1
|
Zevallos-Aliaga D, De Graeve S, Obando-Chávez P, Vaccari NA, Gao Y, Peeters T, Guerra DG. Highly Sensitive Whole-Cell Mercury Biosensors for Environmental Monitoring. BIOSENSORS 2024; 14:246. [PMID: 38785720 PMCID: PMC11117708 DOI: 10.3390/bios14050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture's response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 μM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury-gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+-a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury.
Collapse
Affiliation(s)
- Dahlin Zevallos-Aliaga
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Stijn De Graeve
- Open BioLab Brussels, Erasmushogeschool Brussel, Laarbeeklaan 121, B-1090 Jette, Belgium
| | - Pamela Obando-Chávez
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Nicolás A. Vaccari
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Yue Gao
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Tom Peeters
- Open BioLab Brussels, Erasmushogeschool Brussel, Laarbeeklaan 121, B-1090 Jette, Belgium
| | - Daniel G. Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| |
Collapse
|
2
|
Hui CY, Ma BC, Hu SY, Wu C. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123016. [PMID: 38008253 DOI: 10.1016/j.envpol.2023.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Mercury (Hg) and its inorganic and organic compounds significantly threaten the ecosystem and human health. However, the natural and anthropogenic Hg environmental inputs exceed 5000 metric tons annually. Hg is usually discharged in elemental or ionic forms, accumulating in surface water and sediments where Hg-methylating microbes-mediated biotransformation occurs. Microbial genetic factors such as the mer operon play a significant role in the complex Hg biogeochemical cycle. Previous reviews summarize the fate of environmental Hg, its biogeochemistry, and the mechanism of bacterial Hg resistance. This review mainly focuses on the mer operon and its components in detecting, absorbing, bioaccumulating, and detoxifying environmental Hg. Four components of the mer operon, including the MerR regulator, divergent mer promoter, and detoxification factors MerA and MerB, are rare bio-parts for assembling synthetic bacteria, which tackle pollutant Hg. Bacteria are designed to integrate synthetic biology, protein engineering, and metabolic engineering. In summary, this review highlights that designed bacteria based on the mer operon can potentially sense and bioremediate pollutant Hg in a green and low-cost manner.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shun-Yu Hu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Can Wu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
3
|
Hui CY, Hu SY, Li LM, Yun JP, Zhang YF, Yi J, Zhang NX, Guo Y. Metabolic engineering of the carotenoid biosynthetic pathway toward a specific and sensitive inorganic mercury biosensor. RSC Adv 2022; 12:36142-36148. [PMID: 36545109 PMCID: PMC9756418 DOI: 10.1039/d2ra06764a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The toxicity of mercury (Hg) mainly depends on its form. Whole-cell biosensors respond selectively to toxic Hg(ii), efficiently transformed by environmental microbes into methylmercury, a highly toxic form that builds up in aquatic animals. Metabolically engineered Escherichia coli (E. coli) have successfully produced rainbow colorants. By de novo reconstruction of the carotenoid synthetic pathway, the Hg(ii)-responsive production of lycopene and β-carotene enabled programmed E. coli to potentially become an optical biosensor for the qualitative and quantitative detection of ecotoxic Hg(ii). The red color of the lycopene-based biosensor cell pellet was visible upon exposure to 49 nM Hg(ii) and above. The orange β-carotene-based biosensor responded to a simple colorimetric assay as low as 12 nM Hg(ii). A linear response was observed at Hg(ii) concentrations ranging from 12 to 195 nM. Importantly, high specificity and good anti-interference capability suggested that metabolic engineering of the carotenoid biosynthesis was an alternative to developing a visual platform for the rapid analysis of the concentration and toxicity of Hg(ii) in environmentally polluted water.
Collapse
Affiliation(s)
- Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Shun-yu Hu
- Department of Toxicology, School of Public Health, Southern Medical UniversityGuangzhou 510515China
| | - Li-mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Jian-pei Yun
- Physical & Chemical Testing Laboratory, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Yan-fang Zhang
- Physical & Chemical Testing Laboratory, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Yan Guo
- Department of Toxicology, School of Public Health, Southern Medical UniversityGuangzhou 510515China,National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| |
Collapse
|
4
|
Hui CY, Guo Y, Li H, Chen YT, Yi J. Differential Detection of Bioavailable Mercury and Cadmium Based on a Robust Dual-Sensing Bacterial Biosensor. Front Microbiol 2022; 13:846524. [PMID: 35495723 PMCID: PMC9043898 DOI: 10.3389/fmicb.2022.846524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Genetically programmed biosensors have been widely used to monitor bioavailable heavy metal pollutions in terms of their toxicity to living organisms. Most bacterial biosensors were initially designed to detect specific heavy metals such as mercury and cadmium. However, most available biosensors failed to distinguish cadmium from various heavy metals, especially mercury. Integrating diverse sensing elements into a single genetic construct or a single host strain has been demonstrated to quantify several heavy metals simultaneously. In this study, a dual-sensing construct was assembled by employing mercury-responsive regulator (MerR) and cadmium-responsive regulator (CadR) as the separate sensory elements and enhanced fluorescent protein (eGFP) and mCherry red fluorescent protein (mCherry) as the separate reporters. Compared with two corresponding single-sensing bacterial sensors, the dual-sensing bacterial sensor emitted differential double-color fluorescence upon exposure to 0–40 μM toxic Hg(II) and red fluorescence upon exposure to toxic Cd(II) below 200 μM. Bioavailable Hg(II) could be quantitatively determined using double-color fluorescence within a narrow concentration range (0–5 μM). But bioavailable Cd(II) could be quantitatively measured using red fluorescence over a wide concentration range (0–200 μM). The dual-sensing biosensor was applied to detect bioavailable Hg(II) and Cd(II) simultaneously. Significant higher red fluorescence reflected the predominant pollution of Cd(II), and significant higher green fluorescence suggested the predominant pollution of Hg(II). Our findings show that the synergistic application of various sensory modules contributes to an efficient biological device that responds to concurrent heavy metal pollutants in the environment.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Han Li
- College of Lab Medicine, Hebei North University, Zhangjiakou, China
| | - Yu-Ting Chen
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
5
|
Golden Gate Assembly of Aerobic and Anaerobic Microbial Bioreporters. Appl Environ Microbiol 2021; 88:e0148521. [PMID: 34705553 DOI: 10.1128/aem.01485-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial bioreporters provide direct insight into cellular processes by producing a quantifiable signal dictated by reporter gene expression. The core of a bioreporter is a genetic circuit in which a reporter gene (or operon) is fused to promoter and regulatory sequences that govern its expression. In this study, we develop a system for constructing novel Escherichia coli bioreporters based on Golden Gate assembly, a synthetic biology approach for the rapid and seamless fusion of DNA fragments. Gene circuits are generated by fusing promoter and reporter sequences encoding yellow fluorescent protein, mCherry, bacterial luciferase, and an anaerobically active flavin-based fluorescent protein. We address a barrier to the implementation of Golden Gate assembly by designing a series of compatible destination vectors that can accommodate the assemblies. We validate the approach by measuring the activity of constitutive bioreporters and mercury and arsenic biosensors in quantitative exposure assays. We also demonstrate anaerobic quantification of mercury and arsenic in biosensors that produce flavin-based fluorescent protein, highlighting the expanding range of redox conditions that can be examined by microbial bioreporters. IMPORTANCE Microbial bioreporters are versatile genetic tools with wide-ranging applications, particularly in the field of environmental toxicology. For example, biosensors that produce a signal output in the presence of a specific analyte offer less costly alternatives to analytical methods for the detection of environmental toxins such as mercury and arsenic. Biosensors of specific toxins can also be used to test hypotheses regarding mechanisms of uptake, toxicity, and biotransformation. In this study, we develop an assembly platform that uses a synthetic biology technique to streamline construction of novel Escherichia coli bioreporters that produce fluorescent or luminescent signals either constitutively or in response to mercury and arsenic exposure. Beyond the synthesis of novel biosensors, our assembly platform can be adapted for numerous applications, including labelling bacteria for fluorescent microscopy, developing gene expression systems, and modifying bacterial genomes.
