1
|
Timofeeva AM, Galyamova MR, Sedykh SE. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? PLANTS (BASEL, SWITZERLAND) 2024; 13:2371. [PMID: 39273855 PMCID: PMC11397614 DOI: 10.3390/plants13172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria R Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Ben Gaied R, Sbissi I, Tarhouni M, Brígido C. Bacterial Endophytes from Legumes Native to Arid Environments Are Promising Tools to Improve Mesorhizobium-Chickpea Symbiosis under Salinity. BIOLOGY 2024; 13:96. [PMID: 38392314 PMCID: PMC10886315 DOI: 10.3390/biology13020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Symbiotic nitrogen fixation is a major contributor of N in agricultural ecosystems, but the establishment of legume-rhizobium symbiosis is highly affected by soil salinity. Our interest is focused on the use of non-rhizobial endophytes to assist the symbiosis between chickpea and its microsymbiont under salinity to avoid loss of production and fertility. Our aims were (1) to investigate the impact of salinity on both symbiotic partners; including on early events of the Mesorhizobium-chickpea symbiosis, and (2) to evaluate the potential of four non-rhizobial endophytes isolated from legumes native to arid regions (Phyllobacterium salinisoli, P. ifriqiyense, Xanthomonas translucens, and Cupriavidus respiraculi) to promote chickpea growth and nodulation under salinity. Our results show a significant reduction in chickpea seed germination rate and in the microsymbiont Mesorhizobium ciceri LMS-1 growth under different levels of salinity. The composition of phenolic compounds in chickpea root exudates significantly changed when the plants were subjected to salinity, which in turn affected the nod genes expression in LMS-1. Furthermore, the LMS-1 response to root exudate stimuli was suppressed by the presence of salinity (250 mM NaCl). On the contrary, a significant upregulation of exoY and otsA genes, which are involved in exopolysaccharide and trehalose biosynthesis, respectively, was registered in salt-stressed LMS-1 cells. In addition, chickpea co-inoculation with LMS-1 along with the consortium containing two non-rhizobial bacterial endophytes, P. salinisoli and X. translucens, resulted in significant improvement of the chickpea growth and the symbiotic performance of LMS-1 under salinity. These results indicate that this non-rhizobial endophytic consortium may be an appropriate ecological and safe tool to improve chickpea growth and its adaptation to salt-degraded soils.
Collapse
Affiliation(s)
- Roukaya Ben Gaied
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Imed Sbissi
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Mohamed Tarhouni
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Clarisse Brígido
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
3
|
Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022; 10:1220. [PMID: 35744738 PMCID: PMC9227430 DOI: 10.3390/microorganisms10061220] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
There is a direct correlation between population growth and food demand. As the global population continues to rise, there is a need to scale up food production to meet the food demand of the population. In addition, the arable land over time has lost its naturally endowed nutrients. Hence, alternative measures such as fertilizers, pesticides, and herbicides are used to fortify the soil and scale up the production rate. As efforts are being made to meet this food demand and ensure food security, it is equally important to ensure food safety for consumption. Food safety measures need to be put in place throughout the food production chain lines. One of the fundamental measures is the use of biofertilizers or plant growth promoters instead of chemical or synthesized fertilizers, pesticides, and herbicides that poise several dangers to human and animal health. Biofertilizers competitively colonize plant root systems, which, in turn, enhance nutrient uptake, increase productivity and crop yield, improve plants' tolerance to stress and their resistance to pathogens, and improve plant growth through mechanisms such as the mobilization of essential elements, nutrients, and plant growth hormones. Biofertilizers are cost-effective and ecofriendly in nature, and their continuous usage enhances soil fertility. They also increase crop yield by up to about 10-40% by increasing protein contents, essential amino acids, and vitamins, and by nitrogen fixation. This review therefore highlighted different types of biofertilizers and the mechanisms by which they elicit their function to enhance crop yield to meet food demand. In addition, the review also addressed the role of microorganisms in promoting plant growth and the various organisms that are beneficial for enhancing plant growth.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
- Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna 920101, Niger State, Nigeria
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (A.O.F.); (V.M.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa;
| | - Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| | - Stacey Fisher
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| | - Adam Frank Burt
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Vuyo Mavumengwana
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (A.O.F.); (V.M.)
