1
|
Croci C, Martínez de la Escalera G, Kruk C, Segura A, Deus Alvarez S, Piccini C. Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth. PeerJ 2025; 13:e19149. [PMID: 40196299 PMCID: PMC11974519 DOI: 10.7717/peerj.19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
The toxic cyanobacterium Microcystis causes worldwide health concerns, being frequently found in freshwater and estuarine ecosystems. Under natural conditions, Microcystis spp. show a colonial lifestyle involving a phycosphere populated by a highly diverse associated microbiome. In a previous study, we have proposed that colony formation and growth may be achieved through mechanisms of multispecies bacterial biofilm formation. Starting with single-cells, specific bacteria would be recruited from the environment to attach and create a buoyant biofilm or colony. This progression from a few single cells to large colonies would encompass the growth of the Microcystis community and bloom formation. In order to test this, we applied 16S rDNA metabarcoding to evaluate the changes in bacterial community structure (gDNA) and its active portion (cDNA) between different sample sizes obtained from a Microcystis bloom. Bloom sample was sieved by size, from one or a few cells (U fraction) to large colonies (maximum linear dimension ≥ 150 µm; L fraction), including small (20-60 µm, S fraction) and medium size (60-150 µm, M fraction) colonies. We found that gDNA- and cDNA-based bacterial assemblages significantly differed mostly due to the presence of different taxa that became active among the different sizes. The compositional variations in the communities between the assessed sample sizes were mainly attributed to turnover. From U to M fractions the turnover was a result of selection processes, while between M and L fractions stochastic processes were likely responsible for the changes. The results suggest that colony formation and growth are a consequence of mechanisms accounting for recruitment and selection of specific bacterial groups, which activate or stop growing through the different phases of the biofilm formation. When the final phase (L fraction colonies) is reached the colonies start to disaggregate (bloom decay), few cells or single cells are released and they can start new biofilms when conditions are suitable (bloom development).
Collapse
Affiliation(s)
- Carolina Croci
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Centro de Investigación en Ciencias Ambientales, Montevideo, Uruguay
| | - Gabriela Martínez de la Escalera
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Centro de Investigación en Ciencias Ambientales, Montevideo, Uruguay
| | - Carla Kruk
- Departamento de Modelación Estadística de Datos e Inteligencia Artificial. Centro Universitario Regional del Este, Universidad de la República, Rocha, Uruguay
- Instituto de Ecología y Ciencias Ambientales, Sección Limnología, Universidad de la República, Montevideo, Uruguay
| | - Angel Segura
- Departamento de Modelación Estadística de Datos e Inteligencia Artificial. Centro Universitario Regional del Este, Universidad de la República, Rocha, Uruguay
| | - Susana Deus Alvarez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Centro de Investigación en Ciencias Ambientales, Montevideo, Uruguay
| |
Collapse
|
2
|
Zhang Z, Li J. Cyanobacterial Bloom Formation by Enhanced Ecological Adaptability and Competitive Advantage of Microcystis-Non-Negligible Role of Quorum Sensing. Microorganisms 2024; 12:1489. [PMID: 39065257 PMCID: PMC11278601 DOI: 10.3390/microorganisms12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microcystis-dominated cyanobacterial blooms (MCBs) frequently occur in freshwaters worldwide due to massive Microcystis colony formation and severely threaten human and ecosystem health. Quorum sensing (QS) is a direct cause of Microcystis colony formation that drives MCBs outbreak by regulating Microcystis population characteristics and behaviors. Many novel findings regarding the fundamental knowledge of the Microcystis QS phenomenon and the signaling molecules have been documented. However, little effort has been devoted to comprehensively summarizing and discussing the research progress and exploration directions of QS signaling molecules-mediated QS system in Microcystis. This review summarizes the action process of N-acyl homoserine lactones (AHLs) as major signaling molecules in Microcystis and discusses the detailed roles of AHL-mediated QS system in cellular morphology, physiological adaptability, and cell aggregation for colony formation to strengthen ecological adaptability and competitive advantage of Microcystis. The research progress on QS mechanisms in Microcystis are also summarized. Compared to other QS systems, the LuxI/LuxR-type QS system is more likely to be found in Microcystis. Also, we introduce quorum quenching (QQ), a QS-blocking process in Microcystis, to emphasize its potential as QS inhibitors in MCBs control. Finally, in response to the research deficiencies and gaps in Microcystis QS, we propose several future research directions in this field. This review deepens the understanding on Microcystis QS knowledge and provide theoretical guidance in developing strategies to monitor, control, and harness MCBs.
