1
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Navasa N, Ferrero MÁ, Rodríguez-Aparicio LB, Monteagudo-Mera A, Gutiérrez S, Martínez-Blanco H. The role of RcsA in the adaptation and survival of Escherichia coli K92. FEMS Microbiol Lett 2020; 366:5476499. [PMID: 31089698 DOI: 10.1093/femsle/fnz082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
The Rcs phosphorelay is a two-component signal transduction system that senses stressful environmental signals such as desiccation or low temperatures, which serve as natural inducers in bacteria. RcsA is an important coregulator in this system involved in some functions regulated by the Rcs system, including biofilm formation and capsule synthesis. In this sense, we previously showed that RcsA is necessary for colanic acid synthesis in Escherichia coli K92. Here, using an E. coli K92ΔrcsA mutant lacking rcsA gene we further characterize the implications of RcsA on E. coli K92 survival under osmotic and oxidative stressful conditions, and bacterial attachment and biofilm formation on both biotic and abiotic surfaces. Our results show that RcsA protects E. coli K92 against osmotic and, especially, oxidative stress at low temperatures. In addition, RcsA did not interfere in biofilm formation in any surface tested, including polystyrene, stainless steel, silicone, Teflon, aluminum and glass. By contrast, deletion of rcsA increased bacterial attachment to the caco-2 cells monolayer used as biotic surface.
Collapse
Affiliation(s)
- Nicolás Navasa
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Miguel Ángel Ferrero
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Leandro B Rodríguez-Aparicio
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Andrea Monteagudo-Mera
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sergio Gutiérrez
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Honorina Martínez-Blanco
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
3
|
Ethnobotanical biosynthesis of gold nanoparticles and its downregulation of Quorum Sensing-linked AhyR gene in Aeromonas hydrophila. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2368-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Tang D, Gao Q, Zhao Y, Li Y, Chen P, Zhou J, Xu R, Wu Z, Xu Y, Li H. Mg2+ reduces biofilm quantity in Acidithiobacillus ferrooxidans through inhibiting Type IV pili formation. FEMS Microbiol Lett 2019; 365:4835517. [PMID: 29408987 DOI: 10.1093/femsle/fnx266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/06/2017] [Indexed: 11/14/2022] Open
Abstract
Bioleaching is a promising process for 350 million tons of Jinchuan low-grade pentlandite. But high concentration of Mg2+ is harmful to bioleaching microorganisms. Interestingly, biofilm formation can improve leaching rate. Thus, it is actually necessary to investigate the effect of Mg2+ stress on Acidithiobacillus ferrooxidans biofilms formation. In this study, we found that 0.1 and 0.5 M Mg2+ stress significantly reduced the total biomass of biofilm in a dose-dependent manner. The observation results of extracellular polymeric substances and bacteria using confocal laser scanning microscopy showed that the biofilm became thinner and looser under Mg2+ stress. Whereas 0.1 and 0.5 M Mg2+ stress had no remarkable effect on the bacterial viability, the attachment rate of Acidithiobacillus ferrooxidans to pentlandite was reduced by Mg2+ stress. Furthermore, sliding motility, twitching motility and the gene expression level of pilV and pilW were inhibited under Mg2+ stress. These results suggested that Mg2+ reduced biofilm formation through inhibiting pilV and pilW gene expression, decreasing Type IV pili formation and then attenuating the ability of attachment, subduing the active expansion of biofilms mediated by twitching motility. This study provided more information about the effect of Mg2+ stress on biofilm formation and may be useful for increasing the leaching rate in low-grade pentlandit.
Collapse
Affiliation(s)
- Deping Tang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China.,The School of Chemical & Biological Engineering, Lanzhou Jiaotong University, West Anning Road No. 88, Lanzhou 730070, PR China
| | - Qiyu Gao
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China
| | - Yang Zhao
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China
| | - Yang Li
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Peng Chen
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Jianping Zhou
- Institute of Biology, Gansu Academy of Sciences, South Dingxi Road No. 229, Lanzhou 730000, PR China
| | - Ruixiang Xu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Zhengrong Wu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Yuandong Xu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Hongyu Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China.,Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| |
Collapse
|
5
|
Quantitative Proteomic Analyses of a Pathogenic Strain and Its Highly Passaged Attenuated Strain of Mycoplasma hyopneumoniae. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4165735. [PMID: 31355261 PMCID: PMC6634062 DOI: 10.1155/2019/4165735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, a chronic respiratory disease in swine resulting in enormous economic losses. To identify the components that contribute to virulence and unveil those biological processes potentially related to attenuation, we used isobaric tags for relative and absolute quantification technology (iTRAQ) to compare the protein profiles of the virulent M. hyopneumoniae strain 168 and its attenuated highly passaged strain 168L. We identified 489 proteins in total, 70 of which showing significant differences in level of expression between the two strains. Remarkably, proteins participating in inositol phosphate metabolism were significantly downregulated in the virulent strain, while some proteins involved in nucleoside metabolism were upregulated. We also mined a series of novel promising virulence-associated factors in our study compared with those in previous reports, such as some moonlighting adhesins, transporters, lipoate-protein ligase, and ribonuclease and several hypothetical proteins with conserved functional domains, deserving further research. Our survey constitutes an iTRAQ-based comparative proteomic analysis of a virulent M. hyopneumoniae strain and its attenuated strain originating from a single parent with a well-characterized genetic background and lays the groundwork for future work to mine for potential virulence factors and identify candidate vaccine proteins.