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town 7505, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| |
Collapse
|
4
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Is phosphate solubilizing ability in plant growth-promoting rhizobacteria isolated from chickpea linked to their ability to produce ACC deaminase? J Appl Microbiol 2021; 131:2416-2432. [PMID: 33884699 DOI: 10.1111/jam.15108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
AIMS Since most phosphate solubilizing bacteria (PSB) also produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase, we investigated if there was an association between these two plant growth-promoting properties under in vitro conditions. METHODS AND RESULTS A total of 841 bacterial isolates were obtained using selective and enrichment isolation methods. ACC deaminase was investigated using in vitro methods and by sequencing the acdS gene. The effect of ACC deaminase on P solubilization was investigated further using five efficient PSB. ACC deaminase production ability was found amongst a wide range of bacteria belonging to the genera Bacillus, Burkholderia, Pseudomonas and Variovorax. The amount of ACC deaminase produced by PSB was significantly associated with the liberation of Pi from Ca-P when ACC was the sole N source. Ca-P solubilization was associated with the degree of acidification of the medium. Additionally, the P solubilization potential of PSB with (NH4 )2 SO4 was determined by the type of carboxylates produced. An in-planta experiment was conducted using Burkholderia sp. 12F on chickpea cv. Genesis-863 in sand : vermiculite (1 : 1 v/v) amended with rock phosphate and inoculation of this efficient PSB significantly increased growth, nodulation and P uptake of chickpea fertilized with rock phosphate. CONCLUSION ACC deaminase activity influenced the capacity of PSB to solubilize P from Ca-P when ACC was the sole N source and Burkholderia sp. 12F promoted the chickpea-Mesorhizobium symbiosis. SIGNIFICANCE AND IMPACT OF THE STUDY ACC deaminase activity could enhance the P solubilizing activity of rhizobacteria that improve plant growth.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
5
|
Singh P, Singh RK, Li HB, Guo DJ, Sharma A, Lakshmanan P, Malviya MK, Song XP, Solanki MK, Verma KK, Yang LT, Li YR. Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression. Front Microbiol 2021; 11:600417. [PMID: 33510724 PMCID: PMC7835727 DOI: 10.3389/fmicb.2020.600417] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Sugarcane is a major crop in tropical and subtropical regions of the world. In China, the application of large amounts of nitrogen (N) fertilizer to boost sugarcane yield is commonplace, but it causes substantial environmental damages, particularly soil, and water pollution. Certain rhizosphere microbes are known to be beneficial for sugarcane production, but much of the sugarcane rhizosphere microflora remains unknown. We have isolated several sugarcane rhizosphere bacteria, and 27 of them were examined for N-fixation, plant growth promotion, and antifungal activity. 16S rRNA gene sequencing was used to identify these strains. Among the isolates, several strains were found to have a relatively high activity of nitrogenase and ACC deaminase, the enzyme that reduces ethylene production in plants. These strains were found to possess nifH and acdS genes associated with N-fixation and ethylene production, respectively. Two of these strains, Pantoea dispersa-AA7 and Enterobacter asburiae-BY4 showed maximum plant growth promotion (PGP) and nitrogenase activity, and thus they were selected for detailed analysis. The results show that they colonize different sugarcane tissues, use various growth substrates (carbon and nitrogen), and tolerate various stress conditions (pH and osmotic stress). The positive effect of AA7 and BY4 strains on nifH and stress-related gene (SuCAT, SuSOD, SuPAL, SuCHI, and SuGLU) expression and the induction of defense-related processes in two sugarcane varieties, GT11 and GXB9, showed their potential for stress amelioration and PGP. Both bacterial strains increased several sugarcane physiological parameters. i.e., plant height, shoot weight, root weight, leaf area, chlorophyll content, and photosynthesis, in plants grown under greenhouse conditions. The ability of rhizobacteria on N-fixing in sugarcane was also confirmed by a 15N isotope-dilution study, and the estimate indicates a contribution of 21-35% of plant nitrogen by rhizobacterial biological N fixation (BNF). This is the first report of sugarcane growth promotion by N-fixing rhizobacteria P. dispersa and E. asburiae strains. Both strains could be used as biofertilizer for sugarcane to minimize nitrogen fertilizer use and better disease management.
