1
|
Traglia G, Chiem K, Quinn B, Fernandez JS, Montaña S, Almuzara M, Mussi MA, Tolmasky ME, Iriarte A, Centrón D, Ramírez MS. Genome sequence analysis of an extensively drug-resistant Acinetobacter baumannii indigo-pigmented strain depicts evidence of increase genome plasticity. Sci Rep 2018; 8:16961. [PMID: 30446709 PMCID: PMC6240043 DOI: 10.1038/s41598-018-35377-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023] Open
Abstract
Acinetobacter baumannii is a multidrug resistant nosocomial pathogen that shows an outstanding ability to undergo genetic exchange, thereby acquiring different traits that contribute to its success. In this work, we identified genetic features of an indigo-pigmented A. baumannii strain (Ab33405) that belongs to the clonal complex CC113B/CC79P. Ab33405 possesses a high number of genes coding for antibiotic resistance and virulence factors that may contribute to its survival, not only in the human host, but also in the hospital environment. Thirteen genes conferring resistance to different antibiotic families (trimethoprim, florfenicol, β-lactams, aminoglycosides and sulfonamide) as well as the adeIJK genes and the capsule locus (KL) and outer core locus (OCL) were identified. Ab33405 includes 250 unique genes and a significant number of elements associated with Horizontal Gene Transfer, such as insertion sequences and transposons, genomic islands and prophage sequences. Also, the indigo-pigmented uncommon phenotype that could be associated with the monooxygenase or dioxygenase enzyme coded for by the iacA gene within the iac cluster was probably conferred by insertion of a 18-kb DNA fragment into the iacG gene belonging to this cluster. The Ab33405 genome includes all type VI secretion system genes and killing assays showed the ability of Ab33045 to kill Escherichia coli. In addition, Ab33405 can modulate susceptibility antibiotics when exposed to blue light.
Collapse
Affiliation(s)
- German Traglia
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kevin Chiem
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Brettni Quinn
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Jennifer S Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Sabrina Montaña
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa Almuzara
- Laboratorio de Bacteriología, Hospital Interzonal de Agudos Eva Perón, San Martín Buenos Aires, Argentina
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI- CONICET), Rosario, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Andres Iriarte
- Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA.
| |
Collapse
|
2
|
Arrigucci R, Pozzi G. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii. PLoS One 2017; 12:e0176117. [PMID: 28414782 PMCID: PMC5393624 DOI: 10.1371/journal.pone.0176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 12/05/2022] Open
Abstract
Bacterial cell division ends with the separation of the daughter cells, a process that requires peptidoglycan hydrolases (PGHs). Bacteria lacking cell separating PGHs are impaired in cell separation with the formation of long chains or clusters. We identified a gene in Streptococcus gordonii encoding for a putative glucosaminidase (lytB). The lytB isogenic mutant grew in long bacterial chains and resulted in impaired biofilm formation. Purified recombinant LytB showed a murolytic activity on Micrococcus lysodeikticus cell suspension and was able to disperse the long chains of the mutant, restoring the wild type diplococci/short chain phenotype. LytB protein was localized only in culture supernatant cell fraction of S. gordonii, and co-cultures of wild type and lytB mutant showed a significant reduction of bacterial chain length, indicating that LytB is a secreted enzyme. Our results demonstrate that LytB is a secreted peptidoglycan hydrolase required for S. gordonii cell separation.
Collapse
Affiliation(s)
- Riccardo Arrigucci
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
- * E-mail:
| | - Gianni Pozzi
- LAMMB, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Molecular properties of the glucosaminidase AcmA from Lactococcus lactis MG1363: mutational and biochemical analyses. Gene 2009; 447:61-71. [PMID: 19686822 DOI: 10.1016/j.gene.2009.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 08/05/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
Abstract
The major autolysin AcmA of Lactococcus lactis ssp. cremoris MG1363 is a modular protein consisting of an N-terminal signal sequence, a central enzymatic region (glu(acma) as a glucosaminidase), and a C-terminal cell-recognition domain (LysM123). glu(acma) (about 160 amino acids) belongs to the glycoside hydrolase (GH) 73 family, and the two acidic residues E128 and D153 have been thought to be catalytically important. In this study, amino-acid substitution analysis of AcmA was first carried out in the Escherichia coli system. Point mutations E94A, E94Q, E128A, D153A, and Y191A markedly reduced cell-lytic activity (3.8%, 1.1%, 4.2%, 4.8%, and 2.4%, respectively), whereas E128Q and D153N retained significant residual activities (32.1% and 44.0%, respectively). On the other hand, Y191F and Y191W mutations retained high activities (66.2% and 46.0%, respectively). These results showed that E94 (rather than E128 and D153) and the aromatic residue Y191 probably play important roles in catalysis of AcmA. Together with mutational analysis of another GH73 glucoaminidase Glu(atlwm) from the Staphylococcus warneri M autolysin Atl(WM), these results suggested that the GH73 members cleave a glycosidic bond via a substrate-assisted mechanism, as postulated in the GH20 members. AcmA and Glu(atlwm) were purified from E. coli recombinant cells, and their enzymatic properties were studied.
