1
|
Cointe A, Bizot E, Delannoy S, Fach P, Bidet P, Birgy A, Weill FX, Lefèvre S, Mariani-Kurkdjian P, Bonacorsi S. Emergence of New ST301 Shiga Toxin-Producing Escherichia coli Clones Harboring Extra-Intestinal Virulence Traits in Europe. Toxins (Basel) 2021; 13:toxins13100686. [PMID: 34678979 PMCID: PMC8537712 DOI: 10.3390/toxins13100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
O80:H2 enterohemorrhagic Escherichia coli (EHEC) of sequence type ST301 is one of the main serotypes causing European hemolytic and uremic syndrome, but also invasive infections, due to extra-intestinal virulence factors (VFs). Here, we determined whether other such heteropathotypes exist among ST301. EnteroBase was screened for ST301 strains that were included in a general SNP-phylogeny. French strains belonging to a new heteropathotype clone were sequenced. ST, hierarchical clusters (HC), serotype, resistome, and virulome were determined using EnteroBase, the CGE website, and local BLAST. The ST301 general phylogeny shows two groups. Group A (n = 25) is mainly composed of enteropathogenic E. coli, whereas group B (n = 55) includes mostly EHEC. Three serotypes, O186:H2, O45:H2 and O55:H9, share the same virulome as one of the O80:H2 sub-clones from which they derive subsequent O-antigen switches. The O55:H9 clone, mainly present in France (n = 29), as well as in the UK (n = 5) and Germany (n = 1), has a low background of genetic diversity (four HC20), although it has three Stx subtypes, an H-antigen switch, and genes encoding the major extra-intestinal VF yersiniabactin, and extended-spectrum beta-lactamases. Diverse heteropathotype clones genetically close to the O80:H2 clone are present among the ST301, requiring close European monitoring, especially the virulent O55:H9 clone.
Collapse
Affiliation(s)
- Aurélie Cointe
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France; (E.B.); (P.B.); (A.B.); (P.M.-K.); (S.B.)
- Correspondence:
| | - Etienne Bizot
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France; (E.B.); (P.B.); (A.B.); (P.M.-K.); (S.B.)
| | - Sabine Delannoy
- Platform Identy Path, Food Safety Laboratory, ANSES, Université Paris-Est, 94701 Maisons-Alfort, France; (S.D.); (P.F.)
| | - Patrick Fach
- Platform Identy Path, Food Safety Laboratory, ANSES, Université Paris-Est, 94701 Maisons-Alfort, France; (S.D.); (P.F.)
| | - Philippe Bidet
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France; (E.B.); (P.B.); (A.B.); (P.M.-K.); (S.B.)
| | - André Birgy
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France; (E.B.); (P.B.); (A.B.); (P.M.-K.); (S.B.)
| | - François-Xavier Weill
- Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Unités des Bactéries Pathogènes Entériques, 75015 Paris, France; (F.-X.W.); (S.L.)
| | - Sophie Lefèvre
- Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Unités des Bactéries Pathogènes Entériques, 75015 Paris, France; (F.-X.W.); (S.L.)
| | - Patricia Mariani-Kurkdjian
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France; (E.B.); (P.B.); (A.B.); (P.M.-K.); (S.B.)
| | - Stéphane Bonacorsi
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France; (E.B.); (P.B.); (A.B.); (P.M.-K.); (S.B.)