Collapse
|
6
|
Bennett BD, Redford KE, Gralnick JA. MgtE Homolog FicI Acts as a Secondary Ferrous Iron Importer in Shewanella oneidensis Strain MR-1. Appl Environ Microbiol 2018; 84:e01245-17. [PMID: 29330185 PMCID: PMC5835737 DOI: 10.1128/aem.01245-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/05/2018] [Indexed: 01/28/2023] Open
Abstract
The transport of metals into and out of cells is necessary for the maintenance of appropriate intracellular concentrations. Metals are needed for incorporation into metalloproteins but become toxic at higher concentrations. Many metal transport proteins have been discovered in bacteria, including the Mg2+ transporter E (MgtE) family of passive Mg2+/Co2+ cation-selective channels. Low sequence identity exists between members of the MgtE family, indicating that substrate specificity may differ among MgtE transporters. Under anoxic conditions, dissimilatory metal-reducing bacteria, such as Shewanella and Geobacter species, are exposed to high levels of soluble metals, including Fe2+ and Mn2+ Here we characterize SO_3966, which encodes an MgtE homolog in Shewanella oneidensis that we name FicI (ferrous iron and cobalt importer) based on its role in maintaining metal homeostasis. A SO_3966 deletion mutant exhibits enhanced growth over that of the wild type under conditions with high Fe2+ or Co2+ concentrations but exhibits wild-type Mg2+ transport and retention phenotypes. Conversely, deletion of feoB, which encodes an energy-dependent Fe2+ importer, causes a growth defect under conditions of low Fe2+ concentrations but not high Fe2+ concentrations. We propose that FicI represents a secondary, less energy-dependent mechanism for iron uptake by S. oneidensis under high Fe2+ concentrations.IMPORTANCEShewanella oneidensis MR-1 is a target of microbial engineering for potential uses in biotechnology and the bioremediation of heavy-metal-contaminated environments. A full understanding of the ways in which S. oneidensis interacts with metals, including the means by which it transports metal ions, is important for optimal genetic engineering of this and other organisms for biotechnology purposes such as biosorption. The MgtE family of metal importers has been described previously as Mg2+ and Co2+ transporters. This work broadens that designation with the discovery of an MgtE homolog in S. oneidensis that imports Fe2+ but not Mg2+ The research presented here also expands our knowledge of the means by which microorganisms have adapted to take up essential nutrients such as iron under various conditions.
Collapse
Affiliation(s)
- Brittany D Bennett
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Kaitlyn E Redford
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
7
|
The fight for invincibility: Environmental stress response mechanisms and Aeromonas hydrophila. Microb Pathog 2018; 116:135-145. [PMID: 29355702 DOI: 10.1016/j.micpath.2018.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Aeromonas hydrophila is a freshwater-dwelling zoonotic bacterium that has economic importance in aquaculture. In the past decade, Aeromonas hydrophila has become increasingly important because of its emergence as a food-borne zoonotic pathogen that is resistant to different treatment regimes. Being an aquatic bacterium, Aeromonas hydrophila is frequently subjected to several stressful environmental conditions, including changes in temperature, acidic pH and starvation that challenge its survival. To cope with these stressful conditions, like every cell, A. hydrophila possesses stress response mechanisms, such as alternative sigma factors, two-component systems, heat shock proteins, cold shock proteins, and acid tolerance response systems that eventually lead the fittest to survive. Moreover, the establishment of genetic variations among the strains related to environmental stress is also of great concern. This review presents the understandings based on inter-strain variations and stress response behavior of A. hydrophila that are important to control the increasing outbreaks of this bacterium in both human populations and aquaculture.
Collapse
|
8
|
Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Type III Secretion System Gene Expression by Stimulating rsmYZ Transcription. J Bacteriol 2017; 199:JB.00268-17. [PMID: 28847924 DOI: 10.1128/jb.00268-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the magnesium transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli.IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa, to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti-P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in P. aeruginosa In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression.