Collapse
|
4
|
Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S, Guédon E, Monnet V, Renault P, Kleerebezem M. New insights in the molecular biology and physiology ofStreptococcus thermophilusrevealed by comparative genomics. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Borges F, Layec S, Thibessard A, Fernandez A, Gintz B, Hols P, Decaris B, Leblond-Bourget N. cse, a Chimeric and variable gene, encodes an extracellular protein involved in cellular segregation in Streptococcus thermophilus. J Bacteriol 2005; 187:2737-46. [PMID: 15805520 PMCID: PMC1070363 DOI: 10.1128/jb.187.8.2737-2746.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation of a Streptococcus thermophilus CNRZ368 mutant displaying a long-chain phenotype allowed us to identify the cse gene (for cellular segregation). The N terminus of Cse exhibits high similarity to Streptococcus agalactiae surface immunogenic protein (SIP), while its C terminus exhibits high similarity to S. thermophilus PcsB. In CNRZ368, deletion of the entire cse open reading frame leads to drastic lengthening of cell chains and altered colony morphology. Complementation of the Deltacse mutation with a wild-type allele restored both wild-type phenotypes. The central part of Cse is a repeat-rich region with low sequence complexity. Comparison of cse from CNRZ368 and LMG18311 strains reveals high variability of this repeat-rich region. To assess the impact of this central region variability, the central region of LMG18311 cse was exchanged with that of CNRZ368 cse. This replacement did not affect chain length, showing that divergence of the central part does not modify cell segregation activity of Cse. The structure of the cse locus suggests that the chimeric organization of cse results from insertion of a duplicated sequence deriving from the pcsB 3' end into an ancestral sip gene. Thus, the cse locus illustrates the module-shuffling mechanism of bacterial gene evolution.
Collapse
Affiliation(s)
- Frédéric Borges
- Laboratoire de Génétique et Microbiologie, UMR INRA 1128, IFR 110, Faculté des Sciences et Techniques de l'Université Henri Poincaré Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Huard C, Miranda G, Redko Y, Wessner F, Foster SJ, Chapot-Chartier MP. Analysis of the peptidoglycan hydrolase complement of Lactococcus lactis: identification of a third N-acetylglucosaminidase, AcmC. Appl Environ Microbiol 2004; 70:3493-9. [PMID: 15184148 PMCID: PMC427759 DOI: 10.1128/aem.70.6.3493-3499.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptidoglycan hydrolase (PGH) complement of Lactococcus lactis was identified by amino acid sequence similarity searching of the L. lactis IL-1403 complete genome sequence. Five PGHs that are not encoded by prophages were detected, including the previously characterized AcmA and AcmB proteins. Four of these PGHs, AcmA to AcmD, contain a catalytic domain homologous to that of enterococcal muramidase, but they have different domain structures. The fifth one (YjgB) has sequence similarity with the active-site domain of peptidoglycan-specific endopeptidases. The three new PGH-encoding genes identified in this study are all actively transcribed in L. lactis subsp. cremoris MG1363. The relative abundance of their transcripts varied during growth and was maximal during the early exponential growth phase. The three encoded proteins have peptidoglycan-hydrolyzing activities which are detected only at acidic pHs by zymography. Like AcmA and AcmB, AcmC has N-acetylglucosaminidase activity rather than the N-acetylmuramidase activity predicted by sequence similarity.