Collapse
Affiliation(s)
- Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Hai-Bi Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,Interdisciplinary Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Mukesh K Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Manoj K Solanki
- Department of Food Quality and Safety, The Volcani Center, Institute for Post-Harvest and Food Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Li-Tao Yang
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618230] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The above ground growth of the plant is highly dependent on the belowground root system. Rhizosphere is the zone of continuous interplay between plant roots and soil microbial communities. Plants, through root exudates, attract rhizosphere microorganisms to colonize the root surface and internal tissues. Many of these microorganisms known as plant growth promoting rhizobacteria (PGPR) improve plant growth through several direct and indirect mechanisms including biological nitrogen fixation, nutrient solubilization, and disease-control. Many PGPR, by producing phytohormones, volatile organic compounds, and secondary metabolites play important role in influencing the root architecture and growth, resulting in increased surface area for nutrient exchange and other rhizosphere effects. PGPR also improve resource use efficiency of the root system by improving the root system functioning at physiological levels. PGPR mediated root trait alterations can contribute to agroecosystem through improving crop stand, resource use efficiency, stress tolerance, soil structure etc. Thus, PGPR capable of modulating root traits can play important role in agricultural sustainability and root traits can be used as a primary criterion for the selection of potential PGPR strains. Available PGPR studies emphasize root morphological and physiological traits to assess the effect of PGPR. However, these traits can be influenced by various external factors and may give varying results. Therefore, it is important to understand the pathways and genes involved in plant root traits and the microbial signals/metabolites that can intercept and/or intersect these pathways for modulating root traits. The use of advanced tools and technologies can help to decipher the mechanisms involved in PGPR mediated determinants affecting the root traits. Further identification of PGPR based determinants/signaling molecules capable of regulating root trait genes and pathways can open up new avenues in PGPR research. The present review updates recent knowledge on the PGPR influence on root architecture and root functional traits and its benefits to the agro-ecosystem. Efforts have been made to understand the bacterial signals/determinants that can play regulatory role in the expression of root traits and their prospects in sustainable agriculture. The review will be helpful in providing future directions to the researchers working on PGPR and root system functioning.
Collapse
|
7
|
Paço A, da-Silva JR, Torres DP, Glick BR, Brígido C. Exogenous ACC Deaminase Is Key to Improving the Performance of Pasture Legume-Rhizobial Symbioses in the Presence of a High Manganese Concentration. PLANTS 2020; 9:plants9121630. [PMID: 33255180 PMCID: PMC7760732 DOI: 10.3390/plants9121630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) toxicity is a very common soil stress around the world, which is responsible for low soil fertility. This manuscript evaluates the effect of the endophytic bacterium Pseudomonas sp. Q1 on different rhizobial-legume symbioses in the absence and presence of Mn toxicity. Three legume species, Cicer arietinum (chickpea), Trifolium subterraneum (subterranean clover), and Medicago polymorpha (burr medic) were used. To evaluate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase produced by strain Q1 in these interactions, an ACC deaminase knockout mutant of this strain was constructed and used in those trials. The Q1 strain only promoted the symbiotic performance of Rhizobium leguminosarum bv. trifolii ATCC 14480T and Ensifer meliloti ATCC 9930T, leading to an increase of the growth of their hosts in both conditions. Notably, the acdS gene disruption of strain Q1 abolished the beneficial effect of this bacterium as well as causing this mutant strain to act deleteriously in those specific symbioses. This study suggests that the addition of non-rhizobia with functional ACC deaminase may be a strategy to improve the pasture legume–rhizobial symbioses, particularly when the use of rhizobial strains alone does not yield the expected results due to their difficulty in competing with native strains or in adapting to inhibitory soil conditions.
Collapse
Affiliation(s)
- Ana Paço
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - José Rodrigo da-Silva
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - Denise Pereira Torres
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Clarisse Brígido
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
- Correspondence: ; Tel.: +351-266-760-878
| |
Collapse
|
8
|
Renoud S, Bouffaud ML, Dubost A, Prigent-Combaret C, Legendre L, Moënne-Loccoz Y, Muller D. Co-occurrence of rhizobacteria with nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities in the maize rhizosphere. FEMS Microbiol Ecol 2020; 96:5818760. [PMID: 32275303 DOI: 10.1093/femsec/fiaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
The plant microbiota may differ depending on soil type, but these microbiota probably share the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using groups corresponding to nitrogen fixation (nifH) and 1-aminocyclopropane-1-carboxylate deamination (acdS), i.e. two key modes of action in plant-beneficial rhizobacteria. The analysis of three maize fields in two consecutive years showed that quantitative PCR numbers of nifH and of acdS alleles differed according to field site, but a positive correlation was found overall when comparing nifH and acdS numbers. Metabarcoding analyses in the second year indicated that the diversity level of acdS but not nifH rhizobacteria in the rhizosphere differed across fields. Furthermore, between-class analysis showed that the three sites differed from one another based on nifH or acdS sequence data (or rrs data), and the bacterial genera contributing most to field differentiation were not the same for the three bacterial groups. However, co-inertia analysis indicated that the genetic structures of both functional groups and of the whole bacterial community were similar across the three fields. Therefore, results point to co-selection of rhizobacteria harboring nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities.
