1
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2025; 9:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Galluccio M, Console L, Pochini L, Scalise M, Giangregorio N, Indiveri C. Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. Int J Mol Sci 2022; 23:ijms23073823. [PMID: 35409183 PMCID: PMC8998559 DOI: 10.3390/ijms23073823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Ten percent of human genes encode for membrane transport systems, which are key components in maintaining cell homeostasis. They are involved in the transport of nutrients, catabolites, vitamins, and ions, allowing the absorption and distribution of these compounds to the various body regions. In addition, roughly 60% of FDA-approved drugs interact with membrane proteins, among which are transporters, often responsible for pharmacokinetics and side effects. Defects of membrane transport systems can cause diseases; however, knowledge of the structure/function relationships of transporters is still limited. Among the expression of hosts that produce human membrane transport systems, E. coli is one of the most favorable for its low cultivation costs, fast growth, handiness, and extensive knowledge of its genetics and molecular mechanisms. However, the expression in E. coli of human membrane proteins is often toxic due to the hydrophobicity of these proteins and the diversity in structure with respect to their bacterial counterparts. Moreover, differences in codon usage between humans and bacteria hamper translation. This review summarizes the many strategies exploited to achieve the expression of human transport systems in bacteria, providing a guide to help people who want to deal with this topic.
Collapse
Affiliation(s)
- Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
- Correspondence:
| |
Collapse
|
3
|
Hanemaaijer L, Kelleher P, Neve H, Franz CMAP, de Waal PP, van Peij NNME, van Sinderen D, Mahony J. Biodiversity of Phages Infecting the Dairy Bacterium Streptococcus thermophilus. Microorganisms 2021; 9:microorganisms9091822. [PMID: 34576718 PMCID: PMC8470116 DOI: 10.3390/microorganisms9091822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus-infecting phages represent a major problem in the dairy fermentation industry, particularly in relation to thermophilic production systems. Consequently, numerous studies have been performed relating to the biodiversity of such phages in global dairy operations. In the current review, we provide an overview of the genetic and morphological diversity of these phages and highlight the source and extent of genetic mosaicism among phages infecting this species through comparative proteome analysis of the replication and morphogenesis modules of representative phages. The phylogeny of selected phage-encoded receptor binding proteins (RBPs) was assessed, indicating that in certain cases RBP-encoding genes have been acquired separately to the morphogenesis modules, thus highlighting the adaptability of these phages. This review further highlights the significant advances that have been made in defining emergent genetically diverse groups of these phages, while it additionally summarizes remaining knowledge gaps in this research area.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Centre of Nutrition and Food, 24103 Kiel, Germany; (H.N.); (C.M.A.P.F.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Centre of Nutrition and Food, 24103 Kiel, Germany; (H.N.); (C.M.A.P.F.)
| | | | | | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Correspondence: (D.v.S.); (J.M.); Tel.: +353-20-4901365 (D.v.S.); +353-21-4902730 (J.M.)
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Correspondence: (D.v.S.); (J.M.); Tel.: +353-20-4901365 (D.v.S.); +353-21-4902730 (J.M.)
| |
Collapse
|
4
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Characterization of Bacteriophage Peptides of Pathogenic Streptococcus by LC-ESI-MS/MS: Bacteriophage Phylogenomics and Their Relationship to Their Host. Front Microbiol 2020; 11:1241. [PMID: 32582130 PMCID: PMC7296060 DOI: 10.3389/fmicb.2020.01241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
The present work focuses on LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analysis of phage-origin tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2,546 non-redundant peptides belonging to 1,890 proteins were identified and analyzed. Among them, 65 phage-origin peptides were determined as specific Streptococcus spp. peptides. These peptides belong to proteins such as phage repressors, phage endopeptidases, structural phage proteins, and uncharacterized phage proteins. Studies involving bacteriophage phylogeny and the relationship between phages encoding the peptides determined and the bacteria they infect were also performed. The results show how specific peptides are present in closely related phages, and a link exists between bacteriophage phylogeny and the Streptococcus spp. they infect. Moreover, the phage peptide M∗ATNLGQAYVQIM∗PSAK is unique and specific for Streptococcus agalactiae. These results revealed that diagnostic peptides, among others, could be useful for the identification and characterization of mastitis-causing Streptococcus spp., particularly peptides that belong to specific functional proteins, such as phage-origin proteins, because of their specificity to bacterial hosts.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Jose L. R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
5
|
A Specific Sugar Moiety in the Lactococcus lactis Cell Wall Pellicle Is Required for Infection by CHPC971, a Member of the Rare 1706 Phage Species. Appl Environ Microbiol 2019; 85:AEM.01224-19. [PMID: 31350317 DOI: 10.1128/aem.01224-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lactococcus lactis is a Gram-positive bacterium widely used as a starter culture for the production of different dairy products, especially a large variety of cheeses. Infection of lactococcal starter cultures by bacteriophages is one of the major causes of fermentation failure and often leads to production halt. Lactococcal bacteriophages belonging to the c2, 936, and P335 species are the most commonly isolated in dairy plants and have been extensively investigated in the past three decades. Information regarding bacteriophages belonging to less commonly isolated species is, on the other hand, less extensive, although these phages can also contribute to starter culture infection. Here, we report the nucleotide sequence of the newly isolated L. lactis phage CHPC971, belonging to the rare 1706 species of lactococcal phages. We investigated the nature of the host receptor recognized by the phage and collected evidence that strongly suggests that it binds to a specific sugar moiety in the cell wall pellicle of its host. An in silico analysis of the genome of phage CHPC971 identified the hypothetical genes involved in receptor binding.IMPORTANCE Gathering information on how lactococcal bacteriophages recognize their host and proliferate in the dairy environment is of vital importance for the establishment of proper starter culture rotation plans and to avoid fermentation failure and consequent great economic losses for dairy industries. We provide strong evidence on the type of receptor recognized by a newly isolated 1706-type lactococcal bacteriophage, increasing knowledge of phage-host interactions relevant to dairying. This information can help to prevent phage infection events that, so far, are hard to predict and avoid.
