain containing a fibronectin type 3-like domain and family III CBD. This insertion, missing in CelK, is responsible for the size difference between CelK and CbhA. Upstream and downstream flanking sequences of the two genes show no homology. The data indicate that celK and cbhA in the genome of C. thermocellum have evolved through gene duplication and recombination of domain coding sequences. celK without a dockerin domain was expressed in Escherichia coli and purified. The enzyme had pH and temperature optima at 6.0 and 65 degrees C, respectively. It hydrolyzed p-nitrophenyl-beta-D-cellobioside with a Km and a Vmax of 1.67 microM and 15.1 U/mg, respectively. Cellobiose was a strong inhibitor of CelK activity, with a Ki of 0.29 mM. The enzyme was thermostable, after 200 h of incubation at 60 degrees C, 97% of the original activity remained. Properties of the enzyme indicated that it is a cellobiohydrolase.
Collapse
Affiliation(s)
- I Kataeva
- Center for Biological Resource Recovery and Department of Biochemistry & Molecular Biology, The University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The cellulosome is a macromolecular machine, whose components interact in a synergistic manner to catalyze the efficient degradation of cellulose. The cellulosome complex is composed of numerous kinds of cellulases and related enzyme subunits, which are assembled into the complex by virtue of a unique type of scaffolding subunit (scaffoldin). Each of the cellulosomal subunits consists of a multiple set of modules, two classes of which (dockerin domains on the enzymes and cohesin domains on scaffoldin) govern the incorporation of the enzymatic subunits into the cellulosome complex. Another scaffoldin module-the cellulose-binding domain-is responsible for binding to the substrate. Some cellulosomes appear to be tethered to the cell envelope via similarly intricate, multiple-domain anchoring proteins. The assemblage is organized into dynamic polycellulosomal organelles, which adorn the cell surface. The cellulosome dictates both the binding of the cell to the substrate and its extracellular decomposition to soluble sugars, which are then taken up and assimilated by normal cellular processes.
Collapse
Affiliation(s)
- E A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | |
Collapse
|