Collapse
Affiliation(s)
- Ziqing Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Xu C, Ni L, Du C, Shi J, Ma Y, Li S, Li Y. Decoding Microcystis aeruginosa quorum sensing through AHL-mediated transcriptomic molecular regulation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172101. [PMID: 38556017 DOI: 10.1016/j.scitotenv.2024.172101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Acyl-homoserine lactone (AHL) serves as a key signaling molecule for quorum sensing (QS) in bacteria. QS-related genes and physiological processes in Microcystis aeruginosa remain elusive. In this study, we elucidated the regulatory role of AHL-mediated QS in M. aeruginosa. Using AHL activity extract and transcriptomic analysis, we revealed significant effects of the AHL on growth and photosynthesis. AHL significantly increased chlorophyll a (Chl-a) content and accelerated photosynthetic rate thereby promoting growth. Transcriptome analysis revealed that AHL stimulated the up-regulation of photosynthesis-related genes (apcABF, petE, psaBFK, psbUV, etc.) as well as nitrogen metabolism and ribosomal metabolism. In addition, AHL-regulated pathways are associated with lipopolysaccharide and phenazine synthesis. Our findings deepen the understanding of the QS system in M. aeruginosa and are important for gaining insights into the role of QS in Microcystis bloom formation. It also provides new insights into the prevalence of M. aeruginosa in water blooms.
Collapse
Affiliation(s)
- Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jiahui Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yushen Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Shiyin Li
- College of Environment, Nanjing Normal University, Nanjing, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
4
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
6
|
Xu C, Ni L, Li S, Du C, Sang W, Jiang Z. Quorum sensing regulation in Microcystis aeruginosa: Insights into AHL-mediated physiological processes and MC-LR production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170867. [PMID: 38340844 DOI: 10.1016/j.scitotenv.2024.170867] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Quorum sensing (QS) is a widespread regulatory mechanism in Gram-negative bacteria, primarily involving the secretion of N-acyl homoserine lactone (AHL) to facilitate population density sensing. However, the existence of QS in blue-green algae, a subset of photoautotrophic Gram-negative bacteria forming high-density communities in water blooms, remains elusive. This study delves into the unexplored realm of QS in Microcystis aeruginosa (M. aeruginosa) by investigating AHL-related regulatory mechanisms and their impact on various physiological processes. Utilizing high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and biosensors, a hitherto unknown long-chain AHL exhibiting a mass-to-charge ratio of 318 was identified in sterile M. aeruginosa cultures. Our investigation focused on discerning correlations between AHL activity fluctuations and key parameters such as microcystin (MC-LR) production, algal density, photosynthesis, buoyancy, and aggregation. Furthermore, the AHL extract was introduced during the logarithmic stage of M. aeruginosa cultures to observe the response in physiological processes. The results revealed that AHL, functioning as an autoinducer (AI), positively influenced algal growth and photosynthesis, as evidenced by the upregulated photosynthetic conversion efficiency of PSI and chlorophyll synthesis gene (psbA). AI also played a crucial role in altering surface characteristics through the synthesis of polysaccharides and proteins in EPS, subsequently promoting cell aggregation. Concomitantly, AI upregulated mcyD, enhancing the synthesis of MC-LR. Notably, our investigation pinpointed the initiation of QS in Microcystis at a density of approximately 1.22 × 10^7 cells/mL. This groundbreaking evidence underscores the regulatory role of AI in governing the physiological processes of growth, aggregation, buoyancy, and MC-LR production by activating pertinent gene expressions. This study significantly expands the understanding of QS in AHL, providing crucial insights into the regulatory networks operating in blue-green algae.