Collapse
|
6
|
Szymczak P, Rau MH, Monteiro JM, Pinho MG, Filipe SR, Vogensen FK, Zeidan AA, Janzen T. A comparative genomics approach for identifying host-range determinants in Streptococcus thermophilus bacteriophages. Sci Rep 2019; 9:7991. [PMID: 31142793 PMCID: PMC6541646 DOI: 10.1038/s41598-019-44481-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Comparative genomics has proven useful in exploring the biodiversity of phages and understanding phage-host interactions. This knowledge is particularly useful for phages infecting Streptococcus thermophilus, as they constitute a constant threat during dairy fermentations. Here, we explore the genetic diversity of S. thermophilus phages to identify genetic determinants with a signature for host specificity, which could be linked to the bacterial receptor genotype. A comparative genomic analysis was performed on 142 S. thermophilus phage genomes, 55 of which were sequenced in this study. Effectively, 94 phages were assigned to the group cos (DT1), 36 to the group pac (O1205), six to the group 5093, and six to the group 987. The core genome-based phylogeny of phages from the two dominating groups and their receptor binding protein (RBP) phylogeny corresponded to the phage host-range. A role of RBP in host recognition was confirmed by constructing a fluorescent derivative of the RBP of phage CHPC951, followed by studying the binding of the protein to the host strain. Furthermore, the RBP phylogeny of the cos group was found to correlate with the host genotype of the exocellular polysaccharide-encoding operon. These findings provide novel insights towards developing strategies to combat phage infections in dairies.
Collapse
Affiliation(s)
- Paula Szymczak
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Martin Holm Rau
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
| | - João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Sérgio Raposo Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Finn Kvist Vogensen
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Ahmad A Zeidan
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
| | - Thomas Janzen
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark.
| |
Collapse
|
7
|
Bukovska G, Ugorcakova J, Halgasova N, Bocanova L, Tkacova A. The BFK20 phage replication origin confers a phage-encoded resistance phenotype to the industrial strain Brevibacterium flavum. FEMS Microbiol Lett 2019; 366:5480461. [DOI: 10.1093/femsle/fnz090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/25/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Jana Ugorcakova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Adela Tkacova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
8
|
Szymczak P, Vogensen FK, Janzen T. Novel isolates of Streptococcus thermophilus bacteriophages from group 5093 identified with an improved multiplex PCR typing method. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
McDonnell B, Mahony J, Hanemaaijer L, Neve H, Noben JP, Lugli GA, Ventura M, Kouwen TR, van Sinderen D. Global Survey and Genome Exploration of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Front Microbiol 2017; 8:1754. [PMID: 28955321 PMCID: PMC5601072 DOI: 10.3389/fmicb.2017.01754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/29/2017] [Indexed: 01/31/2023] Open
Abstract
Despite the persistent and costly problem caused by (bacterio)phage predation of Streptococcus thermophilus in dairy plants, DNA sequence information relating to these phages remains limited. Genome sequencing is necessary to better understand the diversity and proliferative strategies of virulent phages. In this report, whole genome sequences of 40 distinct bacteriophages infecting S. thermophilus were analyzed for general characteristics, genomic structure and novel features. The bacteriophage genomes display a high degree of conservation within defined groupings, particularly across the structural modules. Supporting this observation, four novel members of a recently discovered third group of S. thermophilus phages (termed the 5093 group) were found to be conserved relative to both phage 5093 and to each other. Replication modules of S. thermophilus phages generally fall within two main groups, while such phage genomes typically encode one putative transcriptional regulator. Such features are indicative of widespread functional synteny across genetically distinct phage groups. Phage genomes also display nucleotide divergence between groups, and between individual phages of the same group (within replication modules and at the 3′ end of the lysis module)—through various insertions and/or deletions. A previously described multiplex PCR phage detection system was updated to reflect current knowledge on S. thermophilus phages. Furthermore, the structural protein complement as well as the antireceptor (responsible for the initial attachment of the phage to the host cell) of a representative of the 5093 group was defined. Our data more than triples the currently available genomic information on S. thermophilus phages, being of significant value to the dairy industry, where genetic knowledge of lytic phages is crucial for phage detection and monitoring purposes. In particular, the updated PCR detection methodology for S. thermophilus phages is highly useful in monitoring particular phage group(s) present in a given whey sample. Studies of this nature therefore not only provide information on the prevalence and associated threat of known S. thermophilus phages, but may also uncover newly emerging and genomically distinct phages infecting this dairy starter bacterium.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | - Jennifer Mahony
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | | | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt UniversityDiepenbeek, Belgium
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | | | - Douwe van Sinderen
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
10
|