Collapse
|
9
|
Genome-Wide Analysis of the First Sequenced Mycoplasma capricolum subsp. capripneumoniae Strain M1601. G3-GENES GENOMES GENETICS 2017; 7:2899-2906. [PMID: 28754725 PMCID: PMC5592918 DOI: 10.1534/g3.117.300085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma capricolum subsp. capripneumoniae (Mccp) is a common pathogen of goats that causes contagious caprine pleuropneumonia. We closed the gap and corrected rRNA operons in the draft genome of Mccp M1601: a strain isolated from an infected goat in a farm in Gansu, China. The genome size of M1601 is 1,016,707 bp with a GC content of 23.67%. We identified 915 genes (occupying 90.27% of the genome), of which 713 are protein-coding genes (excluding 163 pseudogenes). No genomic islands and complete insertion sequences were found in the genome. Putative determinants associated with the organism’s virulence were analyzed, and 26 genes (including one adhesion protein gene, two capsule synthesis gene clusters, two lipoproteins, hemolysin A, ClpB, and proteins involved in pyruvate metabolism and cation transport) were potential virulence factors. In addition, two transporter systems (ATP-binding cassette [ABC] transporters and phosphotransferase) and two secretion systems (Sec and signal recognition particle [SRP] pathways) were observed in the Mccp genome. Genome synteny analysis reveals a good collinear relationship between M1601 and Mccp type strain F38. Phylogenetic analysis based on 11 single-copy core genes of 31 Mycoplasma strains revealed good collinearity between M1601 and Mycoplasma capricolum subsp. capricolum (Mcc) and close relationship among Mycoplasma mycoides cluster strains. Our genome-wide analysis of Mccp M1601 provides helpful information on the pathogenic mechanisms and genetics of Mccp.
Collapse
|
10
|
Wedekind JE, Dutta D, Belashov IA, Jenkins JL. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J Biol Chem 2017; 292:9441-9450. [PMID: 28455443 DOI: 10.1074/jbc.r117.787713] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Divalent ions fulfill essential cellular roles and are required for virulence by certain bacteria. Free intracellular Mg2+ can approach 5 mm, but at this level Mn2+, Ni2+, or Co2+ can be growth-inhibitory, and magnesium fluoride is toxic. To maintain ion homeostasis, many bacteria have evolved ion sensors embedded in the 5'-leader sequences of mRNAs encoding ion uptake or efflux channels. Here, we review current insights into these "metalloriboswitches," emphasizing ion-specific binding by structured RNA aptamers and associated conformational changes in downstream signal sequences. This riboswitch-effector interplay produces a layer of gene regulatory feedback that has elicited interest as an antibacterial target.
Collapse
Affiliation(s)
- Joseph E Wedekind
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Debapratim Dutta
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Ivan A Belashov
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jermaine L Jenkins
- From the Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
11
|
Talagrand-Reboul E, Jumas-Bilak E, Lamy B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front Microbiol 2017; 8:37. [PMID: 28163702 PMCID: PMC5247445 DOI: 10.3389/fmicb.2017.00037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
Abstract
Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département de Bactériologie, Centre Hospitalier Universitaire (CHU) de NiceNice, France
| |
Collapse
|
12
|
Li W, Yao Z, Sun L, Hu W, Cao J, Lin W, Lin X. Proteomics Analysis Reveals a Potential Antibiotic Cocktail Therapy Strategy for Aeromonas hydrophila Infection in Biofilm. J Proteome Res 2016; 15:1810-20. [DOI: 10.1021/acs.jproteome.5b01127] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | - Jijuan Cao
- Liaoning Entry−Exit Inspection and Quarantine Bureau, Dalian 116000, PR China
| | | | | |
Collapse
|
13
|
Oknin H, Steinberg D, Shemesh M. Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression. Front Microbiol 2015; 6:907. [PMID: 26441856 PMCID: PMC4561805 DOI: 10.3389/fmicb.2015.00907] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/19/2015] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the effect of Mg(2+) ions on biofilm formation by Bacillus species, which are considered as problematic microorganisms in the food industry. We found that magnesium ions are capable to inhibit significantly biofilm formation of Bacillus species at 50 mM concentration and higher. We further report that Mg(2+) ions don't inhibit bacterial growth at elevated concentrations; hence, the mode of action of Mg(2+) ions is apparently specific to inhibition of biofilm formation. Biofilm formation depends on the synthesis of extracellular matrix, whose production in Bacillus subtilis is specified by two major operons: the epsA-O and tapA operons. We analyzed the effect of Mg(2+) ions on matrix gene expression using transcriptional fusions of the promoters for eps and tapA to the gene encoding β galactosidase. The expression of the two matrix operons was reduced drastically in response to Mg(2+) ions suggesting about their inhibitory effect on expression of the matrix genes in B. subtilis. Since the matrix gene expression is tightly controlled by Spo0A dependent pathway, we conclude that Mg(2+) ions could affect the signal transduction for biofilm formation through this pathway.
