1
|
Evans SE, Valentine ME, Gallimore F, Meka Y, Koehler SI, Yu HD, Valentovic MA, Long TE. Perturbations in the gut microbiome of C57BL/6 mice by the sobriety aid Antabuse® (disulfiram). J Appl Microbiol 2025; 136:lxae305. [PMID: 39701818 PMCID: PMC11704607 DOI: 10.1093/jambio/lxae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
AIMS Disulfiram (Antabuse®) is an oral alcohol sobriety medication that exhibits antimicrobial activity against Gram-positive facultative anaerobes. The aims of this study were to measure the antimicrobial activity against anaerobic bacteria of the gut human microbiome and establish the extent that disulfiram alters the microbial composition of the ileum, cecum, and feces using C57BL/6 mice. METHODS AND RESULTS Antimicrobial susceptibility testing by the microdilution method revealed that disulfiram inhibits the in vitro growth of gut anaerobic species of Bacteroides, Clostridium, Peptostreptococcus, and Porphyromonas. Differential sequencing of 16S rRNA isolated from the ileum, cecum, and feces contents of treated vs. untreated mice showed that disulfiram enriches the Gram-negative enteric population. In female mice, the enrichment was greatest in the ileum, whereas the feces composition in male mice was the most heavily altered. CONCLUSIONS Daily administration of oral disulfiram depletes the enteric Gram-positive anaerobe population as predicted by the minimum inhibitory concentration data for isolates from the human gut microbiota.
Collapse
Affiliation(s)
- Sarah E Evans
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Meagan E Valentine
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Fallon Gallimore
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Yogesh Meka
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25755, United States
| | - Samuel I Koehler
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Hongwei D Yu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Timothy E Long
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25755, United States
| |
Collapse
|
2
|
Shinoda-Ito Y, Omori K, Ito T, Nakayama M, Ikeda A, Ito M, Ohara T, Takashiba S. Novel Iron Chelators, Super-Polyphenols, Show Antimicrobial Effects against Cariogenic Streptococcus mutans. Antibiotics (Basel) 2023; 12:1562. [PMID: 37998764 PMCID: PMC10668666 DOI: 10.3390/antibiotics12111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Dental caries are an oral infectious disease that can affect human health both orally and systemically. It remains an urgent issue to establish a novel antibacterial method to prevent oral infection for a healthy life expectancy. The aim of this study was to evaluate the inhibitory effects of novel iron chelators, super-polyphenols (SPs), on the cariogenic bacterium Streptococcus mutans, in vitro. SPs were developed to reduce the side effects of iron chelation therapy and were either water-soluble or insoluble depending on their isoforms. We found that SP6 and SP10 inhibited bacterial growth equivalent to povidone-iodine, and viability tests indicated that their effects were bacteriostatic. These results suggest that SP6 and SP10 have the potential to control oral bacterial infections such as Streptococcus mutans.
Collapse
Affiliation(s)
- Yuki Shinoda-Ito
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| | - Takashi Ito
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masaaki Nakayama
- Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Atsushi Ikeda
- Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Masahiro Ito
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan (S.T.)
| |
Collapse
|
3
|
Aksoyalp ZŞ, Temel A, Erdogan BR. Iron in infectious diseases friend or foe?: The role of gut microbiota. J Trace Elem Med Biol 2023; 75:127093. [PMID: 36240616 DOI: 10.1016/j.jtemb.2022.127093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2022]
Abstract
Iron is a trace element involved in metabolic functions for all organisms, from microorganisms to mammalians. Iron deficiency is a prevalent health problem that affects billions of people worldwide, and iron overload could have some hazardous effect. The complex microbial community in the human body, also called microbiota, influences the host immune defence against infections. An imbalance in gut microbiota, dysbiosis, changes the host's susceptibility to infections by regulating the immune system. In recent years, the number of studies on the relationship between infectious diseases and microbiota has increased. Gut microbiota is affected by different parameters, including mode of delivery, hygiene habits, diet, drugs, and plasma iron levels during the lifetime. Gut microbiota may influence iron levels in the body, and iron overload and deficiency can also affect gut microbiota composition. Novel researches on microbiota shed light on the fact that the bidirectional interactions between gut microbiota and iron play a role in the pathogenesis of many diseases, especially infections. A better understanding of these interactions may help us to comprehend the pathogenesis of many infectious and metabolic diseases affecting people worldwide and following the development of more effective preventive and/or therapeutic strategies. In this review, we aimed to present the iron-mediated host-gut microbiota interactions, susceptibility to bacterial infections, and iron-targeted therapy approaches for infections.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| | - Aybala Temel
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Izmir, Turkey.