YMC-2011, a Temperate Phage of Streptococcus salivarius 57.I. Appl Environ Microbiol 2017; 83:AEM.03186-16. [PMID: 28062463 DOI: 10.1128/aem.03186-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus salivarius is an abundant isolate of the oral cavity. The genome of S. salivarius 57.I consists of a 2-Mb chromosome and a 40,758-bp circular molecule, designated YMC-2011. Annotation of YMC-2011 revealed 55 open reading frames, most of them associated with phage production, although plaque formation is not observed in S. salivarius 57.I after lytic induction using mitomycin C. Results from Southern hybridization and quantitative real-time PCR confirmed that YMC-2011 exists extrachromosomally, with an estimated copy number of 3 to 4. Phage particles were isolated from the supernatant of mitomycin C-treated S. salivarius 57.I cultures, and transmission electron microscopic examination indicated that YMC-2011 belongs to the Siphoviridae family. Phylogenetic analysis suggests that phage YMC-2011 and the cos-type phages of Streptococcus thermophilus originated from a common ancestor. An extended -10 element (p L ) and a σ70-like promoter (p R ) were mapped 5' to Ssal_phage00013 (encoding a CI-like repressor) and Ssal_phage00014 (encoding a hypothetical protein), respectively, using 5' rapid amplification of cDNA ends, indicating that YMC-2011 transcribes at least two mRNAs in opposite orientations. Studies using promoter-chloramphenicol acetyltransferase reporter gene fusions revealed that p R , but not p L , was sensitive to mitomycin C induction, suggesting that the switch from lysogenic growth to lytic growth was controlled mainly by the activity of these two promoters. In conclusion, a lysogenic state is maintained in S. salivarius 57.I, presumably by the repression of genes encoding proteins for lytic growth.IMPORTANCE The movement of mobile genetic elements such as bacteriophages and the establishment of lysogens may have profound effects on the balance of microbial ecology where lysogenic bacteria reside. The discovery of phage YMC-2011 from Streptococcus salivarius 57.I suggests that YMC-2011 and Streptococcus thermophilus-infecting phages share an ancestor. Although S. salivarius and S. thermophilus are close phylogenetically, S. salivarius is a natural inhabitant of the human mouth, whereas S. thermophilus is commonly found in the mammary mucosa of bovine species. Thus, the identification of YMC-2011 suggests that horizontal gene transfer via phage infection could take place between species from different ecological niches.
Collapse
|
11
|
Identification and Analysis of a Novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Appl Environ Microbiol 2016; 82:5153-65. [PMID: 27316953 DOI: 10.1128/aem.00835-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED We present the complete genome sequences of four members of a novel group of phages infecting Streptococcus thermophilus, designated here as the 987 group. Members of this phage group appear to have resulted from genetic exchange events, as evidenced by their "hybrid" genomic architecture, exhibiting DNA sequence relatedness to the morphogenesis modules of certain P335 group Lactococcus lactis phages and to the replication modules of S. thermophilus phages. All four identified members of the 987 phage group were shown to elicit adsorption affinity to both their cognate S. thermophilus hosts and a particular L. lactis starter strain. The receptor binding protein of one of these phages (as a representative of this novel group) was defined using an adsorption inhibition assay. The emergence of a novel phage group infecting S. thermophilus highlights the continuous need for phage monitoring and development of new phage control measures. IMPORTANCE Phage predation of S. thermophilus is an important issue for the dairy industry, where viral contamination can lead to fermentation inefficiency or complete fermentation failure. Genome information and phage-host interaction studies of S. thermophilus phages, particularly those emerging in the marketplace, are an important part of limiting the detrimental impact of these viruses in the dairy environment.
Collapse
|
12
|
Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 2014; 5:98. [PMID: 24659988 PMCID: PMC3952083 DOI: 10.3389/fmicb.2014.00098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/23/2014] [Indexed: 11/17/2022] Open
Abstract
Lipoprotein Ltp encoded by temperate Streptococcus thermophilus phage TP-J34 is the prototype of the wide-spread family of host cell surface-exposed lipoproteins involved in superinfection exclusion (sie). When screening for other S. thermophilus phages expressing this type of lipoprotein, three temperate phages—TP-EW, TP-DSM20617, and TP-778—were isolated. In this communication we present the total nucleotide sequences of TP-J34 and TP-778L. For TP-EW, a phage almost identical to TP-J34, besides the ltp gene only the two regions of deviation from TP-J34 DNA were analyzed: the gene encoding the tail protein causing an assembly defect in TP-J34 and the gene encoding the lysin, which in TP-EW contains an intron. For TP-DSM20617 only the sequence of the lysogeny module containing the ltp gene was determined. The region showed high homology to the same region of TP-778. For TP-778 we could show that absence of the attR region resulted in aberrant excision of phage DNA. The amino acid sequence of mature LtpTP-EW was shown to be identical to that of mature LtpTP-J34, whereas the amino acid sequence of mature LtpTP-778 was shown to differ from mature LtpTP-J34 in eight amino acid positions. LtpTP-DSM20617 was shown to differ from LtpTP-778 in just one amino acid position. In contrast to LtpTP-J34, LtpTP-778 did not affect infection of lactococcal phage P008 instead increased activity against phage P001 was noticed.
Collapse
Affiliation(s)
- Yahya Ali
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany ; Medical Biology Department, Faculty of Medicine, Jazan University Jazan, Kingdom of Saudi Arabia ; Department of Biotechnology, Agricultural Research Center, Animal Health Research Institute Cairo, Egypt
| | - Sabrina Koberg
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Stefanie Heßner
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Xingmin Sun
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Björn Rabe
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Angela Back
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany
| |
Collapse
|
13
|
Abstract
M102AD is the new designation for a Streptococcus mutans phage described in 1993 as phage M102. This change was necessitated by the genome analysis of another S. mutans phage named M102, which revealed differences from the genome sequence reported here. Additional host range analyses confirmed that S. mutans phage M102AD infects only a few serotype c strains. Phage M102AD adsorbed very slowly to its host, and it cannot adsorb to serotype e and f strains of S. mutans. M102AD adsorption was blocked by c-specific antiserum. Phage M102AD also adsorbed equally well to heat-treated and trypsin-treated cells, suggesting carbohydrate receptors. Saliva and polysaccharide production did not inhibit plaque formation. The genome of this siphophage consisted of a linear, double-stranded, 30,664-bp DNA molecule, with a GC content of 39.6%. Analysis of the genome extremities indicated the presence of a 3'-overhang cos site that was 11 nucleotides long. Bioinformatic analyses identified 40 open reading frames, all in the same orientation. No lysogeny-related genes were found, indicating that phage M102AD is strictly virulent. No obvious virulence factor gene candidates were found. Twelve proteins were identified in the virion structure by mass spectrometry. Comparative genomic analysis revealed a close relationship between S. mutans phages M102AD and M102 as well as with Streptococcus thermophilus phages. This study also highlights the importance of conducting research with biological materials obtained from recognized microbial collections.