Collapse
Affiliation(s)
- Hilla Oknin
- Department of Food Quality and Safety, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-HadassahJerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-HadassahJerusalem, Israel
| | - Moshe Shemesh
- Department of Food Quality and Safety, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| |
Collapse
|
14
|
Cavaliere R, Ball JL, Turnbull L, Whitchurch CB. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin. Microbiologyopen 2014; 3:557-67. [PMID: 25044339 PMCID: PMC4287182 DOI: 10.1002/mbo3.187] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections.
Collapse
Affiliation(s)
- Rosalia Cavaliere
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
15
|
Coffey BM, Akhand SS, Anderson GG. MgtE is a dual-function protein in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2014; 160:1200-1213. [PMID: 24722909 DOI: 10.1099/mic.0.075275-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections, including chronic biofilm infections in the lungs of individuals with cystic fibrosis. We previously found that the inner-membrane protein MgtE can function both as a magnesium transporter and a virulence modulator, although the exact mechanism governing these activities is unclear. To address this issue, we carried out an experimental characterization of P. aeruginosa MgtE and generated a computer-rendered model. Our in silico analysis demonstrated the structural similarity of P. aeruginosa MgtE to that of the crystal structure of MgtE in Thermus thermophilus. Experimentally, we verified that MgtE is not essential for growth and found that it may not be involved directly in biofilm formation, even under low-magnesium conditions. We demonstrated both magnesium transport and cytotoxicity-regulating functions, and showed that magnesium-binding sites in the connecting helix region of MgtE are vital in coupling these two functions. Furthermore, limiting magnesium environments stimulated mgtE transcriptional responses. Our results suggested that MgtE might play an important role in linking magnesium availability to P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Barbara M Coffey
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Saeed S Akhand
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Gregory G Anderson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Beagle S, Suelter C, Herbig AF. Phenotypic analysis of an MgtE magnesium transporter mutation inBacillus subtilis. ACTA ACUST UNITED AC 2014. [DOI: 10.1893/0005-3155-85.1.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Redelman CV, Chakravarty S, Anderson GG. Antibiotic treatment of Pseudomonas aeruginosa biofilms stimulates expression of the magnesium transporter gene mgtE. MICROBIOLOGY-SGM 2013; 160:165-178. [PMID: 24162608 DOI: 10.1099/mic.0.070144-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with the capacity to cause serious disease, including chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. These infections are treated with high concentrations of antibiotics. Virulence modulation is an important tool utilized by P. aeruginosa to propagate infection and biofilm formation in the CF airway. Many different virulence modulatory pathways and proteins have been identified, including the magnesium transporter protein MgtE. We have recently found that isogenic deletion of mgtE leads to increased cytotoxicity through effects on the type III secretion system. To explore the role of the CF lung environment in MgtE activity, we investigated mgtE transcriptional regulation following antibiotic treatment. Utilizing quantitative real-time-PCR, we have demonstrated an increase in mgtE transcript levels following antibiotic treatment with most of the 12 antibiotics tested. To begin to determine the regulatory network governing mgtE expression, we screened a transposon-mutant library of P. aeruginosa to look for mutants with potentially altered mgtE activity, using cytotoxicity as a readout. In this screen, we observed that AlgR, which regulates production of the biofilm polysaccharide alginate, alters MgtE-mediated cytotoxicity. This cross-talk between MgtE and AlgR suggests that AlgR is involved in linking external inducing signals (e.g. antibiotics) to mgtE transcription and downstream virulence and biofilm activities. Analysing such interactions may lead to a better understanding of how the CF lung environment shapes P. aeruginosa biofilm infections.