| | - Betul Rabia Erdogan
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| |
Collapse
|
4
|
Paunkov A, Gutenbrunner K, Sóki J, Leitsch D. Haemin deprivation renders Bacteroides fragilis hypersusceptible to metronidazole and cancels high-level metronidazole resistance. J Antimicrob Chemother 2022; 77:1027-1031. [PMID: 35040989 PMCID: PMC8969417 DOI: 10.1093/jac/dkab485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/07/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Infections with Bacteroides fragilis are routinely treated with metronidazole, a 5-nitroimidazole antibiotic that is active against most anaerobic microorganisms. Metronidazole has remained a reliable treatment option, but resistance does occur, including in B. fragilis. OBJECTIVES In this study we tested whether haemin, a growth supplement for B. fragilis in vivo and in vitro, had an influence on the susceptibility of resistant B. fragilis strains to metronidazole. We further tested whether haemin-deprived B. fragilis would be more susceptible to oxygen and oxidative stress. Metronidazole has been described to cause oxidative stress, which we argued would be exacerbated in haemin-deprived B. fragilis because the bacteria harness haemin, and the iron released from it, in antioxidant enzymes such as catalase and superoxide dismutase. METHODS Haemin was omitted from growth media and the effect on metronidazole susceptibility was monitored in susceptible and resistant B. fragilis strains. Further, haemin-deprived B. fragilis were tested for resistance to aeration and hydrogen peroxide and the capacity for the removal of oxygen. RESULTS Omission of haemin from the growth medium rendered metronidazole-resistant B. fragilis strains, including an MDR isolate from the UK, highly susceptible to metronidazole. Haemin deprivation further rendered B. fragilis highly susceptible to oxygen, which was further exacerbated in resistant strains. B. fragilis was incapable of scavenging oxygen when haemin was omitted. CONCLUSIONS We propose that haemin deprivation overrules resistance mechanisms by rendering B. fragilis hypersusceptible to metronidazole due to a compromised antioxidant defence. Monitoring of haemin concentrations is imperative when conducting metronidazole susceptibility testing in B. fragilis.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Katrin Gutenbrunner
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - József Sóki
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis 6, H-6725 Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Ho FKH, Bolhuis A, Delgado-Charro MB. Prevention and Treatment of Fungal Skin Infections Using Cationic Polymeric Films. Pharmaceutics 2021; 13:pharmaceutics13081161. [PMID: 34452122 PMCID: PMC8398677 DOI: 10.3390/pharmaceutics13081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Dermatophytosis is a fungal infection of skin, nails and hair. Treatments can be long and infections are often recurrent, and novel treatments are desirable. Here we tested the use of polymeric films that can be sprayed on the skin for the prevention and treatment of dermatophytosis. The two polymers selected were ABIL T Quat 60 and Eudragit E100, which were tested ex vivo using a porcine skin model, and in vitro using microbiological and microscopy techniques. Acceptability of the polymeric films was tested on the skin of healthy volunteers. The results showed that ABIL and Eudragit films prevented and treated fungal skin infections. Whilst polymer films may provide a physical barrier that prevents fungal colonization, it was shown that both polymers are active antifungals ex vivo and in vitro and have intrinsic antifungal activity. For ABIL, we also established that this polymer binds essential nutrients such as metal ions and sugars, thereby restricting the growth of fungi. When applied to healthy subjects’ skin, the polymeric films neither modified the skin color nor increased trans-epidermal water loss, suggesting a low potential for skin irritation, and the approach was generally found to be acceptable for use by the volunteers. In conclusion, we developed a novel strategy for the potential prevention and treatment of dermatophytosis.
Collapse
|
6
|
Díaz R, Troncoso J, Jakob E, Skugor S. "Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis". BMC Vet Res 2021; 17:155. [PMID: 33849522 PMCID: PMC8043062 DOI: 10.1186/s12917-021-02853-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. RESULTS Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1β at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. CONCLUSION The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis.