Collapse
|
14
|
Mills S, Griffin C, O’Sullivan O, Coffey A, McAuliffe O, Meijer W, Serrano L, Ross R. A new phage on the ‘Mozzarella’ block: Bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Riipinen KA, Forsman P, Alatossava T. The genomes and comparative genomics of Lactobacillus delbrueckii phages. Arch Virol 2011; 156:1217-33. [PMID: 21465086 DOI: 10.1007/s00705-011-0980-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/14/2011] [Indexed: 11/25/2022]
Abstract
Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.
Collapse
Affiliation(s)
- Katja-Anneli Riipinen
- Division of Genetics, Department of Biology, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| | | | | |
Collapse
|
16
|
|
17
|
Guglielmotti DM, Deveau H, Binetti AG, Reinheimer JA, Moineau S, Quiberoni A. Genome analysis of two virulent Streptococcus thermophilus phages isolated in Argentina. Int J Food Microbiol 2009; 136:101-9. [DOI: 10.1016/j.ijfoodmicro.2009.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/31/2009] [Accepted: 09/06/2009] [Indexed: 11/30/2022]
|
18
|
Mills S, Griffin C, Coffey A, Meijer WC, Hafkamp B, Ross RP. CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus--implications for starter design. J Appl Microbiol 2009; 108:945-955. [PMID: 19709335 DOI: 10.1111/j.1365-2672.2009.04486.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS An efficient approach for generation of bacteriophage-insensitive mutants (BIMs) of Streptococcus thermophilus starters was described in our laboratory [Mills et al. (2007) J Microbiol Methods70, 159-164]. The aim of this study was to analyse the phage resistance mechanism responsible for BIM formation. METHODS AND RESULTS Three clustered regularly interspaced short palindromic repeat (CRISPR) regions have been identified in Strep. thermophilus, and Strep. thermophilus can integrate novel spacers into these loci in response to phage attack. Characterization of three sets of BIMs indicated that two sets had altered CRISPR1 and/or CRISPR3 loci. A range of BIMs of yoghurt starter CSK938 were generated with the same phage in different phage challenge experiments, and each acquired unique spacer regions ranging between one and four new spacers in CRISPR1. In addition, the BIM that acquired only one new spacer in CRISPR1 also acquired an additional spacer in CRISPR3. A fourth BIM, generated with a different phage, had two spacers deleted from CRISPR1 but acquired two spacers in CRISPR3. Analysis of the Mozzarella starter CSK939 and its associated BIMs indicated that formation of second generation BIMs does not lead to increases in spacer number but to alterations in spacer regions. BIMs of an exopolysaccharide (EPS)-producing strain that lost the ability to produce EPS did not harbour an altered CRISPR, suggesting that phage sensitivity may be related to the EPS-producing phenotype. CONCLUSIONS Acquisition/deletion of new spacers in CRISPR loci in response to phage attack generates distinctly individual variants. It also demonstrates that other modifications may be responsible for the phage resistance of Strep. thermophilus BIMs. SIGNIFICANCE AND IMPACT OF THE STUDY Isolation of individual BIMs that have unique spacers towards the leader region of the CRISPR locus may be a very useful approach for rotation strategies with the same starter backbone. Upon phage infection, BIMs 'in reserve' can be slotted into the rotation scheme.
Collapse
Affiliation(s)
- S Mills
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland., CSK Food Enrichment, Ede, the Netherlands
| | - C Griffin
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland., CSK Food Enrichment, Ede, the Netherlands
| | - A Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - W C Meijer
- CSK Food Enrichment, Ede, the Netherlands
| | - B Hafkamp
- CSK Food Enrichment, Ede, the Netherlands
| | - R P Ross
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland., Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
19
|
Weaver KE, Kwong SM, Firth N, Francia MV. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 2009; 61:94-109. [PMID: 19100285 PMCID: PMC2652615 DOI: 10.1016/j.plasmid.2008.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
20
|
Bielke L, Higgins S, Donoghue A, Donoghue D, Hargis B. Salmonella Host Range of Bacteriophages That Infect Multiple Genera. Poult Sci 2007; 86:2536-40. [DOI: 10.3382/ps.2007-00250] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
22
|
Fortier LC, Bransi A, Moineau S. Genome sequence and global gene expression of Q54, a new phage species linking the 936 and c2 phage species of Lactococcus lactis. J Bacteriol 2006; 188:6101-14. [PMID: 16923877 PMCID: PMC1595367 DOI: 10.1128/jb.00581-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lytic lactococcal phage Q54 was previously isolated from a failed sour cream production. Its complete genomic sequence (26,537 bp) is reported here, and the analysis indicated that it represents a new Lactococcus lactis phage species. A striking feature of phage Q54 is the low level of similarity of its proteome (47 open reading frames) with proteins in databases. A global gene expression study confirmed the presence of two early gene modules in Q54. The unusual configuration of these modules, combined with results of comparative analysis with other lactococcal phage genomes, suggests that one of these modules was acquired through recombination events between c2- and 936-like phages. Proteolytic cleavage and cross-linking of the major capsid protein were demonstrated through structural protein analyses. A programmed translational frameshift between the major tail protein (MTP) and the receptor-binding protein (RBP) was also discovered. A "shifty stop" signal followed by putative secondary structures is likely involved in frameshifting. To our knowledge, this is only the second report of translational frameshifting (+1) in double-stranded DNA bacteriophages and the first case of translational coupling between an MTP and an RBP. Thus, phage Q54 represents a fascinating member of a new species with unusual characteristics that brings new insights into lactococcal phage evolution.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Felix d'Hérelle Reference Centre for Bacterial Viruses, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
23
|
Abstract
Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online).