Collapse
Affiliation(s)
- Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Shiyin Li
- College of Environment, Nanjing Normal University, Nanjing, China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Zhiyun Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
7
|
Piccini C, Martínez de la Escalera G, Segura AM, Croci C, Kruk C. The Microcystis-microbiome interactions: origins of the colonial lifestyle. FEMS Microbiol Ecol 2024; 100:fiae035. [PMID: 38499447 PMCID: PMC10996927 DOI: 10.1093/femsec/fiae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Species of the Microcystis genus are the most common bloom-forming toxic cyanobacteria worldwide. They belong to a clade of unicellular cyanobacteria whose ability to reach high biomasses during blooms is linked to the formation of colonies. Colonial lifestyle provides several advantages under stressing conditions of light intensity, ultraviolet light, toxic substances and grazing. The progression from a single-celled organism to multicellularity in Microcystis has usually been interpreted as individual phenotypic responses of the cyanobacterial cells to the environment. Here, we synthesize current knowledge about Microcystis colonial lifestyle and its role in the organism ecology. We then briefly review the available information on Microcystis microbiome and propose that changes leading from single cells to colonies are the consequence of specific and tightly regulated signals between the cyanobacterium and its microbiome through a biofilm-like mechanism. The resulting colony is a multi-specific community of interdependent microorganisms.
Collapse
Affiliation(s)
- Claudia Piccini
- Departamento de Microbiología, Centro de Investigación en Ciencias Ambientales, Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318, Montevideo 11600, Uruguay
| | - Gabriela Martínez de la Escalera
- Departamento de Microbiología, Centro de Investigación en Ciencias Ambientales, Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318, Montevideo 11600, Uruguay
| | - Angel M Segura
- Modelización Estadística de Datos e Inteligencia Artificial, Centro Universitario Regional del Este, Universidad de la República. Ruta nacional Nº9 intersección con ruta Nº15, Uruguay
| | - Carolina Croci
- Departamento de Microbiología, Centro de Investigación en Ciencias Ambientales, Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318, Montevideo 11600, Uruguay
| | - Carla Kruk
- Modelización Estadística de Datos e Inteligencia Artificial, Centro Universitario Regional del Este, Universidad de la República. Ruta nacional Nº9 intersección con ruta Nº15, Uruguay
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República. Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
8
|
Yan G, Fu L, Ming H, Chen C, Zhou D. Exploring an Efficient and Eco-Friendly Signaling Molecule and Its Quorum Quenching Ability for Controlling Microcystis Blooms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16929-16939. [PMID: 37665318 DOI: 10.1021/acs.est.3c02395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Globally, cyanobacterial blooms have become serious problems in eutrophic water. Most previous studies have focused on environmental factors but have neglected the role of quorum sensing (QS) in bloom development and control. This study explored a key quorum sensing molecule (QSM) that promotes cell growth and then proposed a targeted quorum quencher to control blooms. A new QSM 3-OH-C4-HSL was identified with high-resolution mass spectrometry. It was found to regulate cellular carbon metabolism and energy metabolism as a means to promote Microcystis aeruginosa growth. To quench the QS induced by 3-OH-C4-HSL, three furanone-like inhibitors were proposed based on molecular structure, of which dihydro-3-amino-2-(3H)-furanone (FN) at a concentration of 20 μM exhibited excellent inhibition of M. aeruginosa growth (by 67%). Molecular docking analysis revealed that the inhibitor strongly occupied the QSM receptor protein LuxR by binding with Asn164(A) and His167(A) via two hydrogen bonds (the bond lengths were 3.04 and 4.04 Å) and the binding energy was -5.9 kcal/mol. The inhibitor blocked signaling regulation and induced programmed cell death in Microcystis. Importantly, FN presented little aquatic biotoxicity and negligibly affected aquatic microbial function. This study provides a promising new and eco-friendly strategy for controlling cyanobacterial blooms.