Collapse
|
6
|
Hui CY, Guo Y, Wu J, Liu L, Yang XQ, Guo X, Xie Y, Yi J. Detection of Bioavailable Cadmium by Double-Color Fluorescence Based on a Dual-Sensing Bioreporter System. Front Microbiol 2021; 12:696195. [PMID: 34603225 PMCID: PMC8481780 DOI: 10.3389/fmicb.2021.696195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is carcinogenic to humans and can accumulate in the liver, kidneys, and bones. There is widespread presence of cadmium in the environment as a consequence of anthropogenic activities. It is important to detect cadmium in the environment to prevent further exposure to humans. Previous whole-cell biosensor designs were focused on single-sensing constructs but have had difficulty in distinguishing cadmium from other metal ions such as lead (Pb) and mercury (Hg). We developed a dual-sensing bacterial bioreporter system to detect bioavailable cadmium by employing CadC and CadR as separate metal sensory elements and eGFP and mCherry as fluorescent reporters in one genetic construct. The capability of this dual-sensing biosensor was proved to simultaneously detect bioavailable cadmium and its toxic effects using two sets of sensing systems while still maintaining similar specificity and sensitivity of respective signal-sensing biosensors. The productions of double-color fluorescence were directly proportional to the exposure concentration of cadmium, thereby serving as an effective quantitative biosensor to detect bioavailable cadmium. This novel dual-sensing biosensor was then validated to respond to Cd(II) spiked in environmental water samples. This is the first report of the development of a novel dual-sensing, whole-cell biosensor for simultaneous detection of bioavailable cadmium. The application of two biosensing modules provides versatile biosensing signals and improved performance that can make a significant impact on monitoring high concentration of bioavailable Cd(II) in environmental water to reduce human exposure to the harmful effects of cadmium.
Collapse
Affiliation(s)
- Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Jian Wu
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Ambler, PA, United States
| | - Xue-qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Xiang Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Ying Xie
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
7
|
Hui CY, Guo Y, Li LM, Liu L, Chen YT, Yi J, Zhang NX. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl Microbiol Biotechnol 2021; 105:6087-6102. [PMID: 34291315 DOI: 10.1007/s00253-021-11441-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
During the last few decades, whole-cell biosensors have attracted increasing attention for their enormous potential in monitoring bioavailable heavy metal contaminations in the ecosystem. Visual and measurable output signals by employing natural pigments have been demonstrated to offer another potential choice to indicate the existence of bioavailable heavy metals in recent years. The biosynthesis of the blue pigment indigoidine has been achieved in E. coli following heterologous expression of both BpsA (a single-module non-ribosomal peptide synthetase) and PcpS (a PPTase to activate apo-BpsA). Moreover, we demonstrated herein the development of the indigoidine-based whole-cell biosensors to detect bioavailable Hg(II) and Pb(II) in water samples by employing metal-responsive transcriptional regulator MerR and PbrR as the sensory elements, and the indigoidine biosynthesis gene cluster as a reporter element. The resulting indigoidine-based biosensors presented a good selectivity and high sensitivity to target metal ions. High concentration of target metal exposure could be clearly recognized by the naked eye due to the color change by the secretion of indigoidine, and quantified by measuring the absorbance of the culture supernatants at 600 nm. Dose-response relationships existed between the exposure concentrations of target heavy metals and the production of indigoidine. Although fairly good linear relationships were obtained in a relatively limited concentration range of the concentrations of heavy metal ions, these findings suggest that genetically controlled indigoidine biosynthesis triggered by the MerR family transcriptional regulator can enable a sensitive, visual, and qualitative whole-cell biosensor for bioindicating the presence of bioaccessible heavy metal in environmental water samples. KEY POINTS: • Biosynthesis pathway of indigoidine reconstructed in a high copy number plasmid in E. coli. • Visual and colorimetric detection of Hg(II) and Pb(II) by manipulation of indigoidine biosynthesis through MerR family metalloregulator. •Enhanced detection sensitivity toward Hg(II) and Pb(II) achieved using novel pigment-based whole-cell biosensors.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yu-Ting Chen
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
8
|
Guo Y, Hui CY, Liu L, Chen MP, Huang HY. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci Rep 2021; 11:13516. [PMID: 34188121 PMCID: PMC8242042 DOI: 10.1038/s41598-021-92878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Engineered microorganisms have proven to be a highly effective and robust tool to specifically detect heavy metals in the environment. In this study, a highly specific pigment-based whole-cell biosensor has been investigated for the detection of bioavailable Hg(II) based on an artificial heavy metal resistance operon. The basic working principle of biosensors is based on the violacein biosynthesis under the control of mercury resistance (mer) promoter and mercury resistance regulator (MerR). Engineered biosensor cells have been demonstrated to selectively respond to Hg(II), and the specific response was not influenced by interfering metal ions. The response of violacein could be recognized by the naked eye, and the time required for the maximum response of violacein (5 h) was less than that of enhanced green fluorescence protein (eGFP) (8 h) in the single-signal output constructs. The response of violacein was almost unaffected by the eGFP in a double-promoter controlled dual-signals output construct. However, the response strength of eGFP was significantly decreased in this genetic construct. Exponentially growing violacein-based biosensor detected concentrations as low as 0.39 μM Hg(II) in a colorimetric method, and the linear relationship was observed in the concentration range of 0.78-12.5 μM. Non-growing biosensor cells responded to concentrations as low as 0.006 μM Hg(II) in a colorimetric method and in a Hg(II) containing plate sensitive assay, and the linear relationship was demonstrated in a very narrow concentration range. The developed biosensor was finally validated for the detection of spiked bioavailable Hg(II) in environmental water samples.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Min-Peng Chen
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-Ying Huang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
9
|
Zhang NX, Guo Y, Li H, Yang XQ, Gao CX, Hui CY. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury. PLoS One 2021; 16:e0252190. [PMID: 34038487 PMCID: PMC8153442 DOI: 10.1371/journal.pone.0252190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/11/2021] [Indexed: 01/17/2023] Open
Abstract
Mercury exists naturally and mainly as a man-made pollutant in the environment, where it exerts adverse effects on local ecosystems and living organisms. It is important to develop an appropriate synthetic biological device that recognizes, detects and removes the bioavailable fraction of environmental mercury. Both single-signal and double-signal output mercury biosensors were assembled using a natural mer operon as a template. Selectivity and sensitivity of whole-cell biosensors based on artificial mer operons were determined. Three whole-cell biosensors were highly stable at very high concentrations of mercuric chloride, and could detect bioavailable Hg(II) in the concentration range of 6.25-200 μM HgCl2. A novel Hg(II) bioadsorption coupled with biosensing artificial mer operon was assembled. This would allow Hg(II)-induced Hg(II) binding protein cell surface display and green fluorescence emission to be achieved simultaneously while retaining the linear relationship between fluorescent signal and Hg(II) exposure concentration. The present study provides an innovative way to simultaneously detect, quantify, and remove bioavailable heavy metal ions using an artificially reconstructed heavy metal resistance operon.