Collapse
Affiliation(s)
- Rodrigo Díaz
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - José Troncoso
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - Eva Jakob
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - Stanko Skugor
- Cargill Innovation Centre, Dirdalsstranda 51, 4335, Dirdal, Norway.
| |
Collapse
|
7
|
Houshmandyar S, Eggleston IM, Bolhuis A. Biofilm-specific uptake of a 4-pyridone-based iron chelator by Pseudomonas aeruginosa. Biometals 2021; 34:315-328. [PMID: 33428087 PMCID: PMC7940164 DOI: 10.1007/s10534-020-00281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
Iron is an essential nutrient for virtually all microbes and limiting the concentration of available iron is a potential strategy to be used as an alternative to antibiotic treatment. In this study we analysed the antimicrobial activity of two chelators, specifically 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (deferiprone, DFP), which is clinically approved for the treatment of iron overload disorders, and its 1,2-diethyl homologue, CP94. Both compounds showed moderate activity towards planktonically growing P. aeruginosa cells, and the mechanism of action of these chelators was indeed by limiting the amount of free iron. Surprisingly, the compounds behaved very differently when the cells were grown in biofilms. DFP also showed inhibitory effects on biofilm formation but in contrast, CP94 stimulated this process, in particular at high concentrations. We hypothesised that CP94 behaves as an iron carrier, which was confirmed by our observation that it had antimicrobial synergy with the toxic metals, gallium and copper. This suggests that P. aeruginosa produces a biofilm-specific transport protein that recognises CP94 but not the closely related compound DFP.
Collapse
Affiliation(s)
| | - Ian M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
8
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
9
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Xi R, Wang R, Wang Y, Xiang Z, Su Z, Cao Z, Xu X, Zheng X, Li J. Comparative analysis of the oral microbiota between iron-deficiency anaemia (IDA) patients and healthy individuals by high-throughput sequencing. BMC Oral Health 2019; 19:255. [PMID: 31752810 PMCID: PMC6873577 DOI: 10.1186/s12903-019-0947-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Background The relationship between oral microbiota and IE (infective endocarditis) is well established. Opportunistic pathogens in normal oral flora enter the bloodstream through daily oral cleaning or invasive dental procedures, leading to the occurrence of infective endocarditis. An in vitro iron-deficient condition leads to a drastic community shift in oral microbiota with increasing proportions of taxa related to infective endocarditis. To investigate the relationship among insufficient iron supply, oral microbiota and the risk of IE and to conduct a population amplification study, iron-deficiency anaemia is used as an in vivo model. Methods This cross-sectional study enrolled 24 primary iron-deficiency anemia (IDA) patients from 2015.6 to 2016.6 from the hematology department of West China Hospital, Sichuan University, and 24 healthy controls. High-throughput sequencing compared the dental plaque microbiota of 24 IDA (iron-deficiency anaemia) patients and 24 healthy controls. Results Sequences were classified into 12 phyla, 28 classes, 50 orders, 161 genera and 497 OTUs (the IDA and control groups shared the same 384 OTUs). Iron deficiency leads to lower internal diversity in the oral flora. The abundances of genera Corynebacterium, Neisseria, Cardiobacterium, Capnocytophaga, and Aggregatibacter were significantly higher in healthy controls, while genera Lactococcus, Enterococcus, Lactobacillus, Pseudomonas and Moraxella showed higher proportions in the IDA group (P < 0.05). The relative abundances of genera Lactococcus, Enterococcus, Pseudomonas and Moraxella were significantly negatively correlated with the concentration of serum ferritin (P < 0.05). Conclusions Without an increase of oral streptococci, the main pathogen of IE, it is difficult to determine whether IDA can increase the risk of IE. However, the iron-deficient condition did lead to changes in the oral microbiota community structure. The genera that showed higher proportions in the IDA group were frequently reported as antibiotic-resistant. As antibiotics are commonly recommended to prevent IE before dental procedures, this study offers new ideas of personalized prevention of IE.