Collapse
Affiliation(s)
- Ge Yan
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Fu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Hao Ming
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
9
|
The Role of Quorum Sensing in the Development of Microcystis aeruginosa Blooms: Gene Expression. Microorganisms 2023; 11:microorganisms11020383. [PMID: 36838348 PMCID: PMC9962132 DOI: 10.3390/microorganisms11020383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Microcystis aeruginosa (M. aeruginosa) is the dominant cyanobacterial species causing harmful algal blooms in water bodies worldwide. The blooms release potent toxins and pose severe public health hazards to water bodies, animals, and humans who are in contact with or consume this water. The interaction between M. aeruginosa and heterotrophic bacteria is thought to contribute to the development of the blooms. This study strives to provide a specific answer to whether quorum sensing is also a potential mechanism mediating the interaction of different strains/species and the expression by gene luxS or gene mcyB in M. aeruginosa growth. The luxS gene in M. aeruginosa PCC7806 is associated with quorum sensing and was tested by q-PCR throughout a 30-day growth period. The same was performed for the mcyB gene. Heterotrophic bacteria were collected from local water bodies: Cibolo Creek and Leon Creek in San Antonio, Texas. Results revealed that in algal bloom scenarios, there is a similar concentration of gene luxS that is expressed by the cyanobacteria. Gene mcyB, however, is not directly associated with algal blooms, but it is related to cyanotoxin production. Toxicity levels increased in experiments with multiple algal strains, and the HSL treatment was not effective at reducing microcystin levels.
Collapse
|
10
|
Kokarakis E, Rillema R, Ducat DC, Sakkos JK. Developing Cyanobacterial Quorum Sensing Toolkits: Toward Interspecies Coordination in Mixed Autotroph/Heterotroph Communities. ACS Synth Biol 2023; 12:265-276. [PMID: 36573789 PMCID: PMC9872165 DOI: 10.1021/acssynbio.2c00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 12/28/2022]
Abstract
There has been substantial recent interest in the promise of sustainable, light-driven bioproduction using cyanobacteria, including developing efforts for microbial bioproduction using mixed autotroph/heterotroph communities, which could provide useful properties, such as division of metabolic labor. However, building stable mixed-species communities of sufficient productivity remains a challenge, partly due to the lack of strategies for synchronizing and coordinating biological activities across different species. To address this obstacle, we developed an inter-species communication system using quorum sensing (QS) modules derived from well-studied pathways in heterotrophic microbes. In the model cyanobacterium, Synechococcus elongatus PCC 7942 (S. elongatus), we designed, integrated, and characterized genetic circuits that detect acyl-homoserine lactones (AHLs), diffusible signals utilized in many QS pathways. We showed that these receiver modules sense exogenously supplied AHL molecules and activate gene expression in a dose-dependent manner. We characterized these AHL receiver circuits in parallel with Escherichia coli W (E. coli W) to dissect species-specific properties, finding broad agreement, albeit with increased basal expression in S. elongatus. Our engineered "sender" E. coli strains accumulated biologically synthesized AHLs within the supernatant and activated receiver strains similarly to exogenous AHL activation. Our results will bolster the design of sophisticated genetic circuits in cyanobacterial/heterotroph consortia and the engineering of QS-like behaviors across cyanobacterial populations.