Collapse
Affiliation(s)
- Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hui Li
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Xue-Qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chao-xian Gao
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
10
|
Guo Y, Hui CY, Zhang NX, Liu L, Li H, Zheng HJ. Development of Cadmium Multiple-Signal Biosensing and Bioadsorption Systems Based on Artificial Cad Operons. Front Bioeng Biotechnol 2021; 9:585617. [PMID: 33644011 PMCID: PMC7902519 DOI: 10.3389/fbioe.2021.585617] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/22/2021] [Indexed: 02/04/2023] Open
Abstract
The development of genetic engineering, especially synthetic biology, greatly contributes to the development of novel metal biosensors. The cad operon encoding cadmium resistance was previously characterized from Pseudomonas putida. In this study, single-, dual-, and triple-signal output Cd(II) biosensors were successfully developed using artificial translationally coupled cad operons. Sensitivity, selectivity, and response toward Cd(II) and Hg(II), of three biosensors were all determined. Reporter signals of three biosensors all increased within the range 0.1-3.125 μM Cd(II). Three biosensors responded strongly to Cd(II), and weakly to Hg(II). However, the detection ranges of Cd(II) and Hg(II) do not overlap in all three biosensors. Next, novel Cd(II) biosensing coupled with bioadsorptive artificial cad operons were assembled for the first time. Cd(II)-induced fluorescence emission, enzymatic indication, and Cd(II) binding protein surface display can be achieved simultaneously. This study provides an example of one way to realize multiple signal outputs and bioadsorption based on the redesigned heavy metal resistance operons, which may be a potential strategy for biodetection and removal of toxic metal in the environment, facilitating the study of the mechanism and dynamics of bioremediation.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hui Li
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-ju Zheng
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
11
|
Baya G, Muhindi S, Ngendahimana V, Caguiat J. Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02. MICROMACHINES 2021; 12:mi12020142. [PMID: 33572806 PMCID: PMC7911910 DOI: 10.3390/mi12020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 01/15/2023]
Abstract
Cell-based biosensors harness a cell's ability to respond to the environment by repurposing its sensing mechanisms. MerR family proteins are activator/repressor switches that regulate the expression of bacterial metal resistance genes and have been used in metal biosensors. Upon metal binding, a conformational change switches gene expression from off to on. The genomes of the multimetal resistant bacterial strains, Stenotrophomonas maltophilia Oak Ridge strain 02 (S. maltophilia 02) and Enterobacter sp. YSU, were recently sequenced. Sequence analysis and gene cloning identified three mercury resistance operons and three MerR switches in these strains. Transposon mutagenesis and sequence analysis identified Enterobacter sp. YSU zinc and copper resistance operons, which appear to be regulated by the protein switches, ZntR and CueR, respectively. Sequence analysis and reverse transcriptase polymerase chain reaction (RT-PCR) showed that a CueR switch appears to activate a S. maltophilia 02 copper transport gene in the presence of CuSO4 and HAuCl4·3H2O. In previous studies, genetic engineering replaced metal resistance genes with the reporter genes for β-galactosidase, luciferase or the green fluorescence protein (GFP). These produce a color change of a reagent, produce light, or fluoresce in the presence of ultraviolet (UV) light, respectively. Coupling these discovered operons with reporter genes has the potential to create whole-cell biosensors for HgCl2, ZnCl2, CuSO4 and HAuCl4·3H2O.
Collapse
Affiliation(s)
- Georgina Baya
- Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA;
| | - Stephen Muhindi
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Valentine Ngendahimana
- Biology Department, Lone Star College-CyFair, 9191 Barker Cypress Rd, Cypress, TX 77433, USA;
| | - Jonathan Caguiat
- Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA;
- Correspondence: ; Tel.: +1-330-941-2063
| |
Collapse
|
12
|
Biosensor Design for Detection of Mercury in Contaminated Soil Using Rhamnolipid Biosurfactant and Luminescent Bacteria. J CHEM-NY 2020. [DOI: 10.1155/2020/9120959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, a biosensor is designed to remove mercury as a toxic metal contaminant from the soil. The rhamnolipid biosurfactant was used to extract the mercury sorbed to soil to the aqueous phase. An immobilized bioluminescent bacterium (Escherichia coli MC106) with pmerRBPmerlux plasmid is assisted for mercury detection. A significant decrease in luminescence level was observed in a biosensor system containing contaminated soil sample extract. The concentrations of extracting mercury are well correlated with the mercury toxicity data obtained from experimental biosensor systems according to the RBL value. The optimum aeration rate of 20 ml/min was obtained for the biosensor systems. The advantage of such a biosensor is the in situ quantification of mercury as a heavy metal contaminant in soils. Therefore, this system could be proposed as a good biosensor-based alternative for future detection of heavy toxic metals in soils.
Collapse
|
13
|
Askari F, Rahdar A, Dashti M, Trant JF. Detecting Mercury (II) and Thiocyanate Using "Turn-on" Fluorescence of Graphene Quantum Dots. J Fluoresc 2020; 30:1181-1187. [PMID: 32691262 DOI: 10.1007/s10895-020-02586-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022]
Abstract
In this work, 1.8 nm graphene quantum dots (GQDs), exhibiting bright blue fluorescence, were prepared using a bottom-up synthesis from citric acid. The fluorescence of the GQDs could be almost completely quenched (about 96%) by adding Hg2+. Quenching was far less efficient with other similar heavy metals, Tl+, Pb2+ and Bi3+. Fluorescence could be near quantitatively restored through the introduction of thiocyanate. This "turn-on" fluorescence can thus be used to detect both or either environmental and physiological contaminants mercury and thiocyanate and could prove useful for the development of simple point-of-care diagnostics in the future. Graphical Abstract.
Collapse
Affiliation(s)
- Faezeh Askari
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran.
| | - Mohadeseh Dashti
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
14
|
Du R, Guo M, He X, Huang K, Luo Y, Xu W. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors. Anal Chim Acta 2019; 1084:85-92. [PMID: 31519238 DOI: 10.1016/j.aca.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/19/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
Whole cell biosensors offer high potential for the detection of heavy metals in a manner that is simple, rapid and low-cost. However, previous researchers have paid little attention to the impacts of construction models on the performance of these biosensors, thereby limiting the achievement of rational design and the optimization of detection characteristics. Herein, for the first time, three basic models of lead and mercury detection circuits, namely feedback coupled, uncoupled and semi-coupled models, have been constructed and compared to explore the effects of uncoupling the topology of sensing circuits on the reporter signals. The results demonstrated that the uncoupled model had better sensitivity for both lead (50 nM) and mercury (1 nM), while the feedback coupled circuits had a wider detection range for mercury (10 nM - 7.5 μM). Introducing the semi-coupled model into the comparison revealed that both the type and location of promoters for regulatory protein genes were key factors for sensitivity. Moreover, the detection characteristics of the uncoupled biosensors were robust, as conditions such as induction time, the concentration of microbial cells, and the concentration of antibiotics had little interference on the performance of the microbial biosensors. This study also established a novel and simple pre-treatment method for sample detection by biosensors. When the uncoupled microbial biosensor was put into practice, the concentration levels of mercury in milk and lead in sewage were determined quickly and accurately. Our study, therefore, provides a strategy for the rational design of whole cell heavy metal biosensors and has developed the potential of their application.