Collapse
Affiliation(s)
- Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Marie-Lara Bouffaud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Laurent Legendre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France.,Univ Lyon, Université de St Etienne, 10, Rue Tréfilerie - F-42023 Saint-Etienne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
9
|
Nascimento FX, Hernandez AG, Glick BR, Rossi MJ. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ Microbiol 2020; 22:1341-1355. [PMID: 32077227 DOI: 10.1111/1462-2920.14946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Numerous Pantoea strains are important because of the benefit they provide in the facilitation of plant growth. However, Pantoea have a high level of genotypic diversity and not much is understood regarding their ability to function in a plant beneficial manner. In the work reported here, the plant growth promotion activities and the genomic properties of the unusual Pantoea phytobeneficialis MSR2 are elaborated, emphasizing the genetic mechanisms involved in plant colonization and growth promotion. Detailed analysis revealed that strain MSR2 belongs to a rare group of Pantoea strains possessing an astonishing number of plant growth promotion genes, including those involved in nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase activity, indoleacetic acid and cytokinin biosynthesis, and jasmonic acid metabolism. Moreover, the genome of this bacterium also contains genes involved in the metabolism of lignin and other plant cell wall compounds, quorum-sensing mechanisms, metabolism of plant root exudates, bacterial attachment to plant surfaces and resistance to plant defences. Importantly, the analysis revealed that most of these genes are present on accessory plasmids that are found within a small subset of Pantoea genomes, reinforcing the idea that Pantoea evolution is largely mediated by plasmids, providing new insights into the evolution of beneficial plant-associated Pantoea.
Collapse
Affiliation(s)
- Francisco X Nascimento
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Anabel G Hernandez
- Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, ON, Canada
| | - Márcio J Rossi
- Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
10
|
Kumar A, Patel JS, Meena VS, Srivastava R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101271] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Safronova V, Belimov A, Sazanova A, Chirak E, Kuznetsova I, Andronov E, Pinaev A, Tsyganova A, Seliverstova E, Kitaeva A, Tsyganov V, Tikhonovich I. Two Broad Host Range Rhizobial Strains Isolated From Relict Legumes Have Various Complementary Effects on Symbiotic Parameters of Co-inoculated Plants. Front Microbiol 2019; 10:514. [PMID: 30930885 PMCID: PMC6428766 DOI: 10.3389/fmicb.2019.00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/28/2019] [Indexed: 11/23/2022] Open
Abstract
Two bacterial strains Ach-343 and Opo-235 were isolated, respectively from nodules of Miocene-Pliocene relict legumes Astragalus chorinensis Bunge and Oxytropis popoviana Peschkova originated from Buryatia (Baikal Lake region, Russia). For identification of these strains the sequencing of 16S rRNA (rrs) gene was used. Strain Opo-235 belonged to the species Mesorhizobium japonicum, while the strain Ach-343 was identified as M. kowhaii (100 and 99.9% rrs similarity with the type strains MAFF 303099T and ICMP 19512T, respectively). Symbiotic genes of these strains as well as some genes that promote plant growth (acdS, gibberellin- and auxin-synthesis related genes) were searched throughout the whole genome sequences. The sets of plant growth-promoting genes found were almost identical in both strains, whereas the sets of symbiotic genes were different and complemented each other with several nod, nif, and fix genes. Effects of mono- and co-inoculation of Astragalus sericeocanus, Oxytropis caespitosa, Glycyrrhiza uralensis, Medicago sativa, and Trifolium pratense plants with the strains M. kowhaii Ach-343 and M. japonicum Opo-235 expressing fluorescent proteins mCherry (red) and EGFP (green) were studied in the gnotobiotic plant nodulation assay. It was shown that both strains had a wide range of host specificity, including species of different legume genera from two tribes (Galegeae and Trifolieae). The effects of co-microsymbionts on plants depended on the plant species and varied from decrease, no effect, to increase in the number of nodules, nitrogen-fixing activity and plant biomass. One of the reasons for this phenomenon may be the discovered complementarity in co-microsymbionts of symbiotic genes responsible for the specific modification of Nod-factors and nitrogenase activity. Localization and co-localization of the strains in nodules was confirmed by the confocal microscopy. Analysis of histological and ultrastructural organization of A. chorinensis and O. popoviana root nodules was performed. It can be concluded that the strains M. kowhaii Ach-343 and M. japonicum Opo-235 demonstrate lack of high symbiotic specificity that is characteristic for primitive legume-rhizobia systems. Further study of the root nodule bacteria having complementary sets of symbiotic genes will contribute to clarify the evolutionary paths of legume-rhizobia relationships and the mechanisms of effective integration between partners.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Elizaveta Chirak