Collapse
Affiliation(s)
- Emmanuel
J. Kokarakis
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan48824-1312, United States
| | - Rees Rillema
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan48824-1312, United States
| | - Daniel C. Ducat
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan48824-1312, United States
| | - Jonathan K. Sakkos
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
| |
Collapse
|
11
|
Ming H, Yan G, Zhang X, Pei X, Fu L, Zhou D. Harsh temperature induces Microcystis aeruginosa growth enhancement and water deterioration during vernalization. WATER RESEARCH 2022; 223:118956. [PMID: 35985140 DOI: 10.1016/j.watres.2022.118956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial blooms are seasonal phenomena in eutrophic water. Cyanobacteria grow fast in the warm spring/summer while disappearing in cold autumn/winter. The temperature change induces algal vernalization. However, whether vernalization affects cyanobacterial blooms, and the regulatory signaling mechanisms are unclear. This study used Microcystis aeruginosa as the model cyanobacteria, and 4 °C and 10 °C as the low-temperature stimulation to explore the cell growth, metabolites, and signaling pathways in cyanobacteria vernalization. Low temperatures induced M. aeruginosa vernalization; the growth rate and cell density increased by 35±4% and 33±2%. Vernalization influenced peptidoglycan synthesis and cell permeability. Soluble microbial products (SMPs) in water increased by 109±5%, resulting in water deterioration. Polysaccharides were the predominant SMPs during the initial term of vernalization. Tryptophan protein-like & humic acid-like substances became the main increased SMPs in the middle-later period of vernalization. Harsh temperatures triggered quorum sensing and two-component system. Signaling sensing systems upregulated photosynthesis, glycolysis, TCA cycle, oxidative phosphorylation, and DNA replication, enhancing M. aeruginosa growth and metabolism during vernalization. This study verified that low temperature stimulates cyanobacteria growth and metabolism, and vernalization possibly aggravates cyanobacterial blooms and water deterioration. It provides new insights into the mechanism of seasonal cyanobacterial blooms and the pivotal role of signaling regulation.
Collapse
Affiliation(s)
- Hao Ming
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Xue Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Xiaofen Pei
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| |
Collapse
|
12
|
Kong Y, Wang Y, Miao L, Mo S, Li J, Zheng X. Recent Advances in the Research on the Anticyanobacterial Effects and Biodegradation Mechanisms of Microcystis aeruginosa with Microorganisms. Microorganisms 2022; 10:microorganisms10061136. [PMID: 35744654 PMCID: PMC9229865 DOI: 10.3390/microorganisms10061136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Harmful algal blooms (HABs) have attracted great attention around the world due to the numerous negative effects such as algal organic matters and cyanobacterial toxins in drinking water treatments. As an economic and environmentally friendly technology, microorganisms have been widely used for pollution control and remediation, especially in the inhibition/biodegradation of the toxic cyanobacterium Microcystis aeruginosa in eutrophic water; moreover, some certain anticyanobacterial microorganisms can degrade microcystins at the same time. Therefore, this review aims to provide information regarding the current status of M. aeruginosa inhibition/biodegradation microorganisms and the acute toxicities of anticyanobacterial substances secreted by microorganisms. Based on the available literature, the anticyanobacterial modes and mechanisms, as well as the in situ application of anticyanobacterial microorganisms are elucidated in this review. This review aims to enhance understanding the anticyanobacterial microorganisms and provides a rational approach towards the future applications.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-27-69111182
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
| | - Lihong Miao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Shuhong Mo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| |
Collapse
|
13
|
Wang S, Ding P, Lu S, Wu P, Wei X, Huang R, Kai T. Cell density-dependent regulation of microcystin synthetase genes (mcy) expression and microcystin-LR production in Microcystis aeruginosa that mimics quorum sensing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112330. [PMID: 34020285 DOI: 10.1016/j.ecoenv.2021.112330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
As the secondary metabolites of cyanobacterial harmful algal blooms (Cyano-HABs), microcystins (MCs) were generated under various environmental and cellular conditions. The understanding of the causes of MCs generation is of great interest in the field of water treatment and environmental science. In this work, we studied how Microcystis aeruginosa (FACHB-905) cell densities affect the MCs synthetase genes (mcy) expression, microcystin-LR (MC-LR) and quorum sensing molecules (Acyl-homoserine lactones (AHLs)) production. An electrochemical sensor was developed here for sensitive and quantitative detection of MC-LR that cultured at different cell densities. The results showed that mcy expression and MC-LR concentration started to increase when the cell density reached ca. 22 × 106 cells/mL, and was significantly increased with increasing cell densities. Moreover, the up-regulation of AHLs with increasing cell densities revealed that MC-LR is quorum sensing-mediated. Our results undoubtedly confirmed that MC-LR was produced in a cell density-dependent way that mimics quorum sensing, and the minimum cell density (ca. 22 × 106 cells/mL) that was required to produce MC-LR was provided and offered a reference standard for the prevention and control of MCs pollution in the actual water environment.