Collapse
Affiliation(s)
- Ruoxi Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Mingzhang Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China.
| |
Collapse
|
15
|
Chang J, Duan Y, Dong J, Shen S, Si G, He F, Yang Q, Chen J. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:676-684. [PMID: 30939320 DOI: 10.1016/j.scitotenv.2019.03.409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Reducing Hg contamination in soil using eco-friendly approaches has attracted increasing attention in recent years. In this study, a novel multi-metal-resistant Hg-volatilizing fungus belonging to Lecythophora sp., DC-F1, was isolated from multi-metal-polluted mining-area soil, and its performance in reducing Hg bioavailability in soil when used in combination with biochar was investigated. The isolate displayed a minimum inhibitory concentration of 84.5mg·L-1 for Hg(II) and volatilized >86% of Hg(II) from LB liquid medium with an initial concentration of 7.0mg·L-1 within 16h. Hg(II) contents in soils and grown lettuce shoots decreased by 13.3-26.1% and 49.5-67.7%, respectively, with DC-F1 and/or biochar addition compared with a control over 56days of incubation. Moreover, treatment with both bioagents achieved the lowest Hg content in lettuce shoots. Hg presence and DC-F1 addition significantly decreased the number of fungal ITS gene copies in soils. High-throughput sequencing showed that the soil fungal community compositions were more largely influenced by DC-F1 addition than by biochar addition, with the proportion of Mortierella increasing and those of Penicillium and Thielavia decreasing with DC-F1 addition. Developing the coupling of Lecythophora sp. DC-F1 with biochar into a feasible approach for the recovery of Hg-contaminated soils is promising.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Yijun Duan
- Yunnan Institute of Environmental Science (Kunming China International Research Center for Plateau Lakes), Kunming 650034, PR China
| | - Jia Dong
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Shili Shen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Guangzheng Si
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Fang He
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Qingchen Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Jinquan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
16
|
Complete Genome Sequence of Escherichia coli MT102, a Plasmid-Free Recipient Resistant to Rifampin, Azide, and Streptomycin, Used in Conjugation Experiments. Microbiol Resour Announc 2019; 8:8/20/e00383-19. [PMID: 31097507 PMCID: PMC6522792 DOI: 10.1128/mra.00383-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We present here the complete genome sequence of Escherichia coli MT102, which is resistant to rifampin, azide, and streptomycin and is used as a recipient in plasmid transfer experiments. The sequence will be utilized for chromosomal read removal in plasmid sequence analyses obtained from transconjugants within this strain and in comprehensive genetic studies. We present here the complete genome sequence of Escherichia coli MT102, which is resistant to rifampin, azide, and streptomycin and is used as a recipient in plasmid transfer experiments. The sequence will be utilized for chromosomal read removal in plasmid sequence analyses obtained from transconjugants within this strain and in comprehensive genetic studies.
Collapse
|
17
|
Sensitive and Specific Whole-Cell Biosensor for Arsenic Detection. Appl Environ Microbiol 2019; 85:AEM.00694-19. [PMID: 30952659 DOI: 10.1128/aem.00694-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 01/30/2023] Open
Abstract
Whole-cell biosensors (WCBs) have been designed to detect As(III), but most suffer from poor sensitivity and specificity. In this paper, we developed an arsenic WCB with a positive feedback amplifier in Escherichia coli DH5α. The output signal from the reporter mCherry was significantly enhanced by the positive feedback amplifier. The sensitivity of the WCB with positive feedback is about 1 order of magnitude higher than that without positive feedback when evaluated using a half-saturation As(III) concentration. The minimum detection limit for As(III) was reduced by 1 order of magnitude to 0.1 µM, lower than the World Health Organization standard for the arsenic level in drinking water, 0.01 mg/liter or 0.13 µM. Due to the amplification of the output signal, the WCB was able to give detectable signals within a shorter period, and a fast response is essential for in situ operations. Moreover, the WCB with the positive feedback amplifier showed exceptionally high specificity toward As(III) when compared with other metal ions. Collectively, the designed positive feedback amplifier WCB meets the requirements for As(III) detection with high sensitivity and specificity. This work also demonstrates the importance of genetic circuit engineering in designing WCBs, and the use of genetic positive feedback amplifiers is a good strategy to improve the performance of WCBs.IMPORTANCE Arsenic poisoning is a severe public health issue. Rapid and simple methods for the sensitive and specific monitoring of arsenic concentration in drinking water are needed. In this study, we designed an arsenic WCB with a positive feedback amplifier. It is highly sensitive and able to detect arsenic below the WHO limit level. In addition, it also significantly improves the specificity of the biosensor toward arsenic, giving a signal that is about 10 to 20 times stronger in response to As(III) than to other metals. This work not only provides simple but effective arsenic biosensors but also demonstrates the importance of genetic engineering, particularly the use of positive feedback amplifiers, in designing WCBs.
Collapse
|
18
|
Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002. Appl Microbiol Biotechnol 2019; 103:2797-2808. [PMID: 30645690 DOI: 10.1007/s00253-018-9490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
The anthropogenic release of toxic metals into the environment poses danger to the health of both humans and the local ecosystem. Biosensors for the detection of metals have been developed to improve our ability to monitor these environmental contaminants, yet most of these sensors use heterotrophic bacterial hosts, which require a fixed carbon source and do not typically grow in natural waterways. In this study, we constructed and characterized metal sensors for development of a photoautotrophic biosensor using Synechococcus sp. PCC 7002. We characterized gold and copper sensors based on modified MerR transcriptional activators: GolSA113T, with improved gold binding, and GolSCL, containing the metal-binding loop from CueR which binds both gold and copper. The metal-sensing constructs were first optimized and characterized in Escherichia coli MG1655. The addition of a strong ribosome binding site to the optical reporter protein increased translation of the fluorescent reporter, and expression of golSA113T from the rbc promoter of Synechococcus sp. PCC 7002 improved the response to gold in MG1655. In rich medium, the GolSA113T-based E. coli sensor detected gold at concentrations as low as 100 nM, while the GolSCL-based E. coli sensor detected gold and copper at sensitivities of 100 nM and 10 μM, respectively. Both E. coli sensors responded to gold and copper yet showed no detectable response to other metals. Abiotic factors, such as medium complexity, were found to influence the response of the E. coli sensors, with minimal medium resulting in higher sensitivities of detection. Expression of the GolSA113T- and GolSCL-based sensor constructs in the cyanobacterium Synechococcus sp. PCC 7002 resulted in photoautotrophic gold sensors, but these biosensors failed to produce a significant response to copper. Moreover, the fluorescence response of the cyanobacterial sensors to gold was significantly reduced compared to that of analogous E. coli sensors. While this effort demonstrates feasibility for the development of photoautotrophic biosensors, additional efforts to optimize sensor performance will be required.
Collapse
|
19
|
Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M. Bioremediation of mercury: not properly exploited in contaminated soils! Appl Microbiol Biotechnol 2017; 101:963-976. [DOI: 10.1007/s00253-016-8079-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022]
|
20
|
The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLoS One 2015; 10:e0138333. [PMID: 26371471 PMCID: PMC4570782 DOI: 10.1371/journal.pone.0138333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
As mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversion of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS)2) and Hg-glutathione (Hg(GSH)2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH)2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.
