1
|
Ullah I, Zahid M, Jawad M, Arsh A. Assessment of DNA damage and oxidative stress among traffic conductors and coal miners. Pak J Med Sci 2021; 37:499-502. [PMID: 33679939 PMCID: PMC7931305 DOI: 10.12669/pjms.37.2.2848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective: To assess the DNA damage and oxidative stress among traffic conductors and coal miners. Methods: An analytical cross-sectional survey was conducted in Karak, Pakistan from March to October 2019. A total of 240 individuals participated in the study with an age range between 17 to 55 years. Among the total sample, 60 participants had exposure to traffic pollution while 60 were mine workers. Two control groups, consisting of 60 individuals each, were also recruited for comparison with the two exposure groups. Comet assay protocols were performed for assessing DNA damage and oxidative stress (length of DNA tail, levels of Superoxide Dismutase (SOD), Malondialdehyde (MDA) and Glutathione (GSH)). Data was analyzed using T-test on statistix 9.0 software. Results: The DNA tail length in traffic conductors ranged from 26.83-30.55µm (Mean=28.69 µm while their control group had DNA tail length of 7.98-9.26µm (Mean= 8.62). There was significant difference (P <0.001) between exposure and control group. The DNA length recorded in coal mine workers and their control group was ranged from 29.06-31.26µm (Mean=30.16µm) and 9.42-10.22µm (Mean=9.82), respectively. There was significant difference (P <0.001) between the two groups. As compared to control groups, both exposure groups have high levels of Superoxide Dismutase and Malondialdehyde and low levels of Glutathione. The finding was statistically significant (P <0.001). Conclusion: Increased inhalational exposure to air pollutants via working in traffic or coal mines can impose higher oxidative stress and DNA damage among workers as compared to the general population.
Collapse
Affiliation(s)
- Irfan Ullah
- Irfan Ullah, Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Muhammad Zahid
- Muhammad Zahid Department of Zoology, Islamia College, Peshawar, Pakistan
| | | | - Aatik Arsh
- Aatik Arsh KMU Institute of Physical Medicine and Rehabilitation, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
2
|
Veerakumar P, Lin KC. An overview of palladium supported on carbon-based materials: Synthesis, characterization, and its catalytic activity for reduction of hexavalent chromium. CHEMOSPHERE 2020; 253:126750. [PMID: 32302912 DOI: 10.1016/j.chemosphere.2020.126750] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Palladium plays a pivotal role in most of the industrial heterogeneous catalysts, because of its unique properties such as well-defined structure, great intrinsic carrier, outstanding electronic, mechanical and thermal stability. The combination of palladium and various porous carbons (PCs) can widen the use of heterogeneous catalysts. This review highlights the advantages and limitations of carbon supported palladium-based heterogeneous catalyst in reduction of toxic hexavalent chromium (Cr(VI)). In addition, we address recent progress on synthesis routes for mono and bimetallic palladium nanoparticles supported by various carbon composites including graphene-based materials, carbon nanotubes, mesoporous carbons, and activated carbons. The related reaction mechanisms for the Cr(VI) reduction are also suggested. Finally, the challenge and perspective are proposed.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC; Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC.
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC; Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
3
|
Das S, Czuni L, Báló V, Papp G, Gazdag Z, Papp N, Kőszegi T. Cytotoxic Action of Artemisinin and Scopoletin on Planktonic Forms and on Biofilms of Candida Species. Molecules 2020; 25:E476. [PMID: 31979177 PMCID: PMC7038054 DOI: 10.3390/molecules25030476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
We investigated the antifungal activities of purified plant metabolites artemisinin (Ar) and scopoletin (Sc) including inhibition, effects on metabolic activities, viability, and oxidative stress on planktonic forms and on preformed biofilms of seven Candida species. The characteristic minimum inhibitory concentration (MIC90) of Ar and Sc against Candida species ranged from 21.83-142.1 µg/mL and 67.22-119.4 µg/mL, respectively. Drug concentrations causing ≈10% CFU decrease within 60 minutes of treatments were also determined (minimum effective concentration, MEC10) using 100-fold higher CFUs than in the case of MIC90 studies. Cytotoxic effects on planktonic and on mature biofilms of Candida species at MEC10 concentrations were further evaluated with fluorescent live/dead discrimination techniques. Candida glabrata, Candida guilliermondii, and Candida parapsilosis were the species most sensitive to Ar and Sc. Ar and Sc were also found to promote the accumulation of intracellular reactive oxygen species (ROS) by increasing oxidative stress at their respective MEC10 concentrations against the tested planktonic Candida species. Ar and Sc possess dose-dependent antifungal action but the underlying mechanism type (fungistatic and fungicidal) is not clear yet. Our data suggest that Ar and Sc found in herbal plants might have potential usage in the fight against Candida biofilms.