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Evgeny Andronov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexander Pinaev
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Elena Seliverstova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Anna Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Viktor Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
12
|
Peng J, Wu D, Liang Y, Li L, Guo Y. Disruption ofacdSgene reduces plant growth promotion activity and maize saline stress resistance byRahnella aquatilisHX2. J Basic Microbiol 2019; 59:402-411. [DOI: 10.1002/jobm.201800510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Peng
- Department of Ecological Science and Engineering; College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
- Beijing Key Laboratory of Biodiversity and Organic Farming; China Agricultural University; Beijing P. R. China
| | - Di Wu
- Department of Ecological Science and Engineering; College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
- Beijing Key Laboratory of Biodiversity and Organic Farming; China Agricultural University; Beijing P. R. China
| | - Yue Liang
- College of Plant Protection; Shenyang Agricultural University; Shenyang Liaoning P. R. China
| | - Lei Li
- Department of Ecological Science and Engineering; College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
- Beijing Key Laboratory of Biodiversity and Organic Farming; China Agricultural University; Beijing P. R. China
| | - Yanbin Guo
- Department of Ecological Science and Engineering; College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
- Beijing Key Laboratory of Biodiversity and Organic Farming; China Agricultural University; Beijing P. R. China
| |
Collapse
|
13
|
Nascimento FX, Tavares MJ, Rossi MJ, Glick BR. The modulation of leguminous plant ethylene levels by symbiotic rhizobia played a role in the evolution of the nodulation process. Heliyon 2018; 4:e01068. [PMID: 30603701 PMCID: PMC6304460 DOI: 10.1016/j.heliyon.2018.e01068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023] Open
Abstract
Ethylene plays an important role in regulating the rhizobial nodulation process. Consequently, numerous strains of rhizobia possess the ability to decrease plant ethylene levels by the expression of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase or via the production of rhizobitoxine, thus, leading to an increased ability to nodulate leguminous plants. Nevertheless, not much is understood about the prevalence of these ethylene modulation genes in different rhizobial groups nor their role in the evolution of the symbiotic process. In this work, we analyze the prevalence and evolution of the enzymes ACC deaminase (AcdS) and dihydrorhizobitoxine desaturase (RtxC) in 395 NodC+ genomes from different rhizobial strains isolated from a wide range of locations and plant hosts, and discuss their importance in the evolution of the symbiotic process. The obtained results show that AcdS and RtxC are differentially prevalent in rhizobial groups, indicating the existence of several selection mechanisms governed by the rhizobial strain itself and its evolutionary origin, the environment, and, importantly, the leguminous plant host (co-evolution). Moreover, it was found that the prevalence of AcdS and RtxC is increased in Bradyrhizobium and Paraburkholderia, and lower in other groups. Data obtained from phylogenetic, evolutionary as well as gene localization analysis support the previous hypotheses regarding the ancient origin of the nodulation abilities in Bradyrhizobium and Paraburkholderia, and brings a new perspective for the importance of ethylene modulation genes in the development of the symbiotic process. The acquisition of AcdS by horizontal gene transfer and a positive selection in other rhizobial groups indicates that this enzyme plays an important role in the nodulation process of many rhizobia. On the other hand, RtxC is negatively selected in most symbioses. Understanding the evolution of ethylene modulation genes in rhizobia may be the key to the development of new strategies aiming for an increased nodulation and nitrogen fixation process.