Collapse
Affiliation(s)
- Shanlin Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Siyu Lu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Ruixue Huang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
14
|
Evidence of Quorum Sensing in Cyanobacteria by Homoserine Lactones: The Origin of Blooms. WATER 2021. [DOI: 10.3390/w13131831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although several theories have been postulated to explain cyanobacterial blooms, their biochemical origin has not yet been found. In this work, we explore the existence of bacterial communication, called quorum sensing, in Microcystis aeruginosa and Cylindrospermopsis raciborskii. Thus, the application of several known acylhomoserine lactones to cultures of both cyanobacteria causes profound metabolic. At 72 h post-application, some of them produced substantial increases in cell proliferation, while others were inhibitors. There was a correlation with colony-forming activity for most of them. According to ELISA analysis, the microcystin levels were increased with some lactones. However, there was a clear difference between M. aeruginosa and C. raciborskii culture since, in the first one, there was an inducing effect on cell proliferation, while in C. raciborskii, the effects were minor. Besides, there were compound inhibitors and inducers of microcystins production in M. aeruginosa, but almost all compounds were only inducers of saxitoxin production in C. raciborskii. Moreover, each lactone appears to be involved in a specific quorum sensing process. From these results, the formation of cyanobacterial blooms in dams and reservoirs could be explained since lactones may come from cyanobacteria and other sources as bacterial microflora-associated or exogenous compounds structurally unrelated to lactones, such as drugs, industrial effluents, and agrochemicals.
Collapse
|
15
|
Dow L. How Do Quorum-Sensing Signals Mediate Algae-Bacteria Interactions? Microorganisms 2021; 9:microorganisms9071391. [PMID: 34199114 PMCID: PMC8307130 DOI: 10.3390/microorganisms9071391] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae-bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products of tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally, how microalgae can modulate these small molecules to dampen their effects.
Collapse
Affiliation(s)
- Lachlan Dow
- Root Microbe Interactions Laboratory, Australian National University, Canberra 0200, Australia
| |
Collapse
|
16
|
Chen Q, Wang L, Qi Y, Ma C. Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. CHEMOSPHERE 2020; 259:127430. [PMID: 32593822 DOI: 10.1016/j.chemosphere.2020.127430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The frequent outbreaks of cyanobacterial blooms which caused serious societal and economic loss have become a worldwide problem. Interactions between toxic cyanobacteria and heterotrophic bacteria competitors play a pivotal role in the formation of toxic cyanobacterial bloom, but the underlying mechanisms of interactions between them await further research. The antagonist activity of Pseudomonas grimontii (P.grimontii) was confirmed by reduction in chlorophyll a concentration of Microcystis aeruginosa (M. aeruginosa) in an infected culture for a 7d period. The initial concentration of P.grimontii affected the M. aeruginosa activity significantly. When the 10% (V/V) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the reduction of M. aeruginosa reached to 91.81% and 78.25% after 7 days, respectively. While a 0.1% (v/v) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the M. aeruginosa increased 31.13% and 16.67% occurred, respectively. The content of reactive oxygen species (ROS) and malondialdehyde (MDA) increased with increasing of P.grimontii fermentation liquid, indicating the M. aeruginosa underwent oxidative stress. Using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) profiling of co-cultures of M. aeruginosa and its antagonist P.grimontii, we revealed novel interspecies allelopathic interactions and compete molecule. We showed the spatial secondary metabolites may mediate the interactions in which P.grimontii inhibits growth of M. aeruginosa. Additionally, we revealed how M. aeruginosa feedback to the P.grimontii, which stimulates secondary metabolites such as [D-Asp3]-microcystin-LR released by M. aeruginosa. IMS method highlights the significance of allelopathic interactions between a widely distributed toxic cyanobacteria and its bacteria competitors.