Collapse
|
24
|
Abstract
Bacteriophages (phages) have the potential to interfere with any industry that produces bacteria as an end product or uses them as biocatalysts in the production of fermented products or bioactive molecules. Using microorganisms that drive food bioprocesses as an example, this review will describe a set of genetic tools that are useful in the engineering of customized phage-defence systems. Special focus will be given to the power of comparative genomics as a means of streamlining target selection, providing more widespread phage protection, and increasing the longevity of these industrially important bacteria in the bioprocessing environment.
Collapse
Affiliation(s)
- Joseph M Sturino
- Genomic Sciences Program, North Carolina State University, Raleigh, North Carolina 27695-7624, USA
| | | |
Collapse
|
25
|
Binetti AG, Del Río B, Martín MC, Alvarez MA. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence. Appl Environ Microbiol 2005; 71:6096-103. [PMID: 16204526 PMCID: PMC1265960 DOI: 10.1128/aem.71.10.6096-6103.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the dairy industry, the characterization of Streptococcus thermophilus phage types is very important for the selection and use of efficient starter cultures. The aim of this study was to develop a characterization system useful in phage control programs in dairy plants. A comparative study of phages of different origins was initially performed based on their morphology, DNA restriction profiles, DNA homology, structural proteins, packaging mechanisms, and lifestyles and on the presence of a highly conserved DNA fragment of the replication module. However, these traditional criteria were of limited industrial value, mainly because there appeared to be no correlation between these variables and host ranges. We therefore developed a PCR method to amplify VR2, a variable region of the antireceptor gene, which allowed rapid detection of S. thermophilus phages and classification of these phages. This method has a significant advantage over other grouping criteria since our results suggest that there is a correlation between typing profiles and host ranges. This association could be valuable for the dairy industry by allowing a rational starter rotation system to be established and by helping in the selection of more suitable starter culture resistance mechanisms. The method described here is also a useful tool for phage detection, since specific PCR amplification was possible when phage-contaminated milk was used as a template (detection limit, 10(5) PFU ml(-1)).
Collapse
Affiliation(s)
- Ana G Binetti
- Instituto de Productos Lácteos de Asturias (CSIC), Apdo. de correos 85, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
26
|
Duplessis M, Russell WM, Romero DA, Moineau S. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray. Virology 2005; 340:192-208. [PMID: 16043205 DOI: 10.1016/j.virol.2005.05.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/26/2005] [Accepted: 05/27/2005] [Indexed: 11/23/2022]
Abstract
A custom microarray was developed to study the temporal gene expression of the two groups of phages infecting the Gram-positive lactic acid bacterium Streptococcus thermophilus. The complete genomic sequence of the virulent cos-type phage DT1 (34,815 bp) and the pac-type phage 2972 (34,704 bp) were used for the construction of the microarray. Gene expression was measured at nine time intervals (0, 2, 7, 12, 17, 22, 27, 32 and 37 min) during phage infection and an expression curve was determined for each gene. Each phage gene was then classified into one of the three traditional transcription classes and these data were used to generate the complete transcriptional map of DT1 and 2972. Phage DT1 possesses 18 early genes, 12 middle genes and 12 late-expressed genes whereas 2972 has 16 early, 11 middle and 14 late genes. The trends of the phage gene expression profiles were also confirmed by slot blot hybridizations. Significant differences were observed when comparing the transcriptional maps of DT1 and 2972 with those already available for the S. thermophilus phages Sfi19 and Sfi21. To our knowledge, this report presents the first complete transcription analysis of bacteriophages infecting Gram-positive bacteria using the DNA microarray technology.
Collapse
Affiliation(s)
- Martin Duplessis
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Université Laval, Québec City, Canada
| | | | | | | |
Collapse
|
27
|
Lévesque C, Duplessis M, Labonté J, Labrie S, Fremaux C, Tremblay D, Moineau S. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl Environ Microbiol 2005; 71:4057-68. [PMID: 16000821 PMCID: PMC1169050 DOI: 10.1128/aem.71.7.4057-4068.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 02/01/2005] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed.
Collapse
Affiliation(s)
- Céline Lévesque
- GREB, Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
28
|
Lamothe G, Lévesque C, Bissonnette F, Cochu A, Vadeboncoeur C, Frenette M, Duplessis M, Tremblay D, Moineau S. Characterization of the cro-ori region of the Streptococcus thermophilus virulent bacteriophage DT1. Appl Environ Microbiol 2005; 71:1237-46. [PMID: 15746324 PMCID: PMC1065193 DOI: 10.1128/aem.71.3.1237-1246.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulent cos-type Streptococcus thermophilus phage DT1 was previously isolated from a mozzarella whey sample, and its complete genomic sequence is available. The putative ori of phage DT1 is characterized by three inverted and two direct repeats located in a noncoding region between orf36 and orf37. As the replication ability of the putative ori and flanking genes could not be established, its ability to confer phage resistance was tested. When ori is cloned on a high-copy-number plasmid, it provides protection to S. thermophilus strains against phage infection during milk fermentation. This protection is phage specific and strain dependent. Then, a detailed transcriptional map was established for the region located between the cro-like gene (orf29) and the ori. The results of the Northern blots indicated that the transcription of this region started 5 min after the onset of phage infection. Comparative analysis of the expression of the cro-ori region in the three S. thermophilus cos-type phages DT1, Sfi19 (virulent), and Sfi21 (temperate) reveals significant differences in the number and size of transcripts. The promoter upstream of orf29 was further investigated by primer extension analysis, and its activity was confirmed by a chloramphenicol acetyltransferase assay, which showed that the phage promoter is more efficient than the constitutive bacterial promoter of the S. thermophilus operon encoding the general proteins of the phosphoenolpyruvate:sugar phosphotransferase system. However, the phage promoter is less efficient than the pts promoter in Lactococcus lactis and in Escherichia coli.