Collapse
|
21
|
Huang CW, Yang SH, Sun MW, Liao VHC. Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10206-10213. [PMID: 25697554 DOI: 10.1007/s11356-015-4216-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
There is a growing need for effective and inexpensive environmental monitoring strategies for assessing heavy metal contamination levels. We developed a set of bacterial biosensors to simultaneously detect multiple bioavailable heavy metals (As(III) and Hg(II)). The biosensors provide a choice of the two reporter systems, luxCDABE and gfp, combined with metal responsive regulatory elements (ars and mer for As(III) and Hg(II), respectively). The results showed that the induction of the luxCDABE-based constructs was more sensitive than that of the gfp-based constructs for the detection of As(III) and Hg(II). In addition, both the luminescent and fluorescent biosensors readily distinguished As and Hg concentrations in groundwater samples to meet the groundwater quality standards. Due to the potentially complicated chemicals present in environmental samples, using a set of bacterial biosensors with different reporter genes to simultaneously determine the bioavailable proportions of heavy metals is desirable.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | | | | | | |
Collapse
|
22
|
Hynninen A, Virta M. Whole-cell bioreporters for the detection of bioavailable metals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 118:31-63. [PMID: 19543702 DOI: 10.1007/10_2009_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.
Collapse
Affiliation(s)
- Anu Hynninen
- Department of Applied Chemistry and Microbiology, University of Helsinki, 56, 00014, Helsinki, Finland
| | | |
Collapse
|
23
|
Jouanneau S, Durand MJ, Thouand G. Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11979-11987. [PMID: 22989292 DOI: 10.1021/es3024918] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we compared two bacterial biosensors designed for the environmental monitoring of metals: Lumisens III and Lumisens IV. These two biosensors are based on the same bacterial sensors (inducible or constitutive bacterial strains) but with a different conservation mode. The results showed that the biosensor Lumisens III using immobilized cells in agarose hydrogel, allowed to detect artificial mercury contaminations on the limited period of 7 days in laboratory conditions with a reproducibility of 40%. With environmental samples, bioluminescence of the immobilized bacteria inside the biosensor was strongly limited by the environmental microflora because of the lack of oxygen, limiting the use of the biosensor to 2 days. The biosensor of the last generation, Lumisens IV, using freeze-dried bacteria in a disposable card allowed a stable detection during 10 days with 3% of reproducibility of the bioluminescence signal both in laboratory conditions and environmental samples. One analysis was performed in only 90 min against 360 min for Lumisens III. Nevertheless, the lack of specificity of the promoter, which regulates the bioluminescent reporter genes, limits the metal detection. We addressed the problem by using Lumisens IV and a data analysis software namely Metalsoft, developed in previous works. Thanks to this analytical software, Lumisens IV was a reliable online biosensor for the multidetection of Cd, As, Hg, and Cu.
Collapse
|
24
|
Checa SK, Zurbriggen MD, Soncini FC. Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr Opin Biotechnol 2012; 23:766-72. [DOI: 10.1016/j.copbio.2012.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/30/2023]
|
25
|
Construction and application of an Escherichia coli bioreporter for aniline and chloroaniline detection. J Ind Microbiol Biotechnol 2012; 39:1801-10. [PMID: 22892886 DOI: 10.1007/s10295-012-1180-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Aniline and chlorinated anilines (CAs) are classified as priority pollutants; therefore, an effective method for detection and monitoring is required. In this study, a green-fluorescence protein-based bioreporter for the detection of aniline and CAs was constructed in Escherichia coli DH5α, characterized and tested with soil and wastewater. The sensing capability relied on the regulatory control between a two-component regulatory protein, TodS/TodT, and the P( todX ) promoter of Pseudomonas putida T-57 (PpT57), since the gene expression of todS, todT, and todC2 are positively induced with 4-chloroaniline. The bioreporter system (DH5α/pPXGFP-pTODST) is markedly unique with the two co-existing plasmids. The inducibility of the fluorescence response was culture-medium- and time-dependent. Cells grown in M9G medium exhibited a low background fluorescence level and were readily induced by 4CA after 3-h exposure, reaching the maximum induction level at 9 h. When tested with benzene, toluene, ethyl-benzene and xylene, aniline and CAs, the response data were best fit by a sigmoidal dose-response relationship, from which the K(½) value was determined for the positive effectors. 3CA and 4CA were relatively powerful inducers, while some poly-chlorinated anilines could also induce green fluorescence protein expression. The results indicated a broader recognition range of PpT57'sTodST than previously reported for P. putida. The test results with environmental samples were reliable, indicating the potential application of this bioreporter in the ecotoxicology assessment and bioremediation of areas contaminated with aniline- and/or CAs.
Collapse
|
26
|
Priyadarshi H, Alam A, Gireesh-Babu P, Das R, Kishore P, Kumar S, Chaudhari A. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment. J Environ Sci (China) 2012; 24:963-968. [PMID: 22893977 DOI: 10.1016/s1001-0742(11)60820-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A mercury biosensor was constructed by integrating biosensor genetic elements into E. coli JM109 chromosome in a single copy number, using the attP/attB recombination mechanism of lambda phage. The genetic elements used include a regulatory protein gene (merR) along with operator/promoter (O/P) derived from the mercury resistance operon from pDU1358 plasmid of Serratia marcescens. The expression of reporter gene gfp is also controlled by merR/O/P. Integration of the construct into the chromosome was done to increase the stability and precision of the biosensor. This biosensor could detect Hg(II) ions in the concentration range of 100-1700 nmol/L, and manifest the result as the expression of GFP. The GFP expression was significantly different (P < or = 0.05) for each concentration of inducing Hg(II) ions in the detection range, which reduces the chances of misinterpretation of results. A model using regression method was also derived for the quantification of the concentration of Hg(II) in water samples.
Collapse
|
27
|
Larose C, Dommergue A, Marusczak N, Coves J, Ferrari CP, Schneider D. Bioavailable mercury cycling in polar snowpacks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2150-2156. [PMID: 21341797 DOI: 10.1021/es103016x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polar regions are subject to contamination by mercury (Hg) transported from lower latitudes, severely impacting human and animal health. Atmospheric Mercury Depletion Events (AMDEs) are an episodic process by which Hg is transferred from the atmospheric reservoir to arctic snowpacks. The fate of Hg deposited during these events is the subject of numerous studies, but its speciation remains unclear, especially in terms of environmentally relevant forms such as bioavailable mercury (BioHg). Here, using a bacterial mer-lux biosensor, we report the fraction of newly deposited Hg at the surface and at the bottom of the snowpack that is bioavailable. Snow samples were collected over a two-month arctic field campaign in 2008. In surface snow, BioHg is related to atmospheric Hg deposition and snow fall events were shown to contribute to higher proportions of BioHg than AMDEs. Based on our data, AMDEs represent a potential source of 20 t.y(-1) of BioHg, while wet and dry deposition pathways may provide 135-225 t.y(-1) of BioHg to Arctic surfaces.