Collapse
Affiliation(s)
- Qingfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lihong Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Chunxia Ma
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
17
|
Chun SJ, Cui Y, Lee CS, Cho AR, Baek K, Choi A, Ko SR, Lee HG, Hwang S, Oh HM, Ahn CY. Characterization of Distinct CyanoHABs-Related Modules in Microbial Recurrent Association Network. Front Microbiol 2019; 10:1637. [PMID: 31379787 PMCID: PMC6650593 DOI: 10.3389/fmicb.2019.01637] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
To elucidate the interspecies connectivity between cyanobacteria and other bacteria (non-cyanobacteria) during cyanobacterial harmful algal blooms (cyanoHABs), samples were collected from the Nakdong River, Korea, from June 2016 to August 2017, and microbial recurrent association network (MRAN) analysis was performed to overcome the limitations of conventional network analysis. Microcystis blooms were tightly linked with Pseudanabaena in summer and were accompanied by significant changes in the non-cyanobacterial community composition (nCCC) compared to non-bloom period. Riverine bacterial communities could be clearly separated into modules that were involved in the formation, maintenance, and decomposition of cyanoHABs. Roseomonas and Herbaspirillum were directly linked with major cyanobacteria and assigned to connector and module hub in cyanoHABs-related modules, respectively. The functional profiles of the cyanoHABs-related modules suggested that nitrate reduction, aerobic ammonia oxidation, fermentation, and hydrocarbon degradation could be increased during the Microcystis bloom periods. In conclusion, MRAN analysis revealed that specific bacteria belonging to cyanoHABs-related module, including connectors and module hubs, appeared to contribute to the development and collapse of cyanoHABs. Therefore, to understand cyanoHABs, a modular microbial perspective may be more helpful than a single bacterial species perspective.
Collapse
Affiliation(s)
- Seong-Jun Chun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Yingshun Cui
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Chang Soo Lee
- Division of Freshwater Bioresources Research, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - A Ra Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kiwoon Baek
- Division of Freshwater Bioresources Research, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Ahyoung Choi
- Division of Freshwater Bioresources Culture Research, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seungwoo Hwang
- Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
18
|
Seger M, Unc A, Starkenburg SR, Holguin FO, Lammers PJ. Nutrient-driven algal-bacterial dynamics in semi-continuous, pilot-scale photobioreactor cultivation of Nannochloropsis salina CCMP1776 with municipal wastewater nutrients. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Gellert MR, Kim BJ, Reffsin SE, Jusuf SE, Wagner ND, Winans SC, Wu M. Nanobiotechnology for the Environment: Innovative Solutions for the Management of Harmful Algal Blooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6474-6479. [PMID: 29160704 DOI: 10.1021/acs.jafc.7b04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanobiotechnology has played important roles in solving contemporary health problems, including cancer and diabetes, but has not yet been widely exploited for problems in food security and environmental protection. Water scarcity is an emerging worldwide problem as a result of climate change and population increase. Current methods of managing water resources are not efficient or sustainable. In this perspective, we focus on harmful algal blooms to demonstrate how nanobiotechnology can be explored to understand microbe-environment interactions and allow for toxin/pollutant detection with significantly improved sensitivity. These capabilities hold potential for future development of sustainable solutions for drinking water management.
Collapse
|
20
|
Rolland JL, Stien D, Sanchez-Ferandin S, Lami R. Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology. J Chem Ecol 2016; 42:1201-1211. [PMID: 27822708 DOI: 10.1007/s10886-016-0791-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022]
Abstract
The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.