Collapse
Affiliation(s)
- Carly V Redelman
- Department of Biology, Butler University, Indianapolis, IN 46208, USA.,Department of Biology, IUPUI, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
18
|
Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 2013; 47:625-46. [PMID: 24079267 DOI: 10.1146/annurev-genet-051313-051025] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organisms must maintain physiological levels of Mg(2+) because this divalent cation is critical for the stabilization of membranes and ribosomes, for the neutralization of nucleic acids, and as a cofactor in a variety of enzymatic reactions. In this review, we describe the mechanisms that bacteria utilize to sense the levels of Mg(2+) both outside and inside the cytoplasm. We examine how bacteria achieve Mg(2+) homeostasis by adjusting the expression and activity of Mg(2+) transporters and by changing the composition of their cell envelope. We discuss the connections that exist between Mg(2+) sensing, Mg(2+) transport, and bacterial virulence. Additionally, we explore the logic behind the fact that bacterial genomes encode multiple Mg(2+) transporters and distinct sensing systems for cytoplasmic and extracytoplasmic Mg(2+). These analyses may be applicable to the homeostatic control of other cations.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, Connecticut 06536; , , , , ,
| | | | | | | | | | | |
Collapse
|
19
|
Payandeh J, Pfoh R, Pai EF. The structure and regulation of magnesium selective ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2778-92. [PMID: 23954807 DOI: 10.1016/j.bbamem.2013.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
20
|
Involvement of minerals in adherence of Legionella pneumophila to surfaces. Curr Microbiol 2013; 66:437-42. [PMID: 23292133 DOI: 10.1007/s00284-012-0295-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/07/2012] [Indexed: 02/05/2023]
Abstract
Legionella pneumophila is the causative agent of 90 % of Legionnaires' disease cases. This bacterium lives naturally in fresh water and can colonize biofilms, which play an important role in the protection of Legionella against environmental stress factors. Relationship between the presence of minerals in water and Legionella adherence to surfaces is not well-known. In this study, we studied influence of minerals on bacterial adherence. For the first time, to our knowledge, this report shows that calcium and magnesium in a less extent, enhances the adherence of Legionella to surfaces compared to the bacteria behavior in distilled water. Treatment with proteinase K of live cells showed that surface proteins do not seem to play a crucial role in bacteria adherence to surfaces. Our results represent a first step in understanding effect of ions on Legionella adherence to surfaces. Such field of research could be helpful to better understand biofilm colonization by this bacterium to improve Legionella risk management in water networks.
Collapse
|
21
|
Sahni J, Song Y, Scharenberg AM. The B. subtilis MgtE magnesium transporter can functionally compensate TRPM7-deficiency in vertebrate B-cells. PLoS One 2012; 7:e44452. [PMID: 22970223 PMCID: PMC3435302 DOI: 10.1371/journal.pone.0044452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/06/2012] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the vertebrate magnesium transporters Solute carrier family 41, members 1 and 2 (SLC41A1, SLC41A2) and Magnesium transporter subtype 1 (MagT1) can endow vertebrate B-cells lacking the ion-channel kinase Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) with a capacity to grow and proliferate. SLC41A1 and SLC41A2 display distant homology to the prokaryotic family of Mg2+ transporters, MgtE, first characterized in Bacillus subtilis. These sequence similarities prompted us to investigate whether MgtE could potentially compensate for the lack of TRPM7 in the vertebrate TRPM7-deficient DT40 B-cell model system. Here, we report that overexpression of MgtE is able to rescue the growth of TRPM7-KO DT40 B-cells. However, contrary to a previous report that describes regulation of MgtE channel gating by Mg2+ in a bacterial spheroplast model system, whole cell patch clamp analysis revealed no detectable current development in TRPM7-deficient cells expressing MgtE. In addition, we observed that MgtE expression is strongly downregulated at high magnesium concentrations, similar to what has been described for its vertebrate homolog, SLC41A1. We also show that the N-terminal cytoplasmic domain of MgtE is required for normal MgtE channel function, functionally confirming the predicted importance of this domain in regulation of MgtE-mediated Mg2+ entry. Overall, our findings show that consistent with its proposed function, Mg2+ uptake mediated by MgtE is able to restore cell growth and proliferation of TRPM7-deficient cells and supports the concept of functional homology between MgtE and its vertebrate homologs.
Collapse
Affiliation(s)
- Jaya Sahni
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail: (JS); (AS)
| | - Yumei Song
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Andrew M. Scharenberg
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (JS); (AS)
| |
Collapse
|
22
|
Abstract
Serratia marcescens is able to invade, persist, and multiply inside nonphagocytic cells, residing in nonacidic, nondegradative, autophagosome-like vacuoles. In this work, we have examined the physiological role of the PhoP/PhoQ system and its function in the control of critical virulence phenotypes in S. marcescens. We have demonstrated the involvement of the PhoP/PhoQ system in the adaptation of this bacterium to growth on scarce environmental Mg(2+), at acidic pH, and in the presence of polymyxin B. We have also shown that these environmental conditions constitute signals that activate the PhoP/PhoQ system. We have found that the two S. marcescens mgtE orthologs present a conserved PhoP-binding motif and demonstrated that mgtE1 expression is PhoP dependent, reinforcing the importance of PhoP control in magnesium homeostasis. Finally, we have demonstrated that phoP expression is activated intracellularly and that a phoP mutant strain is defective in survival inside epithelial cells. We have shown that the Serratia PhoP/PhoQ system is involved in prevention of the delivery to degradative/acidic compartments.