| |
Collapse
|
2
|
de la Rosa-Hernández MC, Cadena-Ramírez A, Téllez-Jurado A, Gómez-Aldapa CA, Rangel-Vargas E, Chávez-Urbiola EA, Castro-Rosas J. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic Escherichia coli, and Enterotoxigenic Escherichia coli on Fresh Cheeses from Local Retail Markets in Mexico. J Food Prot 2018; 81:1748-1754. [PMID: 30272999 DOI: 10.4315/0362-028x.jfp-18-166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cheesemaking is one of the most important industries in Mexico. Among all the Mexican cheeses, fresh cheeses are the most popular and most consumed cheese in Mexico and Latin America. However, in Mexico fresh cheese is frequently made with unpasteurized milk and sold in public markets. This may increase the risk for contamination of dairy products with pathogenic bacteria. The presence of multidrug-resistant pathogenic bacteria in food is an important public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. This study investigated the presence of indicator bacteria and multidrug-resistant DEPs in fresh cheeses. A total of 120 fresh cheese samples were collected from public markets in the city of Pachuca, Mexico. The samples were analyzed for presence of fecal coliforms (FC), E. coli, and antibiotic resistant DEPs. FC and E. coli were analyzed using the most-probable-number technique. DEPs were identified using two multiplex PCR methods. Susceptibility to 16 antibiotics was tested for the isolated DEPs strains by the standard assay. The frequency of FC, E. coli, and DEPs in the cheese samples was 50, 40, and 19%, respectively. The identified DEPs included Shiga toxin-producing E. coli (STEC; 8%), enteropathogenic E. coli (EPEC; 6%), and enterotoxigenic E. coli (ETEC; 5%). All isolated strains exhibited resistance to at least five antibiotics. One, one, two, and three STEC strains were resistant to 14, 12, 11, and 10 antibiotics, respectively. One strain of EPEC was resistant to 11 antibiotics, three EPEC strains to 9, and one strain to 7. One, one, and two strains of ETEC were resistant to 10, 8, and 7 antibiotics, respectively. The results of the present study indicate that fresh cheeses made with unpasteurized milk could be a risk for consumers, both for native people and visitors to Mexico.
Collapse
Affiliation(s)
- María C de la Rosa-Hernández
- 1 Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún Kilómetro 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, México
| | - Arturo Cadena-Ramírez
- 1 Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún Kilómetro 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, México
| | - Alejandro Téllez-Jurado
- 1 Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún Kilómetro 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, México
| | - Carlos A Gómez-Aldapa
- 2 Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería (ICBI), Ciudad del Conocimiento (CC), Universidad Autónoma del Estado de Hidalgo (UAEH), Carretera Pachuca-Tulancingo Kilómetro 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México
| | - Esmeralda Rangel-Vargas
- 2 Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería (ICBI), Ciudad del Conocimiento (CC), Universidad Autónoma del Estado de Hidalgo (UAEH), Carretera Pachuca-Tulancingo Kilómetro 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México
| | - Edgar Arturo Chávez-Urbiola
- 3 Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería (ICBI), Ciudad del Conocimiento (CC), Universidad Autónoma del Estado de Hidalgo (UAEH), Carretera Pachuca-Tulancingo Kilómetro 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México.,4 Catedrático CONACyT, Consejo Nacional de Ciencia y Tecnología, Avenida Insurgentes Sur 1582, Colonia Crédito Constructor, Delegación Benito Júarez C.P. 03940, Ciudad de México, México
| | - Javier Castro-Rosas
- 2 Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería (ICBI), Ciudad del Conocimiento (CC), Universidad Autónoma del Estado de Hidalgo (UAEH), Carretera Pachuca-Tulancingo Kilómetro 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
3
|
Epidemiology of Escherichia coli serogroups O26, O103, O111 and O145 in very young ('bobby') calves in the North Island, New Zealand. Epidemiol Infect 2017; 145:1606-1616. [PMID: 28264732 DOI: 10.1017/s0950268817000401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The prevalence and spatial distribution of Escherichia coli serogroups O26, O103, O111 and O145 in calves 70% similarity) using pulsed field gel electrophoresis. Mapping of the farms showed the presence of farms positive for O26, O103 and O145 in three important dairy producing regions of the North Island. Calves positive for O103 were more likely to be positive for O26 and vice versa (P = 0·04). Similarly, calves positive for O145 were more likely to be positive for O103 and vice versa (P = 0·03). This study demonstrates that non-O157 E. coli serogroups of public health and economic importance containing clinically relevant virulence factors are present in calves in the North Island of New Zealand.