Collapse
Affiliation(s)
- Geneviève Lamothe
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sturino JM, Klaenhammer TR. Bacteriophage defense systems and strategies for lactic acid bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2005; 56:331-78. [PMID: 15566985 DOI: 10.1016/s0065-2164(04)56011-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Romero P, López R, García E. Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 2004; 322:239-52. [PMID: 15110522 DOI: 10.1016/j.virol.2004.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/09/2004] [Accepted: 01/31/2004] [Indexed: 10/26/2022]
Abstract
We report the complete genomic sequence of EJ-1, an inducible prophage isolated from an atypical Streptococcus pneumoniae strain that belongs to the Myoviridae morphology family. The phage and bacterial recombinational sites (attachment sites) have been also determined. The genome of the EJ-1 prophage (42935 bp) is organized in 73 open reading frames (ORFs) and in at least five major clusters. Bioinformatic and N-terminal amino acid sequence analyses enabled the assignment of possible functions to 52 ORFs. The predicted proteins coded for the EJ-1 genome revealed similarities in the lysogeny, DNA replication, regulation, packaging, and head morphogenesis protein clusters with those from several siphoviruses infecting lactic acid bacteria. However, the proteins encoded by genes orf53 to orf64, corresponding to putative tail proteins of the virion, were very similar to those of the defective Bacillus subtilis myovirus PBSX with the notable exception of the gene product of orf56 (the tape measure tail protein) that was similar to proteins from phages infecting Gram-negative bacteria. The first description of the genome of a myovirus infecting a low G + C content Gram-positive bacterium, a member of a group embracing important human pathogens and industrial relevant species, will contribute to expand our current knowledge on phage biology and evolution.
Collapse
Affiliation(s)
- Patricia Romero
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | | | | |
Collapse
|
31
|
Geis A, El Demerdash HAM, Heller KJ. Sequence analysis and characterization of plasmids from Streptococcus thermophilus. Plasmid 2003; 50:53-69. [PMID: 12826058 DOI: 10.1016/s0147-619x(03)00029-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleotide sequences of eight plasmids isolated from seven Streptococcus thermophilus strains have been determined. Plasmids pSt04, pER1-1, and pJ34 are related and replicate via a rolling circle mechanism. Plasmid pJ34 encodes for a replication initiation protein (RepA) and a small polypeptide with unknown function. Plasmids pSt04 and pER1-1 carry in addition to repA genes coding for small heat shock proteins (sHsp). Expression of these proteins is induced at elevated temperatures or low pH and increases the thermo- and acid resistance. Plasmids pER1-2 and pSt22-2 show identical sequences with five putative open reading frames (ORFs). The gene products of ORF1 and ORF4 reveal some similarities to transposon encoded proteins of Bacillus subtilis and Tn916. ORF1 of plasmid pSt106 encodes a protein similar to resolvases of different Gram-positive bacteria. Integrity of ORF2 and 3, encoding a putative DNA primase and a replication protein, is essential for replication. ORF1 to 3 of plasmid pSt08, which are organized in a tricistronic operon, encode a RepA protein, an adenosine-specific methyltransferase, and a type II restriction endonuclease. Another type II restriction-modification (R/M) system is encoded on plasmid pSt0 which is highly similar to those encoded on lactococcal plasmid pHW393 and B. subtilis plasmid pXH13. Plasmid-free derivatives of strains St0 and St08 show increased phage sensitivity, indicating that in the wild-type strains the R/M systems are functionally expressed. Recombinant plasmids based on the replicons of plasmids pSt04, pJ34, pSt106, pSt08, and pSt0, are able to replicate in Lactococcus lactis and B. subtilis, respectively, whereas constructs carrying pER1-2 only replicate in S. thermophilus.
Collapse
Affiliation(s)
- Arnold Geis
- Federal Dairy Research Centre, Institute for Microbiology, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany.
| | | | | |
Collapse
|
32
|
Obregón V, García JL, García E, López R, García P. Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae. J Bacteriol 2003; 185:2362-8. [PMID: 12644508 PMCID: PMC151507 DOI: 10.1128/jb.185.7.2362-2368.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of MM1 (40,248 bp), a temperate bacteriophage from the Spain(23F)-1 multiresistant epidemic clone of Streptococcus pneumoniae, is organized in 53 open reading frames (ORFs) and in at least five functional clusters. Bioinformatic and N-terminal amino acid sequence analyses enabled the assignment of possible functions to 26 ORFs. Analyses comparing the MM1 genome with those of other bacteriophages revealed similarities, mainly with genomes of phages infecting gram-positive bacteria, which suggest recent exchange of genes between species colonizing the same habitat.