Collapse
Affiliation(s)
- Sourav Das
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Ifjúság u. 13., Hungary;
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Lilla Czuni
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Viktória Báló
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
| | - Gábor Papp
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Zoltán Gazdag
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Nóra Papp
- Department of Pharmacognosy, University of Pécs, Faculty of Pharmacy, 7624 Pécs, Rókus u. 2, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Ifjúság u. 13., Hungary;
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| |
Collapse
|
4
|
Blaskó Á, Gazdag Z, Gróf P, Máté G, Sárosi S, Krisch J, Vágvölgyi C, Makszin L, Pesti M. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study. Apoptosis 2016; 22:175-187. [DOI: 10.1007/s10495-016-1321-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Abstract
The recent achievements and future directions in electrochemical quantification of toxic hexavalent chromium were outlined.
Collapse
Affiliation(s)
- Wei Jin
- Materials Research Center
- Missouri University of Science and Technology
- Rolla
- USA
| | - Kai Yan
- School of Engineering
- Brown University
- Providence
- USA
| |
Collapse
|
6
|
Gazdag Z, Máté G, Certik M, Türmer K, Virág E, Pócsi I, Pesti M. tert-Butyl hydroperoxide-induced differing plasma membrane and oxidative stress processes in yeast strains BY4741 and erg5Δ. J Basic Microbiol 2014; 54 Suppl 1:S50-62. [PMID: 24687861 DOI: 10.1002/jobm.201300925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/28/2014] [Indexed: 11/06/2022]
Abstract
The molecular mechanism of tert-butyl hydroperoxide (t-BuOOH) elicited cytotoxicity and the background of t-BuOOH sensitivity were studied in the Saccharomyces cerevisiae ergosterol-less gene deletion mutant erg5Δ and its parental strain BY4741. In comparison to BY4741, untreated erg5Δ cells exhibited alterations in sterol and fatty acid compositions of the plasma membrane, as reflected by the inherent amphotericin B resistance, an elevated level (31%) of plasma membrane rigidity and a decreased uptake of glycerol. Surprisingly, the untreated erg5Δ cells exhibited an unbalanced intracellular redox state, accompanied by the continuous upregulation of the antioxidant enzymes Mn superoxide dismutase, catalase, and glutathione S-transferase, which resulted in decreased specific concentrations of superoxide and peroxides and elevated levels of the hydroxyl radical and thiols. The 2.5-fold sensitivity of erg5Δ to t-BuOOH suggested that the oxidative stress adaptation processes of the mutant could not restore the redox homeostasis of the cells and there is an overlap between sterol and redox homeostases. t-BuOOH treatment of both strains induced adaptive modification of the sterol and fatty acid compositions, increased the plasma membrane fluidity and elevated the specific activities of most antioxidant enzymes through specific regulation processes in a strain-dependent manner.
Collapse
Affiliation(s)
- Zoltán Gazdag
- Faculty of Sciences, Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
7
|
Blaskó Á, Mike N, Gróf P, Gazdag Z, Czibulya Z, Nagy L, Kunsági-Máté S, Pesti M. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe. Food Chem Toxicol 2013; 59:636-42. [DOI: 10.1016/j.fct.2013.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
8
|
Kálmán N, Gazdag Z, Čertík M, Belágyi J, Selim SA, Pócsi I, Pesti M. Adaptation totert-butyl hydroperoxide at a plasma membrane level in the fission yeastSchizosaccharomyces pombeparental strain and itst-BuOOH-resistant mutant. J Basic Microbiol 2013; 54:215-25. [DOI: 10.1002/jobm.201200580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Nikoletta Kálmán
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
9
|