Collapse
|
23
|
Elhariry HM. Biofilm formation by Aeromonas hydrophila on green-leafy vegetables: cabbage and lettuce. Foodborne Pathog Dis 2011; 8:125-31. [PMID: 21034267 DOI: 10.1089/fpd.2010.0642] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila is the most well known of the six species of Aeromonas, which has been linked to two groups of human diseases: septicemia and gastroenteritis. Reference strain ATCC 7966 and biofilm strains TUB19, TUB20, and TUB21 were investigated for their ability to form biofilm in vitro (after 48 h on polystyrene surface) and on the surface of two green-leafy vegetables, cabbage and lettuce (after 1, 2, 4, and 24 h). Attachment strength (S(R)) of these strains to the vegetable surface was also measured in the same time intervals. The ATCC 7966 and TUB19 had high ability to form biofilm in vitro compared with TUB20 and TUB21 in full strength tryptone soy broth or under starvation conditions in diluted tryptone soy broth (1:20, v/v). Cell surface hydrophobicity of the biofilm strains was lower than that of the reference strain. The biofilm of all tested strains on polystyrene surfaces differed from that on the vegetable surfaces. All strains studied rapidly attached to both green leafy vegetables (after 1 h). S(R) and cell populations (loosely and strongly attached cells) significantly (p < 0.05) increased with contact time; however, no significant (p > 0.05) differences in cell populations were recorded after 4 and 24 h. The highest S(R) and cell population (log CFU cm⁻²) were recorded by TUB19. In conclusion, the use of A. hydrophila strains isolated from environmental biofilm samples may be more useful for understanding biofilm formation on green-leafy vegetables than the reference or laboratory strains. The attachment of A. hydrophila was significantly affected by the surfaces of green-leafy vegetables. Further studies are required to improve our understanding of the interaction between human microbial pathogens and surfaces of raw vegetables.
Collapse
Affiliation(s)
- Hesham M Elhariry
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia.
| |
Collapse
|
24
|
Tai SK, Wu G, Yuan S, Li KC. Genome-wide expression links the electron transfer pathway of Shewanella oneidensis to chemotaxis. BMC Genomics 2010; 11:319. [PMID: 20492688 PMCID: PMC2886065 DOI: 10.1186/1471-2164-11-319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 05/21/2010] [Indexed: 12/25/2022] Open
Abstract
Background By coupling the oxidation of organic substrates to a broad range of terminal electron acceptors (such as nitrate, metals and radionuclides), Shewanella oneidensis MR-1 has the ability to produce current in microbial fuel cells (MFCs). omcA, mtrA, omcB (also known as mtrC), mtrB, and gspF are some known genes of S. oneidensis MR-1 that participate in the process of electron transfer. How does the cell coordinate the expression of these genes? To shed light on this problem, we obtain the gene expression datasets of MR-1 that are recently public-accessible in Gene Expression Omnibus. We utilize the novel statistical method, liquid association (LA), to investigate the complex pattern of gene regulation. Results Through a web of information obtained by our data analysis, a network of transcriptional regulatory relationship between chemotaxis and electron transfer pathways is revealed, highlighting the important roles of the chemotaxis gene cheA-1, the magnesium transporter gene mgtE-1, and a triheme c-type cytochrome gene SO4572. Conclusion We found previously unknown relationship between chemotaxis and electron transfer using LA system. The study has the potential of helping researchers to overcome the intrinsic metabolic limitation of the microorganisms for improving power density output of an MFC.
Collapse
Affiliation(s)
- Shang-Kai Tai
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
25
|
Abstract
Cronobacter spp. are opportunistic food-borne pathogens that can cause severe and sometimes lethal infections in neonates. In some outbreaks, the sources of infection were traced to contaminated powdered infant formula (PIF) or contaminated utensils used for PIF reconstitution. In this study, we investigated biofilm formation in Cronobacter sakazakii strain ES5. To investigate the genetic basis of biofilm formation in Cronobacter on abiotic surfaces, we screened a library of random transposon mutants of strain ES5 for reduced biofilm formation using a polystyrene microtiter assay. Genetic characterization of the mutants led to identification of genes that are associated with cellulose biosynthesis and flagellar structure and biosynthesis and genes involved in basic cellular processes and virulence, as well as several genes whose functions are currently unknown. In two of the mutants, hypothetical proteins ESA_00281 and ESA_00282 had a strong impact on flow cell biofilm architecture, and their contribution to biofilm formation was confirmed by genetic complementation. In addition, adhesion of selected biofilm formation mutants to Caco-2 intestinal epithelial cells was investigated. Our findings suggest that flagella and hypothetical proteins ESA_00281 and ESA_00282, but not cellulose, contribute to adhesion of Cronobacter to this biotic surface.
Collapse
|
26
|
The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system. Infect Immun 2009; 78:1239-49. [PMID: 20028803 DOI: 10.1128/iai.00865-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.