Collapse
Affiliation(s)
- Virginia Obregón
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
Proux C, van Sinderen D, Suarez J, Garcia P, Ladero V, Fitzgerald GF, Desiere F, Brüssow H. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J Bacteriol 2002; 184:6026-36. [PMID: 12374837 PMCID: PMC135392 DOI: 10.1128/jb.184.21.6026-6036.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.
Collapse
Affiliation(s)
- Caroline Proux
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sturino JM, Klaenhammer TR. Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Appl Environ Microbiol 2002; 68:588-96. [PMID: 11823195 PMCID: PMC126690 DOI: 10.1128/aem.68.2.588-596.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2001] [Accepted: 11/08/2001] [Indexed: 11/20/2022] Open
Abstract
Antisense RNA complementary to a putative helicase gene (hel3.1) of a cos-type Streptococcus thermophilus bacteriophage was used to impede the proliferation of a number of cos-type S. thermophilus bacteriophages and one pac-type bacteriophage. The putative helicase gene is a component of the Sfi21-type DNA replication module, which is found in a majority of the S. thermophilus bacteriophages of industrial importance. All bacteriophages that strongly hybridized a 689-bp internal hel3.1 probe were sensitive to the expression of antisense hel3.1 RNA. A 40 to 70% reduction in efficiency of plaquing (EOP) was consistently observed, with a concomitant decrease in plaque size relative to that of the S. thermophilus parental strain. When progeny were released, the burst size was reduced. Growth curves of S. thermophilus NCK1125, in the presence of variable levels of bacteriophage kappa3, showed that antisense hel3.1 conferred protection, even at a multiplicity of infection of approximately 1.0. When the hel3.1 antisense RNA cassette was expressed in cis from the kappa3-derived phage-encoded resistance (PER) plasmid pTRK690::ori3.1, the EOP for bacteriophages sensitive to PER and antisense targeting was reduced to between 10(-7) and 10(-8), beyond the resistance conferred by the PER element alone (less than 10(-6)). These results illustrate the first successful applications of antisense RNA and explosive delivery of antisense RNA to inhibit the proliferation of S. thermophilus bacteriophages.
Collapse
Affiliation(s)
- Joseph M Sturino
- Departments of Food Science and Microbiology, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695-7624, USA
| | | |
Collapse
|
35
|
Grath S, van Sinderen D, Fitzgerald G. Bacteriophage-derived genetic tools for use in lactic acid bacteria. Int Dairy J 2002. [DOI: 10.1016/s0958-6946(01)00150-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Duplessis M, Moineau S. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol Microbiol 2001; 41:325-36. [PMID: 11489121 DOI: 10.1046/j.1365-2958.2001.02521.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phage-host interactions remain poorly understood in lactic acid bacteria and essentially in all Gram-positive bacteria. The aim of this study was to identify the phage genetic determinant (anti-receptor) involved in the recognition of Streptococcus thermophilus hosts. The complete genomic sequence of the lytic S. thermophilus phage DT1 was determined previously, and bioinformatic analysis indicated that orf18 might be the anti-receptor gene. The orf18 of six additional S. thermophilus phages was determined (DT2, DT4, MD1, MD2, MD4 and Q5) and compared with the orf18 of DT1. The deduced ORF18 was divided into three domains. The first domain, which contains the N-terminal part of the protein, was conserved in all seven phages. The second domain was detected in only two phages and flanked by a motif called collagen-like repeats. The second domain also contained a variable region (VR1). All seven phages had a third domain that consisted of the C-terminal section of the protein as well as another variable region (VR2). Chimeric DT1 phages were constructed by recombination; a portion of its orf18 was replaced by the corresponding section in orf18 of the phage MD4. All DT1 chimeric phages acquired the host range of phage MD4. Analysis of the orf18 in the chimeric phages revealed that host specificity in phages DT1 and MD4 resulted from VR2. This is the first report on the identification and characterization of a phage gene involved in the host recognition process of Gram-positive bacteria.
Collapse
Affiliation(s)
- M Duplessis
- Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada, G1K 7P4
| | | |
Collapse
|
37
|
Narita S, Kaneko J, Chiba J, Piémont Y, Jarraud S, Etienne J, Kamio Y. Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus : molecular analysis of a PVL-converting phage, φSLT. Gene 2001; 268:195-206. [PMID: 11368915 DOI: 10.1016/s0378-1119(01)00390-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Staphylococcal Panton-Valentine leukocidin (PVL) is an important virulence factor, which causes leukocytolysis and tissue necrosis. Our previous report on the existence of the PVL genes (lukS-PV and lukF-PV) on the genome of prophage phiPVL in the Staphylococcus aureus strain V8 suggested the horizontal transmission of PVL genes by temperate bacteriophage among S. aureus (Kaneko, et al., 1998. Gene 215, 57-67). Here, we demonstrated the phage conversion of S. aureus leading to the production of PVL by discovery of a novel PVL-carrying phage, phiSLT (Staphylococcal Leukocytolytic Toxin) from a clinical isolate of S. aureus. phiSLT was able to lysogenize several clinical isolates of PVL-negative S. aureus strains as well as strain RN4220 at the conserved 29-bp sequence (attB) and all the lysogenized S. aureus strains had the ability to produce PVL. phiSLT had an elongated head of about 100x50 nm and a flexible tail of 400 nm long, that was quite different from phiPVL which had an isometric hexagonal head of about 60 nm diameter. The linear double-stranded phiSLT genome comprised 42,942 bp with 29-bp attachment core sequences and contained 62 open reading frames. Only 6.4 kbp region containing lysis cassette, PVL genes, attP, integrase, and orf204 of phiSLT was identical to that of phiPVL, while other regions were different from those of phiPVL. Thus, it can be concluded that PVL genes are carried by different temperate phages, which have the same attachment site.