Collapse
Affiliation(s)
- Ranhui Xi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Renke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhenting Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zaiqiang Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Trimmel K, Cvikl B, Müller HD, Nürnberger S, Gruber R, Moritz A, Agis H. L-mimosine increases the production of vascular endothelial growth factor in human tooth slice organ culture model. Int Endod J 2014; 48:252-60. [PMID: 24786562 DOI: 10.1111/iej.12307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/26/2014] [Indexed: 12/26/2022]
Abstract
AIM To assess the pro-angiogenic and pro-inflammatory capacity of the dentine-pulp complex in response to the prolyl hydroxylase inhibitor L-mimosine in a tooth slice organ culture model. METHODOLOGY Human teeth were sectioned transversely into 600-μm-thick slices and cultured in medium supplemented with serum and antibiotics. Then, pulps were stimulated for 48 h with L-mimosine. Pulps were subjected to viability measurements based on formazan formation in MTT assays. In addition, histological evaluation of pulps was performed based on haematoxylin and eosin staining. Culture supernatants were subjected to immunoassays for vascular endothelial growth factor (VEGF) to determine the pro-angiogenic capacity and to immunoassays for interleukin (IL)-6 and IL-8 to assess the pro-inflammatory response. Interleukin-1 served as pro-inflammatory control. Echinomycin was used to inhibit hypoxia-inducible factor-1 (HIF-1) alpha activity. Data were analysed using Student's t-test and Mann-Whitney U test. RESULTS Pulps within tooth slices remained vital upon L-mimosine stimulation as indicated by formazan formation and histological evaluation. L-mimosine increased VEGF production when normalized to formazan formation in the pulp tissue of the tooth slices (P < 0.05). This effect on VEGF was reduced by echinomycin (P < 0.01). Changes in normalized IL-6 and IL-8 levels upon treatment with L-mimosine did not reach the level of significance (P > 0.05), whilst treatment with IL-1, which served as positive control, increased IL-6 (P < 0.05) and IL-8 levels (P < 0.05). CONCLUSIONS The prolyl hydroxylase inhibitor L-mimosine increased VEGF production via HIF-1 alpha in the tooth slice organ culture model whilst inducing no prominent increase in IL-6 and IL-8. Pre-clinical studies will reveal if these in vitro effects translate into dental pulp regeneration.
Collapse
Affiliation(s)
- K Trimmel
- Department of Oral Surgery, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
12
|
Moon JH, Kim C, Lee HS, Kim SW, Lee JY. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia. J Med Microbiol 2013; 62:1307-1316. [DOI: 10.1099/jmm.0.053553-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml−1) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Cheul Kim
- Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Department of Oral Medicine and Diagnosis, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hee-Su Lee
- Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Anatomy and Histology, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Sung-Woon Kim
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Yong Lee
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Müller HD, Cvikl B, Gruber R, Watzek G, Agis H. Prolyl hydroxylase inhibitors increase the production of vascular endothelial growth factor in dental pulp-derived cells. J Endod 2012; 38:1498-503. [PMID: 23063224 DOI: 10.1016/j.joen.2012.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Prolyl hydroxylase (PHD) inhibitors can induce a proangiogenic response that stimulates regeneration in soft and hard tissues. However, the effect of PHD inhibitors on the dental pulp is unclear. The purpose of this study was to evaluate the effects of PHD inhibitors on the proangiogenic capacity of human dental pulp-derived cells. METHODS To test the response of dental pulp-derived cells to PHD inhibitors, the cells were exposed to dimethyloxalylglycine, desferrioxamine, L-mimosine, and cobalt chloride. To assess the response of dental pulp cells to a capping material supplemented with PHD inhibitors, the cells were treated with supernatants from calcium hydroxide. Viability, proliferation, and protein synthesis were assessed by formazan formation, (3)[H]thymidine, and (3)[H]leucine incorporation assays. The effect on the proangiogenic capacity was measured by immunoassays for vascular endothelial growth factor (VEGF). RESULTS We found that all 4 PHD inhibitors can reduce viability, proliferation, and protein synthesis at high concentrations. At nontoxic concentrations and in the presence of supernatants from calcium hydroxide, PHD inhibitors stimulated the production of VEGF in dental pulp-derived cells. When calcium hydroxide was supplemented with the PHD inhibitors, the supernatants from these preparations did not significantly elevate VEGF levels. CONCLUSIONS These results show that PHD inhibitors can stimulate VEGF production of dental pulp-derived cells, suggesting a corresponding increase in their proangiogenic capacity. Further studies will be required to understand the impact that this might have on pulp regeneration.
Collapse
|