Collapse
|
4
|
Nationwide investigation of Shiga toxin-producing Escherichia coli among cattle in Japan revealed the risk factors and potentially virulent subgroups. Epidemiol Infect 2017; 145:1557-1566. [PMID: 28260536 DOI: 10.1017/s0950268817000474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A nationwide study of Shiga toxin-producing Escherichia coli (STEC) was performed to determine the prevalence, characteristics and risk factors for fecal shedding of STEC among cattle in Japan. Information on rearing practices was also collected to identify risk factors for fecal shedding of STEC. STEC was isolated from 24·1% of samples (133/551) collected from 59·1% of farms (65/110). Bayesian clustering using the virulence marker profiles of the isolates subdivided the isolates into four genetically distinct groups, two of which corresponded to eae- or saa-positive STEC, which can cause severe disease in human. Both STEC groups exhibited characteristic phylogeny and virulence marker profiles. It is noteworthy that the tellurite resistance gene was not detected in all saa-positive STEC isolates, suggesting that the standard isolation method using tellurite might lead to an underestimation of the prevalence of saa-positive STEC. A multivariate logistic regression model using epidemiological information revealed a significantly (P < 0·01) high odds ratio on STEC fecal shedding in tie-stall housing and a low odds ratio in flat feed box and mechanical ventilation. Information on isolate characteristics of the two major pathotypes and risk factors in rearing practices will facilitate the development of preventative measures for STEC fecal shedding from cattle.
Collapse
|
5
|
Tostes R, Goji N, Amoako K, Chui L, Kastelic J, DeVinney R, Stanford K, Reuter T. Subtyping Escherichia coli Virulence Genes Isolated from Feces of Beef Cattle and Clinical Cases in Alberta. Foodborne Pathog Dis 2016; 14:35-42. [PMID: 27854514 DOI: 10.1089/fpd.2016.2199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical outcomes of Shiga toxin (stx)-producing Escherichia coli infection are largely determined by virulence gene subtypes. This study used a polymerase chain reaction (PCR)-pyrosequencing assay to analyze single-nucleotide polymorphisms for subtyping three major virulence genes (stx1, stx2, eae) of pathogenic E. coli (O157, O26, O111, and O103) isolated from cattle over a 2-year interval (n = 465) and human clinical cases (n = 42) in western Canada. Most bovine isolates were PCR positive for at least one target virulence gene (367/465), whereas 100% of human isolates harbored eae in combination with at least one stx gene. Four Shiga toxin (1a, 2a, 2c, and 2e) and four eae (λ/γ1-eae, ɛ-eae, θ/γ2-eae, and β-eae) subtypes were identified in over 25 distinct virulence genotypes. Among cattle isolates, every serogroup, but O103, presented a dominant genotype (O157: stx1a+stx2a+λ/γ1-eae, O26: β-eae alone, and O111: stx1a+θ/γ2-eae). Similar patterns were found in human isolates, although it was not possible to establish a clear genotypic association between the two sources. Many O157 and non-O157 cattle isolates lacked stx genes; the absence was greater in non-O157 (75/258) and O157:non-H7 (19/40) than in O157:H7 strains (1/164). In addition, there was a greater diversity of virulence genotypes of E. coli isolated from cattle than those of human diseases, which could be due to sample characteristics (e.g., source and clinical condition). However, the majority of cattle strains had virulence profiles identical to those of clinical cases. Consequently, determining the presence of certain stx (stx1a and stx2a) and eae (λ/γ1-eae) subtypes known to cause human disease would be a valuable tool for risk assessment and prediction of disease outcome along the farm-to-fork continuum.