Collapse
Affiliation(s)
- S Narita
- Laboratory of Applied Microbiology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumi-dori Amamiya-machi, Aoba-ku, 981-8555, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
McGrath S, Fitzgerald GF, van Sinderen D. Improvement and optimization of two engineered phage resistance mechanisms in Lactococcus lactis. Appl Environ Microbiol 2001; 67:608-16. [PMID: 11157223 PMCID: PMC92627 DOI: 10.1128/aem.67.2.608-616.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous replication module genes were identified for four P335 type phages. DNA sequence analysis revealed that all four phages exhibited more than 90% DNA homology for at least two genes, designated rep2009 and orf17. One of these genes, rep2009, codes for a putative replisome organizer protein and contains an assumed origin of phage DNA replication (ori2009), which was identical for all four phages. DNA fragments representing the ori2009 sequence confer a phage-encoded resistance (Per) phenotype on lactococcal hosts when they are supplied on a high-copy-number vector. Furthermore, cloning multiple copies of the ori2009 sequence was found to increase the effectiveness of the Per phenotype conferred. A number of antisense plasmids targeting specific genes of the replication module were constructed. Two separate plasmids targeting rep2009 and orf17 were found to efficiently inhibit proliferation of all four phages by interfering with intracellular phage DNA replication. These results represent two highly effective strategies for inhibiting bacteriophage proliferation, and they also identify a novel gene, orf17, which appears to be important for phage DNA replication. Furthermore, these results indicate that although the actual mechanisms of DNA replication are very similar, if not identical, for all four phages, expression of the replication genes is significantly different in each case.
Collapse
Affiliation(s)
- S McGrath
- National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
39
|
Kropinski AM. Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J Bacteriol 2000; 182:6066-74. [PMID: 11029426 PMCID: PMC94740 DOI: 10.1128/jb.182.21.6066-6074.2000] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate bacteriophage D3, a member of the virus family Siphoviridae, is responsible for serotype conversion in its host, Pseudomonas aeruginosa. The complete sequence of the double-stranded DNA genome has been determined. The 56,426 bp contains 90 putative open reading frames (ORFs) and four genes specifying tRNAs. The latter are specific for methionine (AUG), glycine (GGA), asparagine (AAC), and threonine (ACA). The tRNAs may function in the translation of certain highly expressed proteins from this relatively AT-rich genome. D3 proteins which exhibited a high degree of sequence similarity to previously characterized phage proteins included the portal, major head, tail, and tail tape measure proteins, endolysin, integrase, helicase, and NinG. The layout of genes was reminiscent of lambdoid phages, with the exception of the placement of the endolysin gene, which parenthetically also lacked a cognate holin. The greatest sequence similarity was found in the morphogenesis genes to coliphages HK022 and HK97. Among the ORFs was discovered the gene encoding the fucosamine O-acetylase, which is in part responsible for the serotype conversion events.
Collapse
MESH Headings
- Acetylesterase/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Genome, Viral
- Molecular Sequence Data
- Open Reading Frames
- Protein Biosynthesis
- Pseudomonas Phages/genetics
- Pseudomonas aeruginosa/virology
- RNA, Bacterial/genetics
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Met/genetics
- RNA, Transfer, Thr/genetics
- Sequence Homology, Nucleic Acid
- Siphoviridae/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- A M Kropinski
- Department of Microbiology and Immunology, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
40
|
Abstract
Molecular genetics of thermophilic lactic acid bacteria has advanced in several directions: exploitation of the milk proteins and sugars; primary and secondary metabolism; stress response; and molecular ecology of bacteria and their phages. These have singularly contributed to open new avenues of scientific interest in the field: comparative phage genomics; horizontal gene transfer events in bacterial or phage populations; and genetics of external polysaccharide production.
Collapse
Affiliation(s)
- J Delcour
- Université Catholique de Louvain, Unité de Génétique, Croix du Sud, 5 B-1348, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
41
|
Lucchini S, Sidoti J, Brüssow H. Broad-range bacteriophage resistance in Streptococcus thermophilus by insertional mutagenesis. Virology 2000; 275:267-77. [PMID: 10998327 DOI: 10.1006/viro.2000.0499] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptococcus thermophilus is a lactic acid bacterium used in industrial milk fermentation. To obtain phage-resistant starters, S. thermophilus strain Sfi1 was submitted to mutagenesis with the thermolabile insertional vector pG(+)host9:ISS1 followed by a challenge with the lytic S. thermophilus phage Sfi19. Vector insertions into four distinct sites led to a phage-resistance phenotype. Three mutants were characterized further. They were protected against the homologous challenging phage and 14 heterologous phages. All three mutants adsorbed phages. No intracellular phage DNA synthesis was observed in mutants R7 and R71, while mutant R24 showed a delayed and diminished phage DNA synthesis compared to the parental Sfi1 strain. In mutant R7 a short deletion occurred next to the insertion site which removed the upstream sequences and the 15 initial codons from orf 394, encoding a likely transmembrane protein. Analogy with other phage systems suggests an involvement of this protein in the phage DNA injection process. In mutant R24 the vector was inserted into orf 269 predicting an oxido-reductase. When the vector sequence was removed via homologous recombination across the duplicated insertion elements, mutant R24 returned to the phage susceptibility of the parental strain. This observation suggested that inactivation of orf 269 was not crucial for the resistance phenotype. A gene encoding a likely restriction subunit of a type I restriction-modification system was located directly downstream of the insertion site in mutant R24. hsdM and hsdS genes encoding the modification and specificity subunits of a type I R-M system and biological evidence for an active R-M system were detected in strain Sfi1, suggesting involvement of a type I R-M system in the resistance phenotype of R24.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|