Mateescu C, Gabriel C, Raptopoulou C, Terzis A, Tangoulis V, Salifoglou A. pH-Specific synthesis, spectroscopic, structural and magnetic, and aqueous solution studies in the binary Cr(III)–quinato system. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Virág E, Belagyi J, Kocsubé S, Vágvölgyi C, Pesti M. Antifungal activity of the primycin complex and its main components A1, A2 and C1 on a Candida albicans clinical isolate, and their effects on the dynamic plasma membrane changes. J Antibiot (Tokyo) 2012; 66:67-72. [DOI: 10.1038/ja.2012.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Virág E, Juhász A, Kardos R, Gazdag Z, Papp G, Pénzes A, Nyitrai M, Vágvölgyi C, Pesti M. In vivo direct interaction of the antibiotic primycin on a Candida albicans clinical isolate and its ergosterol-less mutant. ACTA BIOLOGICA HUNGARICA 2012; 63:38-51. [PMID: 22453799 DOI: 10.1556/abiol.63.2012.1.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interaction of primycin antibiotic with plasma membrane, and its indirect biological effects were investigated in this study. The antifungal activity of primycin against 13 human pathogenic Candida ATCC and CBS reference species and 74 other Candida albicans clinical isolates was investigated with a microdilution technique. No primycin-resistant strain was detected. Direct interaction of primycin with the plasma membrane was demonstrated for the first time by using an ergosterol-producing strain 33erg+ and its ergosterol-less mutant erg-2. In growth inhibition tests, the 33erg+ strain proved to be more sensitive to primycin than its erg-2 mutant, indicating the importance of the plasma membrane composition in primycin-induced processes. The 64 μg ml-1 (56.8 nM) primycin treatment induced an enhanced membrane fluidity and altered plasma membrane dynamics, as measured by steady-state fluorescence anisotropy applying a trimethylammonium-diphenylhexatriene (TMA-DPH) fluorescence polarization probe. The following consequences were detected. The plasma membrane of the cells lost its barrier function, and the efflux of 260-nm-absorbing materials from treated cells of both strains was 1.5-1.8 times more than that for the control. Depending on the primycin concentration, the cells exhibited unipolar budding, pseudohyphae formation, and a rough cell surface visualized by scanning electron microscopy.
Collapse
Affiliation(s)
- Eszter Virág
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Virág E, Belagyi J, Gazdag Z, Vágvölgyi C, Pesti M. Direct in vivo interaction of the antibiotic primycin with the plasma membrane of Candida albicans: an EPR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:42-8. [PMID: 21978596 DOI: 10.1016/j.bbamem.2011.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
The direct interaction of the antibiotic primycin with the plasma membrane was investigated by employing the well-characterized ergosterol-producing, amphotericin B-sensitive parental Candida albicans strain 33erg(+) and its ergosterol-less amphotericin B-resistant plasma membrane mutant erg-2. The growth inhibition concentration in shaken liquid medium was 64 μgml(-1) for 33erg(+) and 128 μgml(-1) for erg-2, suggesting that the plasma membrane composition influences the mode of action of primycin. To determine the primycin-induced changes in the plasma membrane dynamic, electron paramagnetic resonance (EPR) spectroscopy methods were used, the spin-labeled fatty acid 5-(4,4-dimethyloxazolidine-N-oxyl)stearic acid) being applied for the in vivo measurements. The phase transition temperatures of untreated strain 33erg(+) and its mutant erg-2 were 12.5°C and 11°C, respectively. After 128 μgml(-1) primycin treatment, these values increased to 17.5°C and 16°C, revealing a significant reduction in the phospholipid flexibility. Saturation transfer EPR measurements demonstrated that, the rotational correlation times of the spin label molecule for the control samples of 33erg(+) and erg-2 were 60 ns and 100 ns. These correlation times gradually decreased on the addition of increasing primycin concentrations, reaching 8 μs and 1 μs. The results indicate the plasma membrane "rigidizing" effect of primycin, a feature that may stem from its ability to undergo complex formation with membrane constituent fatty acid molecules, causing alterations in the structures of phospholipids in the hydrophobic surface near the fatty acid chain region.