Collapse
Affiliation(s)
- Catherine Larose
- Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS - Université Joseph Fourier Grenoble, 54 Rue Molière, 38400 St Martin d'Hères, France
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Curr Microbiol 2010; 62:690-6. [PMID: 20872219 DOI: 10.1007/s00284-010-9764-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The XylR regulatory protein is a transcriptional activator from the TOL plasmid of Pseudomonas putida mt-2 that is involved in the toluene and benzene degradation pathway. Here we describe the construction and laboratory characterization of recombinant biosensors (pGLPX plasmids) based on XylR and its cognate promoter (Pu). In the pGLPX plasmid, the reporter luc gene is under the control of the Pu promoter. We evaluated the ability of two distinct nucleotide sequences to function as SD elements and improve sensitivity of bioreporting. We also evaluated the effect of introducing the T₂rrnβ terminator on the specificity of the construct. E. coli transformed with pGLPX plasmids were used to sense toluene and its derivatives. The pattern of induction was different for each derivative. In general, more luciferase activity was induced by toluene and benzene than by TNT and DNT at most tested concentrations. The bioluminescence response of the reporter strains to the nitrotoluenes was significantly stronger at lower concentrations (≥ 50 μmol) than at higher concentrations. Our results show that the SD sequence (taaggagg) is crucially important for biosensor sensitivity. The presence of the T₂rrnβ terminator in the bioreporter plasmid prevents nonspecific responses and also reduces biosensor sensitivity upon exposure to inducers. These data suggest that pGLPX strains can be used as whole-cell biosensors to detect toluene and related compounds. Further investigation will be required to optimize the application of pGLPX biosensors.
Collapse
|
30
|
A chromosomally based luminescent bioassay for mercury detection in red soil of China. Appl Microbiol Biotechnol 2010; 87:981-9. [DOI: 10.1007/s00253-010-2548-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
31
|
Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic. J Biosci Bioeng 2010; 108:414-20. [PMID: 19804866 DOI: 10.1016/j.jbiosc.2009.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
Abstract
Genetically modified bacterial biosensors can detect specific environmental compounds. Here, we attempted to establish a fluorescent microplate method to detect arsenic using recombinant Escherichia coli cells transformed with plasmids harboring three tandem copies of the ars promoter/operator-the gene for green fluorescent protein (gfp). In the biosensors, one copy of arsR, whose transcription is autoregulated by the ars promoter/operator and ArsR in the genome of E. coli, was placed in trans in another plasmid under the control of isopropyl-1-thio-beta-D-galactopyranoside-inducible promoter. First, this manipulation enabled regulation of the arsR expression at an adequate level. Second, the copy number of reporter unit also affected signal and noise. When the plasmid harboring three copies of the reporter unit was used, the signal-to-noise ratio doubled and the detection limit decreased from 20 to 7.5 microg L(-1) As(III), compared to the use of the plasmid harboring one copy of the ars promoter/operator-arsR-gfp. Thus, segregation of arsR from the ars promoter/operator-gfp using two plasmids is effective in regulating the signal-to-noise ratio and the detection limit with the different functions.
Collapse
|
32
|
Wu CH, Le D, Mulchandani A, Chen W. Optimization of a whole-cell cadmium sensor with a toggle gene circuit. Biotechnol Prog 2009; 25:898-903. [PMID: 19507257 DOI: 10.1002/btpr.203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This work demonstrates improvement of a whole-cell cadmium detection sensor through construction of a gene circuit. A cadmium (II) specific regulatory promoter, P(cadR,) from Psuedomonas putida 06909, is used in the assembly of a toggle circuit. The circuit contains the cadR promoter fused to lacIq and gfp, and a divergently transcribed tac promoter and cadR. The toggle sensor exhibits lower background fluorescence, and a 20-fold lower detection limit in comparison to a nontoggle gene circuit. The detection limit of the toggle sensor is 0.01 microM (1.12 ppb) cadmium chloride, and tunable with the addition of isopropyl-b-D-thiogalactopyranoside (IPTG). The toggle sensor is highly specific to cadmium (II), and no response is elicited from zinc, lead, manganese, nickel, copper, and mercury.
Collapse
Affiliation(s)
- Cindy H Wu
- Dept. of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
33
|
Ivask A, Rõlova T, Kahru A. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 2009; 9:41. [PMID: 19426479 PMCID: PMC2685376 DOI: 10.1186/1472-6750-9-41] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 05/08/2009] [Indexed: 02/01/2023] Open
Abstract
Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights-off" construct (control) for every constructed recombinant metal sensor strain. To our knowledge, no Gram-positive metal sensor expressing a full bacterial bioluminescence cassette (luxCDABE) has been constructed previously.
Collapse
Affiliation(s)
- Angela Ivask
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia.
| | | | | |
Collapse
|
34
|
Ng SP, Davis B, Palombo EA, Bhave M. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes 2009; 2:38. [PMID: 19284535 PMCID: PMC2663772 DOI: 10.1186/1756-0500-2-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Achromobacter sp. AO22 (formerly Alcaligenes sp. AO22), a bacterial strain isolated from a lead-contaminated industrial site in Australia, was previously found to be resistant to moderate to high levels of mercury, copper and other heavy metals. However, the nature and location of the genetic basis for mercuric ion resistance in this strain, had not been previously identified. FINDINGS Achromobacter sp. AO22 contains a functional mer operon with all four essential genes (merRTPA) and shows >99% DNA sequence identity to that of Tn501. The mer operon was present on a transposon, designated TnAO22, captured by introducing a broad-host-range IncP plasmid into Achromobacter sp. AO22 and subsequently transferring it to E. coli recipients. The transposition frequency of TnAO22 was 10-2 to 10-3 per target plasmid transferred. Analysis of TnAO22 sequence revealed it belonged to the Tn21 subgroup of the Tn3 superfamily of transposons, with the transposition module having >99% identity with Tn5051 of a Pseudomonas putida strain isolated from a water sample in New York. CONCLUSION TnAO22 is thus a new variant of Tn5051 of the Tn3 superfamily and the transposon and its associated mercury resistance system are among the few such systems reported in a soil bacterium. Achromobacter sp. AO22 can thus be exploited for applications such as in situ mercury bioremediation of contaminated sites, or the mobile unit and mer operon could be mobilized to other bacteria for similar purposes.
Collapse
Affiliation(s)
- Shee Ping Ng
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Melbourne, Victoria 3122, Australia
| | - Belinda Davis
- School of Molecular Sciences, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Enzo A Palombo
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Melbourne, Victoria 3122, Australia
| | - Mrinal Bhave
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Melbourne, Victoria 3122, Australia
| |
Collapse
|
35
|
Gvakharia BO, Bottomley PJ, Arp DJ, Sayavedra-Soto LA. Construction of recombinant Nitrosomonas europaea expressing green fluorescent protein in response to co-oxidation of chloroform. Appl Microbiol Biotechnol 2009; 82:1179-85. [PMID: 19247648 DOI: 10.1007/s00253-009-1914-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/05/2009] [Accepted: 02/08/2009] [Indexed: 11/29/2022]
Abstract
Transcriptional fusions with gfp driven by the promoter region of mbla (NE2571) in pPRO/mbla4 and clpB (NE2402) in pPRO/clpb7 were used to transform the ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718). The two genes were chosen because their transcript levels were found at much higher levels in N. europaea in response to oxidation of chloroform and chloromethane. In N. europaea transformed with pPRO/mbla4, green fluorescent protein (GFP)-dependent fluorescence increased from 3- to 18-fold above control levels in response to increasing chloroform concentrations (7 to 28 microM), and from 8- to 10-fold in response to increasing hydrogen peroxide concentrations (2.5-7.5 mM). The GFP-dependent fluorescence of N. europaea transformed with pPRO/clpb7 also showed an increase of 6- to 10-fold in response to chloroform (28-100 microM) but did not respond to H(2)O(2). Our data provide proof of concept that biosensors can be fabricated in ammonia-oxidizing bacteria using "sentinel" genes that up-regulate in response to stress caused either by co-oxidation of chlorinated solvents or by the presence of H(2)O(2). The fabricated biosensors had a consistent concentration-dependent response to chloroform; however, these did not respond to other chlorinated compounds that cause similar cellular stress.