Collapse
Affiliation(s)
- Renata Tostes
- 1 Department of Microbiology, Immunology and Infectious Diseases, University of Calgary , Calgary, Canada
| | - Noriko Goji
- 2 Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency , Lethbridge, Canada
| | - Kingsley Amoako
- 2 Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency , Lethbridge, Canada
| | - Linda Chui
- 3 Alberta Provincial Laboratory for Public Health , Edmonton, Canada
| | - John Kastelic
- 4 Faculty of Veterinary Medicine, Production Animal Health, University of Calgary, Calgary, Canada
| | - Rebekah DeVinney
- 1 Department of Microbiology, Immunology and Infectious Diseases, University of Calgary , Calgary, Canada
| | - Kim Stanford
- 5 Alberta Agriculture and Forestry , Lethbridge, Canada
| | - Tim Reuter
- 5 Alberta Agriculture and Forestry , Lethbridge, Canada
| |
Collapse
|
6
|
Xu Y, Bai X, Zhao A, Zhang W, Ba P, Liu K, Jin Y, Wang H, Guo Q, Sun H, Xu J, Xiong Y. Genetic Diversity of Intimin Gene of Atypical Enteropathogenic Escherichia coli Isolated from Human, Animals and Raw Meats in China. PLoS One 2016; 11:e0152571. [PMID: 27031337 PMCID: PMC4816571 DOI: 10.1371/journal.pone.0152571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is considered to be an emerging enteropathogen that is more prevalent than typical EPEC in developing and developed countries. The major adherence factor, intimin, an outer membrane protein encoded by eae, plays a pivotal role in the pathogenesis of aEPEC. This study investigated the distribution and polymorphisms of intimin subtypes of 143 aEPEC strains from diarrheal patients, healthy carriers, animals, and raw meats in China. These aEPEC strains belonged to more than 71 different serotypes, which comprised 52 O serogroups and 24 H types. Sixty-eight different eae genotypes and 19 intimin subtypes were detected. Eighteen, eight, seven, and five intimin subtypes were identified from 86 diarrheal patients, 14 healthy carriers, 19 animals, and 24 raw meats strains, respectively. Intimin β1 was the most prevalent subtype in strains from diarrheal patients (34.88%) and animals (47.37%). There was a statistically significant difference in the distribution of eae-β1 between diarrheal patients and healthy carriers (P = 0.004). Intimin-θ was more predominant among raw meat strains (50%) than among diarrheal patients strains (12.79%, P = 0.0003), healthy carrier strains (7.14%, P = 0.007), or animal strains (15.79%, P = 0.020). The two predominant subtypes (eae-β1 and eae-θ) had considerable polymorphisms with no significant differences among the four sources. PFGE analysis revealed 119 distinct patterns and the strains were clustered into 11 groups with similarity indices ranging from 63% to 100%. These results suggest that in China, aEPEC strains from different sources are highly heterogeneous. Animals and raw meats are important sources of genetically diverse intimin-harboring aEPEC, which might serve as important transmission vehicles of these bacteria.
Collapse
Affiliation(s)
- Yanmei Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangning Bai
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ailan Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wang Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pengbin Ba
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Qiusheng Guo
- Suixian Center for Disease Control and Prevention, Shangqiu, Henan Province, China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
A new pyrosequencing assay for rapid detection and genotyping of Shiga toxin, intimin and O157-specific rfbE genes of Escherichia coli. J Microbiol Methods 2015; 109:167-79. [DOI: 10.1016/j.mimet.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/02/2023]
|
8
|
Estimating the prevalence of potential enteropathogenic Escherichia coli and intimin gene diversity in a human community by monitoring sanitary sewage. Appl Environ Microbiol 2013; 80:119-27. [PMID: 24141131 DOI: 10.1128/aem.02747-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison.