Collapse
Affiliation(s)
- Eszter Virág
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | |
Collapse
|
13
|
Interaction of chromium(III) complexes with model lipid bilayers: Implications on cellular uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:332-40. [DOI: 10.1016/j.bbamem.2010.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022]
|
14
|
Horváth E, Papp G, Belágyi J, Gazdag Z, Vágvölgyi C, Pesti M. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe. Food Chem Toxicol 2010; 48:1898-904. [DOI: 10.1016/j.fct.2010.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/25/2010] [Accepted: 04/21/2010] [Indexed: 11/30/2022]
|
15
|
Poljsak B, Pócsi I, Raspor P, Pesti M. Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol 2010; 50:21-36. [PMID: 19810050 DOI: 10.1002/jobm.200900170] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper deals with the interactions of chromium (Cr) with biological systems, focusing in particular on yeasts and fungi. These interactions are analysed with primarily regard to biochemical functions, but higher levels of organization are also considered. Thus, the morphological and cytological characteristics of selected microorganisms in response to exposure to chromium ions are evaluated. The different oxidation states of chromium and reactive oxygen species (ROS) generated in redox reactions with chromium ions are presented and characterized. The interactions of the most exposed subcellular structures, including the cell wall, plasma membrane and nuclei, have been deeply investigated in recent years, for two major reasons. The first is the toxicity of chromium ions and their strong impact on the metabolism of many species, ranging from microbes to humans. The second is the still disputed usefulness of chromium ions, and in particular trivalent chromium, in the glucose and fat metabolisms. Chromium pollution is still an important issue in many regions of the world, and various solutions have been proposed for the bioremediation of soil and water with selected microbial species. Yeasts and especially moulds have been most widely investigated from this aspect, and the biosorption and bioaccumulation of chromium for bioremediation purposes have been demonstrated. Accordingly, the mechanisms of chromium tolerance or resistance of selected microbes are of particular importance in both bioremediation and waste water treatment technologies. The mechanisms of chromium toxicity and detoxification have been studied extensively in yeasts and fungi, and some promising results have emerged in this area.
Collapse
Affiliation(s)
- Borut Poljsak
- Chair of Environmental Health, Faculty of Health Studies, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
16
|
Koósz Z, Gazdag Z, Miklós I, Benkő Z, Belágyi J, Antal J, Meleg B, Pesti M. Effects of decreased specific glutathione reductase activity in a chromate-tolerant mutant of Schizosaccharomyces pombe. Folia Microbiol (Praha) 2008; 53:308-14. [DOI: 10.1007/s12223-008-0048-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 03/07/2008] [Indexed: 12/01/2022]
|
17
|
Suwalsky M, Castro R, Villena F, Sotomayor C. Cr(III) exerts stronger structural effects than Cr(VI) on the human erythrocyte membrane and molecular models. J Inorg Biochem 2008; 102:842-9. [DOI: 10.1016/j.jinorgbio.2007.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 11/29/2022]
|
18
|
Levina A, Lay PA. Chemical properties and toxicity of chromium(III) nutritional supplements. Chem Res Toxicol 2008; 21:563-71. [PMID: 18237145 DOI: 10.1021/tx700385t] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The status of Cr(III) as an essential micronutrient for humans is currently under question. No functional Cr(III)-containing biomolecules have been definitively described as yet, and accumulated experience in the use of Cr(III) nutritional supplements (such as [Cr(pic) 3], where pic = 2-pyridinecarboxylato) has shown no measurable benefits for nondiabetic people. Although the use of large doses of Cr(III) supplements may lead to improvements in glucose metabolism for type 2 diabetics, there is a growing concern over the possible genotoxicity of these compounds, particularly of [Cr(pic) 3]. The current perspective discusses chemical transformations of Cr(III) nutritional supplements in biological media, with implications for both beneficial and toxic actions of Cr(III) complexes, which are likely to arise from the same biochemical mechanisms, dependent on concentrations of the reactive species. These species include: (i) partial hydrolysis products of Cr(III) nutritional supplements, which are capable of binding to biological macromolecules and altering their functions; and (ii) highly reactive Cr(VI/V/IV) species and organic radicals, formed in reactions of Cr(III) with biological oxidants. Low concentrations of these species are likely to cause alterations in cell signaling (including enhancement of insulin signaling) through interactions with the active centers of regulatory enzymes in the cell membrane or in the cytoplasm, while higher concentrations are likely to produce genotoxic DNA lesions in the cell nucleus. These data suggest that the potential for genotoxic side-effects of Cr(III) complexes may outweigh their possible benefits as insulin enhancers, and that recommendations for their use as either nutritional supplements or antidiabetic drugs need to be reconsidered in light of these recent findings.
Collapse
|
19
|
Fujs S, Ekert M, Scancar J, Raspor P. Induced cross-protection responses against Cr(III) and Fe(III) ions inSaccharomyces cerevisiae. J Basic Microbiol 2007; 47:301-8. [PMID: 17647208 DOI: 10.1002/jobm.200610266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stress tolerance of yeast Saccharomyces cerevisiae was examined after exposure to iron and chromium, which are essential minerals in low concentrations but can be toxic if present in high concentrations. Induction of possible cross-protection responses was performed with the yeast pre-treatment at the start of cultivation with low concentrations of Fe(III) or Cr(III) ions, which slightly inhibit the growth and the subsequent exposure to sub-lethal concentrations of Fe(III) or Cr(III) ions in the mid-exponential phase. No cross-protection was found if yeasts were pre-treated with 0.1 mM Cr(III) and subsequent exposure to 2.5 mM Fe(III) ions took place. If pre-treated with 0.1 mM Fe(III) Saccharomyces cerevisiae conferred protection to subsequent challenges with a sub-lethal concentration of 2.5 mM Cr(III) ions resulting in higher biomass formation and higher relative cell viability in comparison to cells without pre-treatment. It is shown for the first time that iron pre-treatment enhanced yeast condition against chromium related stress via cross-protection mechanism.