Collapse
Affiliation(s)
- Francisco X Nascimento
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Maria J Tavares
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Márcio J Rossi
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
14
|
Win KT, Tanaka F, Okazaki K, Ohwaki Y. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:599-607. [PMID: 29730579 DOI: 10.1016/j.plaphy.2018.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Plant growth promoting bacteria (PGPB) endophytes that express 1-aminocyclopropane-1-carboxylate (ACC) deaminase reportedly confer plant tolerance to abiotic stresses such as salinity by lowering stress-related ethylene levels. Two preselected ACC deaminase expressing endophytic Pseudomonas spp. strains, OFT2 and OFT5, were compared in terms of their potential to promote plant growth, leaf water contents, photosynthetic performance, and ionic balance of tomato plants under conditions of moderate NaCl stress (75 mM). Salinity stress strongly affected growth, leaf water contents, and photosynthetic performance of tomato seedlings, and inoculation with either OFT2 or OFT5 ameliorated these adverse effects. Decreases in plant biomass due to salinity stress were significant in both uninoculated control plants and in plants inoculated with OFT2 compared with plants without NaCl stress. However, no reductions in total biomass were observed in plants that were inoculated with the OFT5 strain. Strain OFT5 influenced growth, physiological status, and ionic balance of tomato plants more efficiently than strain OFT2 under NaCl stress. In particular, inoculated OFT5 reduced salt-induced ethylene production by tomato seedlings, and although it did not reduce shoot uptake of Na, it promoted shoot uptake of other macronutrients (P, K, and Mg) and micronutrients (Mn, Fe, Cu, and Zn). These nutrients may activate processes that alleviate the effects of salt, suggesting that OFT5 can be used to improve nutrient uptake and plant growth under moderate salt-affected conditions by reducing stress-related ethylene levels.
Collapse
Affiliation(s)
- Khin Thuzar Win
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan
| | - Fukuyo Tanaka
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan
| | - Keiki Okazaki
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan
| | - Yoshinari Ohwaki
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan.
| |
Collapse
|
15
|
Kenny DJ, Balskus EP. Engineering chemical interactions in microbial communities. Chem Soc Rev 2018; 47:1705-1729. [PMID: 29210396 DOI: 10.1039/c7cs00664k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.
Collapse
Affiliation(s)
- Douglas J Kenny
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
16
|
Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. MICROBIOME 2018; 6:52. [PMID: 29562933 PMCID: PMC5863443 DOI: 10.1186/s40168-018-0436-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
The plant hormone ethylene is one of the central regulators of plant development and stress resistance. Optimal ethylene signaling is essential for plant fitness and is under strong selection pressure. Plants upregulate ethylene production in response to stress, and this hormone triggers defense mechanisms. Due to the pleiotropic effects of ethylene, adjusting stress responses to maximize resistance, while minimizing costs, is a central determinant of plant fitness. Ethylene signaling is influenced by the plant-associated microbiome. We therefore argue that the regulation, physiology, and evolution of the ethylene signaling can best be viewed as the interactive result of plant genotype and associated microbiota. In this article, we summarize the current knowledge on ethylene signaling and recapitulate the multiple ways microorganisms interfere with it. We present ethylene signaling as a model system for holobiont-level evolution of plant phenotype: this cascade is tractable, extremely well studied from both a plant and a microbial perspective, and regulates fundamental components of plant life history. We finally discuss the potential impacts of ethylene modulation microorganisms on plant ecology and evolution. We assert that ethylene signaling cannot be fully appreciated without considering microbiota as integral regulatory actors, and we more generally suggest that plant ecophysiology and evolution can only be fully understood in the light of plant-microbiome interactions.