Collapse
Affiliation(s)
- Barbara O Gvakharia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Abstract
Biosensors can be excellent analytical tools for monitoring programs working to implement legislation. In this article, biosensors for environmental analysis and monitoring are extensively reviewed. Examples of biosensors for the most important families of envi-ronmental pollutants, including some commercial devices, are presented. Finally, future trends in biosensor development are discussed. In this context, bioelectronics, nanotechnology, miniaturization, and especially biotechnology seem to be growing areas that will have a marked influence on the development of new biosensing strategies in the next future.
Collapse
|
37
|
Fu YJ, Chen WL, Huang QY. Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance. Appl Microbiol Biotechnol 2008; 79:363-70. [DOI: 10.1007/s00253-008-1442-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
38
|
Li YF, Li FY, Ho CL, Liao VHC. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 152:123-9. [PMID: 17583401 DOI: 10.1016/j.envpol.2007.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/16/2007] [Accepted: 05/03/2007] [Indexed: 05/15/2023]
Abstract
Environmental pollution with petroleum products such as benzene, toluene, ethylbenzene, and xylenes (BTEX) has garnered increasing awareness because of its serious consequences for human health and the environment. We have constructed toluene bacterial biosensors comprised of two reporter genes, gfp and luxCDABE, characterized by green fluorescence and luminescence, respectively, and compared their abilities to detect bioavailable toluene and related compounds. The bacterial luminescence biosensor allowed faster and more-sensitive detection of toluene; the fluorescence biosensor strain was much more stable and thus more applicable for long-term exposure. Both luminescence and fluorescence biosensors were field-tested to measure the relative bioavailability of BTEX in contaminated groundwater and soil samples. The estimated BTEX concentrations determined by the luminescence and fluorescence bacterial biosensors were closely comparable to each other. Our results demonstrate that both bacterial luminescence and fluorescence biosensors are useful in determining the presence and the bioavailable fractions of BTEX in the environment.
Collapse
Affiliation(s)
- Yueh-Fen Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
39
|
Schottel JL, Orwin PM, Anderson CR, Flickinger MC. Spatial expression of a mercury-inducible green fluorescent protein within a nanoporous latex-based biosensor coating. J Ind Microbiol Biotechnol 2008; 35:283-90. [DOI: 10.1007/s10295-007-0288-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 11/07/2007] [Indexed: 11/30/2022]
|
40
|
Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 2007; 73:1251-8. [PMID: 17111136 DOI: 10.1007/s00253-006-0718-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 09/30/2006] [Accepted: 10/12/2006] [Indexed: 11/26/2022]
Abstract
Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, beta-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry.
Collapse
Affiliation(s)
- Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
41
|
Alkorta I, Epelde L, Mijangos I, Amezaga I, Garbisu C. Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. REVIEWS ON ENVIRONMENTAL HEALTH 2006; 21:139-52. [PMID: 16898676 DOI: 10.1515/reveh.2006.21.2.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A major factor governing the toxicity of heavy metals in soils is their bioavailability. Traditionally, sequential extraction procedures using different extractants followed by chemical analysis have been used for determining the biologically available fraction of metals in soils. Yet, the transfer of results obtained on non-biological systems to biological ones is certainly questionable. Therefore, bioluminescence-based bacterial biosensors have been developed using genetically engineered microorganisms, constructed by fusing transcriptionally active components of metal resistance mechanisms to lux genes from naturally bioluminescent bacteria like Vibrio fischeri for the assessment of metal toxicity and bioavailability in polluted soils. As compared to chemical methods, bacterial biosensors present certain advantages, such as selectivity, sensitivity, simplicity, and low cost. Despite certain inherent limitations, bacterial bioluminescent systems have proven their usefulness in soils under laboratory and field conditions. Finally, green fluorescent protein-based bacterial biosensors are also applicable for determining with high sensitivity the bioavailability of heavy metals in soil samples.
Collapse
Affiliation(s)
- I Alkorta
- Biophysics Unit, University of the Basque Country, Bilbao, Spain
| | | | | | | | | |
Collapse
|
42
|
Wells M. Advances in optical detection strategies for reporter signal measurements. Curr Opin Biotechnol 2006; 17:28-33. [PMID: 16413770 DOI: 10.1016/j.copbio.2005.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/15/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Many recent advances in bioreporter technology focus on challenges related to bioengineering, yet in many applications implementation of optical signal measurement is equally susceptible to improvement. For bioluminescent bioreporters, one area of effort lies in the development of semiconductor chip-based detector modules; this holds great promise for ultra-compact and field-deployable instrumentation, but has not yet had a palpable impact on improved detection limits. Regarding lower detection limits, single-molecule detection techniques have seen their first application to bioreporters, and preliminary results serve as an indication of future promise. Another technique applicable to fluorescent bioreporters is fluorescence flow cytometry, which is rapid, suitable for high-throughput screening, and lends itself to increased analytical specificity through simple algorithmic approaches to data treatment.
Collapse
Affiliation(s)
- Mona Wells
- Department of Chemistry, Foster Hall, Tennessee Technological University, Cookeville, TN 38505, USA.
| |
Collapse
|
43
|
Mandon CA, Diaz C, Arrigo AP, Blum LJ. Chemical stress sensitive luminescent human cells: Molecular biology approach using inducible Drosophila melanogaster hsp22 promoter. Biochem Biophys Res Commun 2005; 335:536-44. [PMID: 16083854 DOI: 10.1016/j.bbrc.2005.07.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/17/2005] [Indexed: 11/26/2022]
Abstract
A whole-cell bioassay has been developed for the total toxicity testing of liquid samples. The method is based on the induction of the bioluminescent activity of genetically manipulated mammalian cells. For that purpose, transfection was used to introduce, in HeLa cells, a DNA sensing element that responds to chemical stress agents (heavy metals, genotoxic agents, and endocrine-disrupting chemicals). Such element was designed to direct the expression of a reporting gene (firefly luciferase) through the activation of Drosophila melanogaster hsp22 promoter. A molecular approach was conducted to optimize hsp22 promoter element in order to decrease the background expression level of the reporting gene and to increase the sensitivity of the bioassay for testing endocrine disruptors. As a result, in the presence of 20-100 microM cadmium chloride, a 6-fold increase in luciferase expression was obtained using a specially designed truncated hsp22 promoter construction. The following chemicals known to be found in the polluted samples were tested: CdCl2, Cd(NO3)2, NaAsO2, alachlore, fentine acetate, thiram, and maneb. The stressing effect of each of them was sensitively detected by the present bioassay in the 0.05-50 microM concentration range.