Collapse
Affiliation(s)
- Stefan Fujs
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
20
|
Gyetvai A, Emri T, Fekete A, Varga Z, Gazdag Z, Pesti M, Belágyi J, Emõdy L, Pócsi I, Lenkey B. High-dose methylprednisolone influences the physiology and virulence of Candida albicans ambiguously and enhances the candidacidal activity of the polyene antibiotic amphotericin B and the superoxide-generating agent menadione. FEMS Yeast Res 2007; 7:265-75. [PMID: 17266730 DOI: 10.1111/j.1567-1364.2006.00179.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although exposure of Candida albicans cells to high-dose (4 mM) methylprednisolone stimulated microbial growth, germination rate in serum and phospholipase release, it also promoted the recognition of C. albicans cells by polymorphonuclear leukocytes. Pretreatment of C. albicans cells with methylprednisolone did not result in any increase in the pathogenicity of the fungus in intraperitoneal and intravenous mouse assays. Therefore, the virulence of C. albicans is unlikely to increase in patients treated with comparably high-dose methylprednisolone on skin and mucosal membranes. Methylprednisolone treatments also increased the production of conjugated dienes and thiobarbituric acid-reactive substances, and the menadione sensitivity of C. albicans cells, which can be explained by a significant decrease in the specific activities of several antioxidant enzymes. The combination of methylprednisolone with oxidants, e.g. in topical applications, may be of clinical importance when the predisposition to candidiasis is high. Methylprednisolone treatments negatively affected membrane fluidity and decreased the antifungal effects of both the polyene antibiotic nystatin and the ergosterol biosynthesis inhibitor lovastatin, and also enhanced the deleterious effects of the polyene antimycotic amphotericin B on C. albicans cells. These corticosteroid-polyene drug interactions should be considered in the treatment of C. albicans infections in patients with prolonged topical application of corticosteroids.
Collapse
Affiliation(s)
- Agnes Gyetvai
- Department of Microbiology and Biotechnology, Faculty of Science, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gyetvai A, Emri T, Takács K, Dergez T, Fekete A, Pesti M, Pócsi I, Lenkey B. Lovastatin possesses a fungistatic effect against Candida albicans, but does not trigger apoptosis in this opportunistic human pathogen. FEMS Yeast Res 2007; 6:1140-8. [PMID: 17156011 DOI: 10.1111/j.1567-1364.2006.00097.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lovastatin inhibited the growth of Candida albicans in a fungistatic way. Although it triggers apoptosis in a great variety of eukaryotic cells, including many tumour cell lines, lovastatin failed to provoke apoptotic events in this human pathogen. The fungistatic behaviour of this statin might arise from its negative influence on membrane fluidity. Because yeast-->pseudomycelium and hyphae morphogenetic transitions took place under exposure to lovastatin morphogenetic switch and apoptotic cell death must be regulated independently in C. albicans.
Collapse
Affiliation(s)
- Agnes Gyetvai
- Department of Microbiology and Biotechnology, Faculty of Science, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 2006; 187:8437-49. [PMID: 16321948 PMCID: PMC1317002 DOI: 10.1128/jb.187.24.8437-8449.2005] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Caulobacter crescentus and related stalk bacterial species are known for their distinctive ability to live in low-nutrient environments, a characteristic of most heavy metal-contaminated sites. Caulobacter crescentus is a model organism for studying cell cycle regulation with well-developed genetics. We have identified the pathways responding to heavy-metal toxicity in C. crescentus to provide insights for the possible application of Caulobacter to environmental restoration. We exposed C. crescentus cells to four heavy metals (chromium, cadmium, selenium, and uranium) and analyzed genome-wide transcriptional activities postexposure using an Affymetrix GeneChip microarray. C. crescentus showed surprisingly high tolerance to uranium, a possible mechanism for which may be the formation of extracellular calcium-uranium-phosphate precipitates. The principal response to these metals was protection against oxidative stress (up-regulation of manganese-dependent superoxide dismutase sodA). Glutathione S-transferase, thioredoxin, glutaredoxins, and DNA repair enzymes responded most strongly to cadmium and chromate. The cadmium and chromium stress response also focused on reducing the intracellular metal concentration, with multiple efflux pumps employed to remove cadmium, while a sulfate transporter was down-regulated to reduce nonspecific uptake of chromium. Membrane proteins were also up-regulated in response to most of the metals tested. A two-component signal transduction system involved in the uranium response was identified. Several differentially regulated transcripts from regions previously not known to encode proteins were identified, demonstrating the advantage of evaluating the transcriptome by using whole-genome microarrays.