Collapse
|
27
|
Abstract
Considering the biological abundance and importance of Mg2+, there is a surprising lack of information regarding the proteins that transport Mg2+, the mechanisms by which they do so, and their physiological roles within the cell. The best characterized Mg2+ channel to date is the bacterial protein CorA, present in a wide range of bacterial species. The CorA homolog Mrs2 forms the mitochondrial Mg2+ channel in all eukaryotes. Physiologically, CorA is involved in bacterial pathogenesis, and the Mrs2 eukaryotic homolog is essential for cell survival. A second Mg2+ channel widespread in bacteria is MgtE. Its eukaryotic homologs are the SLC41 family of carriers. Physiological roles for MgtE and its homologs have not been established. Recently, the crystal structures for the bacterial CorA and MgtE Mg2+ channels were solved, the first structures of any divalent cation channel. As befits the unique biological chemistry of Mg2+, both structures are unique, unlike that of any other channel or transporter. Although structurally quite different, both CorA and MgtE appear to be gated in a similar manner through multiple Mg2+ binding sites in the cytosolic domain of the channels. These sites essentially serve as Mg2+ "sensors" of cytosolic Mg2+ concentration. Many questions about these channels remain, however, including the molecular basis of Mg2+ selectivity and the physiological role(s) of their eukaryotic homologs.
Collapse
Affiliation(s)
- Andrea S Moomaw
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | | |
Collapse
|
28
|
Chang YC, Wang JY, Selvam A, Kao SC, Yang SS, Shih DYC. Multiplex PCR detection of enterotoxin genes in Aeromonas spp. from suspect food samples in northern Taiwan. J Food Prot 2008; 71:2094-9. [PMID: 18939759 DOI: 10.4315/0362-028x-71.10.2094] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aeromonads possess an array of virulence factors and are causative agents of a number of human infections. Among them, genes of one cytotoxic (Act) and two cytotonic (Alt, Ast) enterotoxins are implicated in a human diarrheal disease. A rapid, specific, simultaneous detection of these enterotoxin genes in suspected food poisoning samples is not yet reported. Hence, a multiplex PCR assay was designed to amplify the cytotoxic (act), heat-labile cytotonic (alt), and heat-stable cytotonic (ast) enterotoxin genes of aeromonads. The PCR assay was tested with 133 Aeromonas spp. isolated from suspect food poisoning samples and retail samples of poultry and fish from wet markets in and around Taipei, Northern Taiwan. The Aeromonas spp. isolates were divided into six genotypes based on absence or presence of one or more enterotoxin genes. Of these 133 isolates, Aeromonas caviae (52.5%) and Aeromonas hydrophila (43.4%) were the most frequently isolated species from food poisoning samples and retail samples, respectively. Among the species, A. hydrophila had a significantly higher proportion for harboring three enterotoxin genes than had the others, whereas Aeromonas encheleia, considered a nonpathogen, was found harboring three enterotoxin genes. The multiplex PCR assays are rapid and specific, and provide a useful tool for the detection and genotyping of enterotoxin genes of aeromonads.
Collapse
Affiliation(s)
- Yu-Chang Chang
- Food Microbiology Division, Bureau of Food and Drug Analysis, Department of Health, Executive Yuan, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH. Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J Bacteriol 2007; 189:5348-60. [PMID: 17496082 PMCID: PMC1951843 DOI: 10.1128/jb.01867-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its notoriety as a human pathogen, Vibrio cholerae is an aquatic microbe suited to live in freshwater, estuarine, and marine environments where biofilm formation may provide a selective advantage. Here we report characterization of biofilms formed on abiotic and biotic surfaces by two non-O1/O139 V. cholerae strains, TP and SIO, and by the O1 V. cholerae strain N16961 in addition to the isolation of 44 transposon mutants of SIO and TP impaired in biofilm formation. During the course of characterizing the mutants, 30 loci which have not previously been associated with V. cholerae biofilms were identified. These loci code for proteins which perform a wide variety of functions, including amino acid metabolism, ion transport, and gene regulation. Also, when the plankton colonization abilities of strains N16961, SIO, and TP were examined, each strain showed increased colonization of dead plankton compared with colonization of live plankton (the dinoflagellate Lingulodinium polyedrum and the copepod Tigriopus californicus). Surprisingly, most of the biofilm mutants were not impaired in plankton colonization. Only mutants impaired in motility or chemotaxis showed reduced colonization. These results indicate the presence of both conserved and variable genes which influence the surface colonization properties of different V. cholerae subspecies.