Collapse
Affiliation(s)
- Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
17
|
In silico structural and functional analysis of Mesorhizobium ACC deaminase. Comput Biol Chem 2017; 68:12-21. [DOI: 10.1016/j.compbiolchem.2017.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/14/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022]
|
18
|
Brígido C, Glick BR, Oliveira S. Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates. MICROBIAL ECOLOGY 2017; 73:900-915. [PMID: 27904921 DOI: 10.1007/s00248-016-0891-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Rhizobia may possess other plant growth-promoting mechanisms besides nitrogen fixation. These mechanisms and the tolerance to different environmental factors, such as metals, may contribute to the use of rhizobia inocula to establish a successful legume-rhizobia symbiosis. Our goal was to characterize a collection of native Portuguese chickpea Mesorhizobium isolates in terms of plant growth-promoting (PGP) traits and tolerance to different metals as well as to investigate whether these characteristics are related to the biogeography of the isolates. The occurrence of six PGP mechanisms and tolerance to five metals were evaluated in 61 chickpea Mesorhizobium isolates previously obtained from distinct provinces in Portugal and assigned to different species clusters. Chickpea microsymbionts show high diversity in terms of PGP traits as well as in their ability to tolerate different metals. All isolates synthesized indoleacetic acid, 50 isolates produced siderophores, 19 isolates solubilized phosphate, 12 isolates displayed acid phosphatase activity, and 22 exhibited cytokinin activity. Most isolates tolerated Zn or Pb but not Ni, Co, or Cu. Several associations between specific PGP mechanisms and the province of origin and species clusters of the isolates were found. Our data suggests that the isolate's tolerance to metals and ability to solubilize inorganic phosphate and to produce IAA may be responsible for the persistence and distribution of the native Portuguese chickpea Mesorhizobium species. Furthermore, this study revealed several chickpea microsymbionts with potential as PGP rhizobacteria as well as for utilization in phytoremediation strategies.
Collapse
Affiliation(s)
- Clarisse Brígido
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal
- IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002-554, Évora, Portugal
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Solange Oliveira
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal.
| |
Collapse
|
19
|
Hernández AG, de Moura GD, Binati RL, Nascimento FXI, Londoño DM, Mamede ACP, da Silva EP, de Armas RD, Giachini AJ, Rossi MJ, Soares CRFS. Selection and characterization of coal mine autochthonous rhizobia for the inoculation of herbaceous legumes. Arch Microbiol 2017; 199:991-1001. [DOI: 10.1007/s00203-017-1373-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
|
20
|
Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3315-3335. [PMID: 27888482 DOI: 10.1007/s11356-016-8104-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.
Collapse
Affiliation(s)
- Trishna Mahanty
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Madhurankhi Goswami
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Purnita Bhattacharyya
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, 700054, India
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
21
|
Checcucci A, Azzarello E, Bazzicalupo M, De Carlo A, Emiliani G, Mancuso S, Spini G, Viti C, Mengoni A. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene? Front Genet 2017; 8:6. [PMID: 28194158 PMCID: PMC5276845 DOI: 10.3389/fgene.2017.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/13/2017] [Indexed: 11/13/2022] Open
Abstract
Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence Sesto Fiorentino, Italy
| | - Anna De Carlo
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Valorizzazione del Legno e delle Specie Arboree Florence, Italy
| | - Giovanni Emiliani
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Valorizzazione del Legno e delle Specie Arboree Florence, Italy
| | - Stefano Mancuso
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Giulia Spini
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Science, University of Florence Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Heydarian Z, Yu M, Gruber M, Glick BR, Zhou R, Hegedus DD. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa. Front Microbiol 2016; 7:1966. [PMID: 28018305 PMCID: PMC5159422 DOI: 10.3389/fmicb.2016.01966] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, SaskatoonSK, Canada; Department of Biotechnology, School of Agriculture, Shiraz UniversityShiraz, Iran
| | - Min Yu
- Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo ON, Canada
| | - Rong Zhou
- Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, SaskatoonSK, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
23
|
Wdowiak-Wróbel S, Małek W. Properties of Astragalus sp. microsymbionts and their putative role in plant growth promotion. Arch Microbiol 2016; 198:793-801. [PMID: 27209414 PMCID: PMC4995237 DOI: 10.1007/s00203-016-1243-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/04/2022]
Abstract
The plant growth-promoting rhizobacteria have developed many different (indirect and direct) mechanisms that have a positive effect on plant growth and development. Strains isolated from Astragaluscicer and Astragalusglycyphyllos root nodules were investigated for their plant growth-promoting properties such as production of indole-3-acetic acid (IAA) and siderophores, phosphate solubilization, ACC deaminase activity, and tolerance to heavy metals. IAA production and P-solubilization were frequent features in the analysed strains, while siderophores were not produced by any of them. In this work, we investigated the presence of the acdS genes and ACC deaminase activities in Astragalauscicer and A. glycyphyllos microsymbionts, classified within the genus Mesorhizobium. The results demonstrated that the acdS gene is widespread in the genome of Astragalus sp. microsymbionts; however, none of the tested strains showed ACC deaminase activity. The acdS gene sequence similarity of the analysed strains to each other was in the range from 84 to 99 %. On the phylogram of acdS gene sequences of milkvetch, the symbionts clustered tightly with the genus Mesorhizobium bacteria.