Collapse
Affiliation(s)
- Jean Luc Rolland
- Interactions-Hôtes-Pathogènes-Environnements (IHPE), Ifremer, CNRS, UPVD, Université de Montpellier, UMR 5244, 34090, Montpellier, France
| | - Didier Stien
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Sophie Sanchez-Ferandin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Raphaël Lami
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
21
|
Microcystin Biosynthesis and mcyA Expression in Geographically Distinct Microcystis Strains under Different Nitrogen, Phosphorus, and Boron Regimes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5985987. [PMID: 27803926 PMCID: PMC5075592 DOI: 10.1155/2016/5985987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 02/04/2023]
Abstract
Roles of nutrients and other environmental variables in development of cyanobacterial bloom and its toxicity are complex and not well understood. We have monitored the photoautotrophic growth, total microcystin concentration, and microcystins synthetase gene (mcyA) expression in lab-grown strains of Microcystis NIES 843 (reference strain), KW (Wangsong Reservoir, South Korea), and Durgakund (Varanasi, India) under different nutrient regimes (nitrogen, phosphorus, and boron). Higher level of nitrogen and boron resulted in increased growth (avg. 5 and 6.5 Chl a mg/L, resp.), total microcystin concentrations (avg. 1.185 and 7.153 mg/L, resp.), and mcyA transcript but its expression was not directly correlated with total microcystin concentrations in the target strains. Interestingly, Durgakund strain had much lower microcystin content and lacked microcystin-YR variant over NIES 843 and KW. It is inferred that microcystin concentration and its variants are strain specific. We have also examined the heterotrophic bacteria associated with cyanobacterial bloom in Durgakund Pond and Wangsong Reservoir which were found to be enriched in Alpha-, Beta-, and Gammaproteobacteria and that could influence the bloom dynamics.
Collapse
|
22
|
Klemenčič M, Dolinar M. Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806. Curr Genet 2016; 62:669-675. [PMID: 26968707 DOI: 10.1007/s00294-016-0582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Programmed cell death in multicellular organisms is a coordinated and precisely regulated process. On the other hand, in bacteria we have little clue about the network of interacting molecules that result in the death of a single cell within a population or the death of almost complete population, such as often observed in cyanobacterial blooms. With the recent discovery that orthocaspase MaOC1 of the cyanobacterium Microcystis aeruginosa is an active proteolytic enzyme, we have gained a possible hint about at least one step in the process, but the picture is far from complete. Interestingly, the genomic context of MaOC1 revealed the presence of multiple copies of genes that belong to toxin-antitoxin modules. It has been speculated that these also play a role in bacterial programmed cell death. The discovery of two components linked to cell death within the same genomic region could open new ways to deciphering the underlying mechanisms of cyanobacterial cell death.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Westerhoff HV, Brooks AN, Simeonidis E, García-Contreras R, He F, Boogerd FC, Jackson VJ, Goncharuk V, Kolodkin A. Macromolecular networks and intelligence in microorganisms. Front Microbiol 2014; 5:379. [PMID: 25101076 PMCID: PMC4106424 DOI: 10.3389/fmicb.2014.00379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/05/2014] [Indexed: 11/13/2022] Open
Abstract
Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity - particularly activity of the human brain - with a phenomenon we call "intelligence." Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as "human" and "brain" out of the defining features of "intelligence," all forms of life - from microbes to humans - exhibit some or all characteristics consistent with "intelligence." We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.
Collapse
Affiliation(s)
- Hans V. Westerhoff
- Department of Molecular Cell Physiology, Vrije Universiteit AmsterdamAmsterdam, Netherlands
- Manchester Centre for Integrative Systems Biology, The University of ManchesterManchester, UK
- Synthetic Systems Biology, University of AmsterdamAmsterdam, Netherlands
| | - Aaron N. Brooks
- Institute for Systems BiologySeattle, WA, USA
- Molecular and Cellular Biology Program, University of WashingtonSeattle, WA, USA
| | - Evangelos Simeonidis
- Institute for Systems BiologySeattle, WA, USA
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | | | - Fei He
- Department of Automatic Control and Systems Engineering, The University of SheffieldSheffield, UK
| | - Fred C. Boogerd
- Department of Molecular Cell Physiology, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | | | - Valeri Goncharuk
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
- Russian Cardiology Research CenterMoscow, Russia
- Department of Medicine, Center for Alzheimer and Neurodegenerative Research, University of AlbertaEdmonton, AB, Canada
| | - Alexey Kolodkin
- Institute for Systems BiologySeattle, WA, USA
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|