Collapse
Affiliation(s)
- Ping Hu
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 70A3317, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
23
|
Czakó-Vér K, Koósz Z, Antal J, Rácz T, Sipiczki M, Pesti M. Characterization of chromate-sensitive and -tolerant mutants of Schizosaccharomyces pombe. Folia Microbiol (Praha) 2004; 49:31-6. [PMID: 15114862 DOI: 10.1007/bf02931642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Stable chromium(VI)-sensitive and -tolerant mutants were obtained by induced mutagenesis of Schizosaccharomyces pombe lysine and leucine auxotrophic heterothallic strains 6chr+ and 9chr+. Eleven of them were selected for further studies. Fast transport of 51CrO4(2-) was detected in a representative sensitive mutant, chr-51S, while the tolerant mutant chr1-66T and the parental strain 6chr+ exhibited significantly lower 51CrO4(2-) uptake. The segregation of tetrads of three selected CrVI-tolerant mutants, chr1-66T, chr1-14T and chr2-04T, strongly indicated that tolerance was determined by single mutations. Random spore analysis proved that the mutations of chr1-66T and chr1-14T were allelic and the mutation of mutant chr2-04T was not allelic with the mutation of chr1-66T. Recombinants carrying the ura4D18 selective marker were created for transformation experiments. Two of them (chr1-661T and chr2-046T) can be used to clone and identify the genes responsible for their CrVI tolerance phenotype.
Collapse
Affiliation(s)
- K Czakó-Vér
- Department of General and Environmental Microbiology, Faculty of Science, University of Pécs, 7601 Pécs, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
Gazdag Z, Pesti M. Molecular mechanisms of action of chromium compounds in yeast (a short communication). Acta Microbiol Immunol Hung 2003; 49:277-8. [PMID: 12109158 DOI: 10.1556/amicr.49.2002.2-3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Z Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, P.O. Box 266, H-7601 Pécs, Hungary
| | | |
Collapse
|
25
|
Avery SV. Metal toxicity in yeasts and the role of oxidative stress. ADVANCES IN APPLIED MICROBIOLOGY 2002; 49:111-42. [PMID: 11757348 DOI: 10.1016/s0065-2164(01)49011-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S V Avery
- School of Life and Environmental Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
26
|
Karbownik M, Garcia JJ, Lewiński A, Reiter RJ. Carcinogen-induced, free radical-mediated reduction in microsomal membrane fluidity: reversal by indole-3-propionic acid. J Bioenerg Biomembr 2001; 33:73-8. [PMID: 11460928 DOI: 10.1023/a:1005628808688] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromium (Cr) is a well established carcinogen, with Cr(III) accounting for much of the intracellular oxidative damage that this transition metal induces. Indole-3-propionic acid (IPA), a melatonin-related molecule, is a reported antioxidant and free radical scavenger. Concentration (1, 10, 100, 500, or 1000 microM) and time (15, 30, 45, 60, or 90 min)-dependent effects of Cr(III) in the presence of H2O2 (0.5 mM), as well as the protective effect of IPA on Cr(III)-induced alterations in membrane fluidity (the inverse of membrane rigidity), as an index of membrane damage, were estimated by fluorescence spectroscopy. Cr(III), in a concentration- and a time-dependent manner, decreased membrane fluidity, with marked effects at a concentration of 500 microM and 60 min of incubation. IPA (5, 3, or 1 mM) prevented the Cr(III)-induced decrease in membrane fluidity. It is concluded that the carcinogen Cr(III), in the presence of H202, generates free radicals, which decrease membrane fluidity in rat microsomal membranes. Membrane alterations are pharmacologically prevented by the antioxidant IPA.
Collapse
Affiliation(s)
- M Karbownik
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, USA
| | | | | | | |
Collapse
|