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Maria Curie Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| |
Collapse
|
24
|
Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence. Microbes Environ 2015; 30:310-20. [PMID: 26657304 PMCID: PMC4676554 DOI: 10.1264/jsme2.me15120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023] Open
Abstract
Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3(+)) and defective mutant (BL3(-)) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3(-) than in the wild-type, but was stronger in BL3(+). The inoculation of BL3(-) into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3(+) had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3(+) increased in a time-dependent manner. Nodules occupied by BL3(-) formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3(-). This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence.
Collapse
Affiliation(s)
- Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, 30000Thailand
| | - Sudarat Sripakdi
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, 30000Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, 30000Thailand
| | - Waraporn Tanthanuch
- Synchrotron Light Research Institute (public organization)Nakhon Ratchasima 30000Thailand
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, 30000Thailand
| |
Collapse
|
25
|
Lemaire B, Van Cauwenberghe J, Chimphango S, Stirton C, Honnay O, Smets E, Muasya AM. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome. FEMS Microbiol Ecol 2015; 91:fiv118. [PMID: 26433010 DOI: 10.1093/femsec/fiv118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.
Collapse
Affiliation(s)
- Benny Lemaire
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Jannick Van Cauwenberghe
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Samson Chimphango
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Charles Stirton
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, PO Box 02435, 3001 Heverlee, Belgium Naturalis Biodiversity Center, Leiden University, 2300 RA Leiden, the Netherlands
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| |
Collapse
|
26
|
Li Z, Chang S, Ye S, Chen M, Lin L, Li Y, Li S, An Q. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase. FEMS Microbiol Ecol 2015; 91:fiv112. [PMID: 26362924 DOI: 10.1093/femsec/fiv112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Siping Chang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ye
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mingyue Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Li Lin
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yuanyuan Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuying Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianli An
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Singh RP, Shelke GM, Kumar A, Jha PN. Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Front Microbiol 2015; 6:937. [PMID: 26441873 PMCID: PMC4563596 DOI: 10.3389/fmicb.2015.00937] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits would be highly valuable to express the gene under diverse environmental conditions.
Collapse
Affiliation(s)
- Rajnish P Singh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Ganesh M Shelke
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Prabhat N Jha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| |
Collapse
|
28
|
Gamalero E, Glick BR. Bacterial Modulation of Plant Ethylene Levels. PLANT PHYSIOLOGY 2015; 169:13-22. [PMID: 25897004 PMCID: PMC4577377 DOI: 10.1104/pp.15.00284] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/15/2015] [Indexed: 05/05/2023]
Abstract
A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy (E.G.); andDepartment of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (B.R.G.)
| | - Bernard R Glick
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy (E.G.); andDepartment of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (B.R.G.)
| |
Collapse
|
29
|
Haldar S, Sengupta S. Impact of plant development on the rhizobacterial population ofArachis hypogaea: a multifactorial analysis. J Basic Microbiol 2015; 55:922-8. [DOI: 10.1002/jobm.201400683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022]
|
30
|
New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 2014; 9:e99168. [PMID: 24905353 PMCID: PMC4048297 DOI: 10.1371/journal.pone.0099168] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications.
Collapse
|
31
|
Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2-17. [DOI: 10.1016/j.micres.2013.09.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/24/2022]
|
32
|
Brígido C, Nascimento FX, Duan J, Glick BR, Oliveira S. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene inMesorhizobiumspp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 2013; 349:46-53. [DOI: 10.1111/1574-6968.12294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Clarisse Brígido
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| | - Francisco X. Nascimento
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| | - Jin Duan
- Department of Biology; University of Waterloo; Waterloo ON Canada
| | - Bernard R. Glick
- Department of Biology; University of Waterloo; Waterloo ON Canada
| | - Solange Oliveira
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| |
Collapse
|
33
|
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2013; 169:30-9. [PMID: 24095256 DOI: 10.1016/j.micres.2013.09.009] [Citation(s) in RCA: 815] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/09/2013] [Accepted: 09/14/2013] [Indexed: 01/25/2023]
Abstract
To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
34
|
Relationships between pasture legumes, rhizobacteria and nodule bacteria in heavy metal polluted mine waste of SW Sardinia. Symbiosis 2012. [DOI: 10.1007/s13199-012-0207-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|