Collapse
Affiliation(s)
- Carine Huard
- Unité de Biochimie et Structure des Protéines, INRA, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
8
|
Verheust CÃ, Fornelos N, Mahillon J. The Bacillus thuringiensis phage GIL01 encodes two enzymes with peptidoglycan hydrolase activity. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09709.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 2003; 278:23874-81. [PMID: 12684515 DOI: 10.1074/jbc.m211055200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal region (cA) of the major autolysin AcmA of Lactococcus lactis contains three highly similar repeated regions of 45 amino acid residues (LysM domains), which are separated by nonhomologous sequences. The cA domain could be deleted without destroying the cell wall-hydrolyzing activity of the enzyme in vitro. This AcmA derivative was capable neither of binding to lactococcal cells nor of lysing these cells while separation of the producer cells was incomplete. The cA domain and a chimeric protein consisting of cA fused to the C terminus of MSA2, a malaria parasite surface antigen, bound to lactococcal cells specifically via cA. The fusion protein also bound to many other Gram-positive bacteria. By chemical treatment of purified cell walls of L. lactis and Bacillus subtilis, peptidoglycan was identified as the cell wall component interacting with cA. Immunofluorescence studies showed that binding is on specific locations on the surface of L. lactis, Enterococcus faecalis, Streptococcus thermophilus, B. subtilis, Lactobacillus sake, and Lactobacillus casei cells. Based on these studies, we propose that LysM-type repeats bind to peptidoglycan and that binding is hindered by other cell wall constituents, resulting in localized binding of AcmA. Lipoteichoic acid is a candidate hindering component. For L. lactis SK110, it is shown that lipoteichoic acids are not uniformly distributed over the cell surface and are mainly present at sites where no MSA2cA binding is observed.
Collapse
Affiliation(s)
- Anton Steen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Huard C, Miranda G, Wessner F, Bolotin A, Hansen J, Foster SJ, Chapot-Chartier MP. Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:695-705. [PMID: 12634338 DOI: 10.1099/mic.0.25875-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene encoding a putative peptidoglycan hydrolase, named acmB, which is a paralogue of the major autolysin acmA gene, was identified in the Lactococcus lactis genome sequence. The acmB gene is transcribed in L. lactis MG1363 and its expression is modulated during cellular growth. The encoded AcmB protein has a modular structure with three domains: an N-terminal domain, especially rich in Ser, Thr, Pro and Asn residues, resembling a cell-wall-associated domain; a central domain homologous to the Enterococcus hirae muramidase catalytic domain; and a C-terminal domain of unknown function. A recombinant AcmB derivative, devoid of its N-terminal domain, was expressed in Escherichia coli. It exhibited hydrolysing activity on the peptidoglycan of several Gram-positive bacteria, including L. lactis. Though showing sequence similarity with enterococcal muramidase, AcmB has N-acetylglucosaminidase specificity. The acmB gene was inactivated in order to evaluate the role of the enzyme. AcmB does not appear to be involved in cell separation but contributes to cellular autolysis.
Collapse
Affiliation(s)
- Carine Huard
- Unité de Biochimie et Structure des Protéines, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Guy Miranda
- Unité de Biochimie et Structure des Protéines, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Françoise Wessner
- Unité de Biochimie et Structure des Protéines, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Alexander Bolotin
- Unité de Biochimie et Unité de Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Jonathan Hansen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
11
|
Kang OJ, Laberge S, Simard RE. Detection and localization of a peptidoglycan hydrolase in Lactobacillus delbrueckii subsp. bulgaricus. J Dairy Sci 2003; 86:96-104. [PMID: 12613853 DOI: 10.3168/jds.s0022-0302(03)73588-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptidoglycan hydrolase activities in Lactobacillus delbrueckii subsp. bulgaricus were detected by analysis of bacterial extracts on denaturing polyacrylamide gel electrophoresis containing lyophilized Micrococcus lysodeikticus cells as substrate. A hydrolase with an estimated molecular mass of 80 kDa was found to cross-react on Western blot with monoclonal antibodies raised against muramidase-2 of Enterococcus hirae. These antibodies were also used to demonstrate that the method of cell sample preparation affected protein detection. Slot and Western blots indicate that the peptidoglycan hydrolase from L. bulgaricus is bound to the cell wall. Immuno-labeling followed by optical and electron microscopic observations suggest that this hydrolase is intracellular and restricted mainly to the space between the membrane and the cell wall.