Collapse
|
9
|
Specific properties of enteropathogenic Escherichia coli isolates from diarrheal patients and comparison to strains from foods and fecal specimens from cattle, swine, and healthy carriers in Osaka City, Japan. Appl Environ Microbiol 2012; 79:1232-40. [PMID: 23220963 DOI: 10.1128/aem.03380-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
For exhaustive detection of diarrheagenic Escherichia coli, we previously developed a colony-hybridization method using hydrophobic grid-membrane filters in combination with multiplex real-time PCR. To assess the role of domestic animals as the source of atypical enteropathogenic E. coli (aEPEC), a total of 679 samples (333 from foods, fecal samples from 227 domestic animals, and 119 from healthy people) were examined. Combining 48 strains previously isolated from patients and carriers, 159 aEPEC strains were classified by phylogroup, virulence profile, and intimin typing. Phylogroup B1 was significantly more prevalent among aEPEC from patients (50%) and bovine samples (79%) than from healthy carriers (16%) and swine strains (23%), respectively. Intimin type β1 was predominant in phylogroup B1; B1-β1 strains comprised 26% of bovine strains and 25% of patient strains. The virulence profile groups Ia and Ib were also observed more frequently among bovine strains than among porcine strains. Similarly, virulence group Ia was detected more frequently among patient strains than strains of healthy carriers. A total of 85 strains belonged to virulence group I, and 63 of these strains (74%) belonged to phylogroup B1. The present study suggests that the etiologically important aEPEC in diarrheal patients could be distinguished from aEPEC strains indigenous to humans based on type, such as B1, Ia, and β1/γ1, which are shared with bovine strains, while the aEPEC strains in healthy humans are different, and some of these were also present in porcine samples.
Collapse
|
10
|
Detection of Shiga toxin-producing Escherichia coli serotypes O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7 in raw-milk cheeses by using multiplex real-time PCR. Appl Environ Microbiol 2011; 77:2035-41. [PMID: 21239543 DOI: 10.1128/aem.02089-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.
Collapse
|
11
|
Relationship between virulence gene profiles of atypical enteropathogenic Escherichia coli and Shiga toxin-producing E. coli isolates from cattle and sheep in New Zealand. Appl Environ Microbiol 2010; 76:3744-7. [PMID: 20400570 DOI: 10.1128/aem.02528-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Virulence gene profiles of atypical enteropathogenic Escherichia coli (aEPEC) and Shiga toxin-producing E. coli (STEC) from cattle, sheep, and humans were examined to determine the relationship between pathotypes. Shared virulence factors (intimin, EHEC hemolysin, serine protease, and a type II secretion system) were identified, suggesting a dynamic evolutionary relationship between aEPEC and STEC.
Collapse
|
12
|
Diarra MS, Giguère K, Malouin F, Lefebvre B, Bach S, Delaquis P, Aslam M, Ziebell KA, Roy G. Genotype, serotype, and antibiotic resistance of sorbitol-negative Escherichia coli isolates from feedlot cattle. J Food Prot 2009; 72:28-36. [PMID: 19205460 DOI: 10.4315/0362-028x-72.1.28] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rectal fecal samples from 80 steers receiving Rumensin, Revalor-S, and Liquamycin alone or in combination for growth promotion and disease prevention were examined for the presence of non-O157:H7 Shiga toxin-producing Escherichia coli. All isolates were identified with the API 20E test, virulence genes were detected with a PCR assay, and antibiotic susceptibilities were determined with the Sensititre system. Of the 153 E. coli isolates recovered 126 (82.3%) were sorbitol negative. Isolates were classified into 14 biochemical E. coli groups; 51.6% were negative for arginine dihydrolase, ornithine decarboxylase, sorbitol, and saccharose reactions but positive for lysine decarboxylase, indole production, and rhamnose reactions. Twenty-one O:H serotypes were detected in the 153 E. coli isolates. The most frequent serotypes were O2:H42 (49.7% of isolates), O49:NM (13.7%), O?:H25 (9.2%), and O10:NM (7.2%). One isolate of E. coli O172:H25 and one of E. coli O157: H39 were found. The stx1 gene was found in the two E. coli O98:H25 isolates. The eaeA and e-hlyA genes were detected in 21, 14, and 10 isolates of serotypes O49:NM, O?:H25, and O10:NM, respectively, and in each isolate of serotype O156:H25 and O172:H25. Four E. coli O132:H18 isolates were multiresistant to ampicillin, chloramphenicol, kanamycin, streptomycin, and sulfisoxazole. Tetracycline resistance due to the tet(B) gene was observed in 74 of the 76 E. coli O2:H42 isolates. Except for one isolate, all tetracycline-resistant isolates were negative for the virulence genes eaeA and e-hlyA or stx1. Pulsed-field gel electrophoresis typing revealed that the tetracycline-resistant serotypes were genetically diverse. Our data illustrate that cattle are a potential source of some atypical antibiotic-resistant E. coli isolates that harbor virulence genes.