Collapse
Affiliation(s)
- C A Mandon
- Laboratoire de Génie Enzymatique et Biomoléculaire, UMR 5013 CNRS, Université Claude Bernard Lyon 1, 69 622 Villeurbanne cedex, France
| | | | | | | |
Collapse
|
44
|
Norman A, Hestbjerg Hansen L, Sørensen SJ. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 2005; 71:2338-46. [PMID: 15870320 PMCID: PMC1087587 DOI: 10.1128/aem.71.5.2338-2346.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 microM, 1.1 microM, and 141 microM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.
Collapse
Affiliation(s)
- Anders Norman
- Department of Microbiology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark.
| | | | | |
Collapse
|
45
|
Barkay T, Wagner-Döbler I. Microbial Transformations of Mercury: Potentials, Challenges, and Achievements in Controlling Mercury Toxicity in the Environment. ADVANCES IN APPLIED MICROBIOLOGY 2005; 57:1-52. [PMID: 16002008 DOI: 10.1016/s0065-2164(05)57001-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
46
|
Abstract
The delicate and dynamic balance of the physiological steady state and its maintenance is well characterized by studies of bacterial stress response. Through the use of genetic analysis, numerous stress regulons, their physiological regulators and their biochemical processes have been delineated. In particular, transcriptionally activated stress regulons are subjects of study and application. These regulons include those that respond to macromolecular damage and toxicity as well as to nutrient starvation. The convenience of reporter gene fusions has allowed the creation of biosensor strains, resulting from the fusion of stress-responsive promoters with a variety of reporter genes. Such cellular biosensors are being used for monitoring dynamic systems and can report the presence of environmental stressors in real time. They provide a greater range of sensitivity, e.g. to sub-lethal concentrations of toxicants, than the simple assessment of cell viability. The underlying physiological context of the reporter strains results in the detection of bioavailable concentrations of both toxicants and nutrients. Culture conditions and host strain genotypes can be customized so as to maximize the sensitivity of the strain for a particular application. Collections of specific strains that are grouped in panels are used to diagnose targets or mode of action for unknown toxicants. Further application in massive by parallel DNA and gene fusion arrays greatly extends the information available for diagnosis of modes of action and may lead to development of novel high-throughput screens. Future studies will include more panels, arrays, as well as single reporter cell detection for a better understanding of the population heterogeneity during stress response. New knowledge of physiology gained from further studies of novel systems, or using innovative methods of analysis, will undoubtedly yield still more useful and informative environmental biosensors.
Collapse
Affiliation(s)
- Amy Cheng Vollmer
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | | |
Collapse
|
47
|
Hinde P, Meadows J, Saunders J, Edwards C. The potential of site-specific recombinases as novel reporters in whole-cell biosensors of pollution. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:29-74. [PMID: 12964239 DOI: 10.1016/s0065-2164(03)01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA recombinases show some promise as reporters of pollutants providing that appropriate promoters are used and that the apparent dependence of expression on cell density can be solved. Further work is in progress using different recombinases and other promoters to optimize recombinase expression as well as to test these genetic constructs in contaminated environmental samples such as soil and water. It may be that a graded response reflecting pollutant concentration may not be possible. However, they show great promise for providing definitive detection systems for the presence of a pollutant and may be applicable to address the problem of bioavailability of pollutants in complex environments such as soil.
Collapse
Affiliation(s)
- Paul Hinde
- School of Biological Sciences, University of Liverpool, Liverpool, L69 7ZB United Kingdom
| | | | | | | |
Collapse
|
48
|
Abstract
Bacterial resistance to inorganic and organic mercury compounds (HgR) is one of the most widely observed phenotypes in eubacteria. Loci conferring HgR in Gram-positive or Gram-negative bacteria typically have at minimum a mercuric reductase enzyme (MerA) that reduces reactive ionic Hg(II) to volatile, relatively inert, monoatomic Hg(0) vapor and a membrane-bound protein (MerT) for uptake of Hg(II) arranged in an operon under control of MerR, a novel metal-responsive regulator. Many HgR loci encode an additional enzyme, MerB, that degrades organomercurials by protonolysis, and one or more additional proteins apparently involved in transport. Genes conferring HgR occur on chromosomes, plasmids, and transposons and their operon arrangements can be quite diverse, frequently involving duplications of the above noted structural genes, several of which are modular themselves. How this very mobile and plastic suite of proteins protects host cells from this pervasive toxic metal, what roles it has in the biogeochemical cycling of Hg, and how it has been employed in ameliorating environmental contamination are the subjects of this review.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, NJ, USA.
| | | | | |
Collapse
|
49
|
Goh YY, Ho B, Ding JL. A novel fluorescent protein-based biosensor for gram-negative bacteria. Appl Environ Microbiol 2002; 68:6343-52. [PMID: 12450859 PMCID: PMC134398 DOI: 10.1128/aem.68.12.6343-6352.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-directed mutagenesis of enhanced green fluorescent protein (EGFP) based on rational computational design was performed to create a fluorescence-based biosensor for endotoxin and gram-negative bacteria. EGFP mutants (EGFP(i)) bearing one (G10) or two (G12) strands of endotoxin binding motifs were constructed and expressed in an Escherichia coli host. The EGFP(i) proteins were purified and tested for their efficacy as a novel fluorescent biosensor. After efficient removal of lipopolysaccharide from the E. coli lysates, the binding affinities of the EGFP(i) G10 and G12 to lipid A were established. The K(D) values of 7.16 x 10(-7) M for G10 and 8.15 x 10(-8) M for G12 were achieved. With high affinity being maintained over a wide range of pH and ionic strength, the binding of lipid A/lipopolysaccharide to the EGFP(i) biosensors could be measured as a concentration-dependent fluorescence quenching of the EGFP mutants. The EGFP(i) specifically tagged gram-negative bacteria like E. coli and Pseudomonas aeruginosa, as well as other gram-negative bacteria in contaminated water sampled from the environment. This dual function of the EGFP(i) in detecting both free endotoxin and live gram-negative bacteria forms the basis of the development of a novel fluorescent biosensor.
Collapse
Affiliation(s)
- Yan Y Goh
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | |
Collapse
|
50
|
Gunasekera TS, Sørensen A, Attfield PV, Sørensen SJ, Veal DA. Inducible gene expression by nonculturable bacteria in milk after pasteurization. Appl Environ Microbiol 2002; 68:1988-93. [PMID: 11916722 PMCID: PMC123843 DOI: 10.1128/aem.68.4.1988-1993.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viability of bacteria in milk after heat treatments was assessed by using three different viability indicators: (i) CFU on plate count agar, (ii) de novo expression of a gfp reporter gene, and (iii) membrane integrity based on propidium iodide exclusion. In commercially available pasteurized milk, direct viable counts, based on dye exclusion, were significantly (P < 0.05) higher than viable cell counts determined from CFU, suggesting that a significant subpopulation of cells in pasteurized milk are viable but nonculturable. Heating milk at 63.5 degrees C for 30 min resulted in a >4-log-unit reduction in the number of CFU of Escherichia coli and Pseudomonas putida that were marked with lac-inducible gfp. However, the reduction in the number of gfp-expressing cells of both organisms under the same conditions was <2.5 log units. These results demonstrate that a substantial portion of cells rendered incapable of forming colonies by heat treatment are metabolically active and are able to transcribe and translate genes de novo.
Collapse
Affiliation(s)
- Thusitha S Gunasekera
- Centre for Fluorimetric Applications in Biotechnology, Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | | | | | | | | |
Collapse
|