Collapse
Affiliation(s)
- Ryan S Mueller
- Marine Biology Research Division, Scripps Institution of Oceanography, University of Caifornia, San Diego, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The TRPM7 (transient receptor potential melastatin 7) ion channel has been implicated in the uptake of Mg2+ into vertebrate cells, as elimination of TRPM7 expression through gene targeting in DT40 B-lymphocytes renders them unable to grow in the absence of supplemental Mg2+. However, a residual capacity of TRPM7-deficient cells to accumulate Mg2+ and proliferate when provided with supplemental Mg2+ suggests the existence of Mg2+ uptake mechanism(s) other than TRPM7. Evaluation of the expression of several members of the SLC41 (solute carrier family 41) family, which exhibit homology with the MgtE class of prokaryotic putative bivalent-cation transporters, demonstrated that one, SLC41A2 (solute carrier family 41 member 2), is expressed in both wild-type and TRPM7-deficient DT40 cells. Characterization of heterologously expressed SLC41A2 protein indicated that it is a plasma-membrane protein with an N-terminus-outside/C-terminus-inside 11-TM (transmembrane)-span topology, consistent with its functioning as a trans-plasma-membrane transporter. In contrast with a previous report of ion-channel activity associated with SLC41A2 expression in oocytes, investigation of whole cell currents in SLC41A2-expressing DT40 cells revealed no novel currents of any type associated with SLC41A2 expression. However, expression of SLC41A2 in TRPM7-deficient cells under the control of a doxycycline-inducible promoter was able to conditionally enhance their net uptake of 26Mg2+ and conditionally and dose-dependently provide them with the capacity to grow in the absence of supplemental Mg2+, observations strongly supporting a model whereby SLC41A2 directly mediates trans-plasma-membrane Mg2+ transport. Overall, our results suggest that SLC41A2 functions as a plasma-membrane Mg2+ transporter in vertebrate cells.
Collapse
Affiliation(s)
- Jaya Sahni
- *Department of Pediatrics, University of Washington, and Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Avenue North, Seattle, WA 98195, U.S.A
| | - Bruce Nelson
- †Department of Geology, Laboratory of Geochemistry, University of Washington, Seattle, WA 98195, U.S.A
| | - Andrew M. Scharenberg
- *Department of Pediatrics, University of Washington, and Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Avenue North, Seattle, WA 98195, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Song B, Leff LG. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol Res 2006; 161:355-61. [PMID: 16517137 DOI: 10.1016/j.micres.2006.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2006] [Indexed: 11/19/2022]
Abstract
Mg(2+) can potentially influence bacterial adhesion directly through effects on electrostatic interactions and indirectly by affecting physiology-dependent attachment processes. However, the effects of Mg(2+) on biofilm structure are largely unknown. In this study, Pseudomonas fluorescens was used to investigate the influence of Mg(2+) concentration (0, 0.1 and 1.0mM MgCl(2)) on biofilm growth. Planktonic and attached cells were enumerated (based on DAPI staining) while biofilm structures were examined via confocal laser scanning microscopy and three-dimensional structures were reconstructed. Mg(2+) concentration had no influence on growth of planktonic cells but, during biofilm formation, Mg(2+) increased the abundance of attached cells. For attached cells, the influence of Mg(2+) concentration changed over time, suggesting that the role of Mg(2+) in bacterial attachment is complex and dynamic. Biofilm structures were heterogeneous and surface colonization and depth increased with increasing Mg(2+) concentrations. Overall, for P. fluorescens, Mg(2+) increased initial attachment and altered subsequent biofilm formation and structure.
Collapse
Affiliation(s)
- Bo Song
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|
32
|
Altarriba M, Merino S, Gavín R, Canals R, Rabaan A, Shaw JG, Tomás JM. A polar flagella operon (flg) of Aeromonas hydrophila contains genes required for lateral flagella expression. Microb Pathog 2003; 34:249-59. [PMID: 12732473 DOI: 10.1016/s0882-4010(03)00047-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aeromonas spp. are pathogens of both humans and poikilothermic animals, causing a variety of diseases. Certain strains are able to produce two distinct types of flagella; polar flagella for swimming in liquid and lateral flagella for swarming over surfaces. Although, both types of flagella have been associated as colonisation factors, little is known about their organisation and expression. Here we characterised a complete flagellar locus of Aeromonas hydrophila (flg) containing 16 genes, this was analogous to region 1 of the Vibrio parahaemolyticus polar flagellum, with the difference that no flagellin genes were found on A. hydrophila while V. parahaemolyticus showed three flagellin genes. The flg region was present in all Aeromonas strain tested. Defined insertion mutants in flgL, were unable to swim, had a drastic reduction in swarming, lateral flagella, HEp-2 cell adhesion and biofilm formation. Mutations in flgN caused a drastic reduction in lateral flagella, inability to swarm, but these strains were still able to swim. Whereas the cheV mutants still produced both types of flagella and were able to swim and swarm. These results suggest that FlgN is required for lateral flagella formation and swarming motility, but not for polar flagellum-mediated swimming.
Collapse
Affiliation(s)
- Maria Altarriba
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, Barcelona 08071, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Huguette C Politi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, USA
| | | |
Collapse
|