Collapse
Affiliation(s)
- Moussa S Diarra
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1000, 6947 Highway 7, Agassiz, British Columbia, Canada V0M 1A0.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
La Ragione RM, Best A, Woodward MJ, Wales AD. Escherichia coli O157:H7 colonization in small domestic ruminants. FEMS Microbiol Rev 2008; 33:394-410. [PMID: 19207740 DOI: 10.1111/j.1574-6976.2008.00138.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.
Collapse
Affiliation(s)
- Roberto M La Ragione
- Department of Food and Environmental Safety, Veterinary Laboratories Agency, Addlestone, Surrey, UK.
| | | | | | | |
Collapse
|
14
|
Prevalence and genetic characterization of shiga toxin-producing Escherichia coli isolates from slaughtered animals in Bangladesh. Appl Environ Microbiol 2008; 74:5414-21. [PMID: 18641151 DOI: 10.1128/aem.00854-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) in slaughter animals in Dhaka, Bangladesh, we collected rectal contents immediately after animals were slaughtered. Of the samples collected from buffalo (n = 174), cows (n = 139), and goats (n = 110), 82.2%, 72.7%, and 11.8% tested positive for stx(1) and/or stx(2), respectively. STEC could be isolated from 37.9%, 20.1%, and 10.0% of the buffalo, cows, and goats, respectively. STEC O157 samples were isolated from 14.4% of the buffalo, 7.2% of the cows, and 9.1% of the goats. More than 93% (n = 42) of the STEC O157 isolates were positive for the stx(2), eae, katP, etpD, and enterohemorrhagic E. coli hly (hly(EHEC)) virulence genes. STEC O157 isolates were characterized by seven recognized phage types, of which types 14 (24.4%) and 31 (24.4%) were predominant. Subtyping of the 45 STEC O157 isolates by pulsed-field gel electrophoresis showed 37 distinct restriction patterns, suggesting a heterogeneous clonal diversity. In addition to STEC O157, 71 STEC non-O157 strains were isolated from 60 stx-positive samples from 23.6% of the buffalo, 12.9% of the cows, and 0.9% of the goats. The STEC non-O157 isolates belonged to 36 different O groups and 52 O:H serotypes. Unlike STEC O157, most of the STEC non-O157 isolates (78.9%) were positive for stx(1). Only 7.0% (n = 5) of the isolates were positive for hly(EHEC), and none was positive for eae, katP, and etpD. None of the isolates was positive for the iha, toxB, and efa1 putative adhesion genes. However, 35.2% (n = 25), 11.3% (n = 8), 12.7% (n = 9), and 12.7% (n = 9) of the isolates were positive for the lpf(O113), saa, lpfA(O157/01-141), and lpfA(O157/OI-154) genes, respectively. The results of this study provide the first evidence that slaughtered animals like buffalo, cows, and goats in Bangladesh are reservoirs for STEC, including the potentially virulent STEC strain O157.
Collapse
|