Collapse
Affiliation(s)
- O J Kang
- Faculty des Sciences de l'Agriculture et de l'Alimentation, Centre de Richerche en Sciences et Technologie du Lait, Université Laval, Québec, Canada, G1K 7P4
| | | | | |
Collapse
|
12
|
Cibik R, Tailliez P, Langella P, Chapot-Chartier MP. Identification of Mur, an atypical peptidoglycan hydrolase derived from Leuconostoc citreum. Appl Environ Microbiol 2001; 67:858-64. [PMID: 11157255 PMCID: PMC92659 DOI: 10.1128/aem.67.2.858-864.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2000] [Accepted: 10/24/2000] [Indexed: 11/20/2022] Open
Abstract
A gene encoding a protein homologous to known bacterial N-acetyl-muramidases has been cloned from Leuconostoc citreum by a PCR-based approach. The encoded protein, Mur, consists of 209 amino acid residues with a calculated molecular mass of 23,821 Da including a 31-amino-acid putative signal peptide. In contrast to most of the other known peptidoglycan hydrolases, L. citreum Mur protein does not contain amino acid repeats involved in cell wall binding. The purified L. citreum Mur protein was shown to exhibit peptidoglycan-hydrolyzing activity by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An active chimeric protein was constructed by fusion of L. citreum Mur to the C-terminal repeat-containing domain (cA) of AcmA, the major autolysin of Lactococcus lactis. Expression of the Mur-cA fusion protein was able to complement an acmA mutation in L. lactis; normal cell separation after cell division was restored by Mur-cA expression.
Collapse
Affiliation(s)
- R Cibik
- Unité de Recherches Laitières et Génétique Appliquée, INRA, 78352 Jouy-en-Josas Cedex, France
| | | | | | | |
Collapse
|
13
|
Lei B, Mackie S, Lukomski S, Musser JM. Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect Immun 2000; 68:6807-18. [PMID: 11083799 PMCID: PMC97784 DOI: 10.1128/iai.68.12.6807-6818.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular proteins made by group A Streptococcus (GAS) play critical roles in the pathogenesis of human infections caused by this bacterium. Although many extracellular GAS proteins have been identified and characterized, there has been no systematic analysis of culture supernatant proteins. Proteins present in the culture supernatant of strains of serotype M1 (MGAS 5005) and M3 (MGAS 315) mutants lacking production of the major extracellular cysteine protease were separated by two-dimensional gel electrophoresis and identified by amino-terminal amino acid sequencing and interrogation of available databases, including a serotype M1 genome sequence. In the aggregate, amino-terminal amino acid sequence data for 66 protein spots were generated, 53 unique sequences were obtained, and 44 distinct proteins were identified. Sixteen of the 44 proteins had apparent secretion signal sequences and 27 proteins did not. Eight of the 16 proteins with apparent secretion signal sequences have not been previously described for GAS. Antibodies against most of the apparently secreted proteins were present in sera from mice infected subcutaneously with MGAS 5005 or MGAS 315. Humans with documented GAS infections (pharyngitis, acute rheumatic fever, and severe invasive disease) also had serum antibodies reacting with many of the apparently secreted proteins, indicating that they were synthesized in the course of GAS-human interaction. The genes encoding four of the eight previously undescribed and apparently secreted culture supernatant proteins were cloned, and the proteins were overexpressed in Escherichia coli. Western blot analysis with these recombinant proteins and sera from GAS-infected mice and humans confirmed the immunogenicity of these proteins. Taken together, the data provide new information about the molecular aspects of GAS-host interactions.
Collapse
Affiliation(s)
- B Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Molecular genetics of thermophilic lactic acid bacteria has advanced in several directions: exploitation of the milk proteins and sugars; primary and secondary metabolism; stress response; and molecular ecology of bacteria and their phages. These have singularly contributed to open new avenues of scientific interest in the field: comparative phage genomics; horizontal gene transfer events in bacterial or phage populations; and genetics of external polysaccharide production.
Collapse
Affiliation(s)
- J Delcour
- Université Catholique de Louvain, Unité de Génétique, Croix du Sud, 5 B-1348, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|