1
|
Zhang P, Wu X, Ji L, Yan W, Chen L, Dong F. Comparative pan-genomic analysis reveals pathogenic mechanisms and genomic plasticity in Vibrio parahaemolyticus clinical and environmental isolates. Front Cell Infect Microbiol 2025; 15:1574627. [PMID: 40276381 PMCID: PMC12018335 DOI: 10.3389/fcimb.2025.1574627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Vibrio parahaemolyticus is a human pathogen capable of inducing bacterial gastroenteritis. Clinical strains of V. parahaemolyticus are considered pathogenic due to their possession of hemolysin and a type III secretion system (T3SS). Some environmental isolates are also acquiring corresponding virulence genes. Methods This study initially examines the infection characteristics of V. parahaemolyticus, and subsequently employs pan-genomic analysis to identify genes that exhibit significant differences in distribution between environmental and clinical isolates, thereby revealing their potential impact on virulence. Results and discussion The epidemiological analysis of clinical isolates suggests that infections of V. parahaemolyticus are more prevalent in warm seasons, with O4:KUT serotype presenting more severe symptoms. OrthoFinder analysis revealed that environmental isolates possess a higher number of core genes. PEPPAN and KEGG analysis revealed that the 10 genes exclusively found in clinical isolates were predominantly associated with virulence. Additionally, the functions of genes differentially distributed in the environment were significantly more diverse compared to those in clinical settings. Analysis of mobile genetic elements suggested that environmental isolates harbor more mobile genetic elements, implying a potential for an increased number of resistance genes. The pathogenic characteristics of the strains examined in this study, genomic diversity and variation in mobile genetic elements are highly significant for deepening our understanding of the pathogenic mechanisms of V. parahaemolyticus and for the development of strategies to prevent its infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Fenfen Dong
- Microbiology Laboratory, Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-Resistant Pseudomonas aeruginosa's Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics (Basel) 2025; 14:353. [PMID: 40298491 PMCID: PMC12024412 DOI: 10.3390/antibiotics14040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative, motile bacterium, may cause significant infections in both community and hospital settings, leading to substantial morbidity and mortality. This opportunistic pathogen can thrive in various environments, making it a public health concern worldwide. P. aeruginosa's genomic pool is highly dynamic and diverse, with a pan-genome size ranging from 5.5 to 7.76 Mbp. This versatility arises from its ability to acquire genes through horizontal gene transfer (HGT) via different genetic elements (GEs), such as mobile genetic elements (MGEs). These MGEs, collectively known as the mobilome, facilitate the spread of genes encoding resistance to antimicrobials (ARGs), resistance to heavy metals (HMRGs), virulence (VGs), and metabolic functions (MGs). Of particular concern are the acquired carbapenemase genes (ACGs) and other β-lactamase genes, such as classes A, B [metallo-β-lactamases (MBLs)], and D carbapenemases, which can lead to increased antimicrobial resistance. This review emphasizes the importance of the mobilome in understanding antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Theodoros Karampatakis
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Katerina Tsergouli
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
3
|
Wu Z, Famous M, Stoikidou T, Bowden FES, Dominic G, Huws SA, Godoy-Santos F, Oyama LB. Unravelling AMR dynamics in the rumenofaecobiome: Insights, challenges and implications for One Health. Int J Antimicrob Agents 2025; 66:107494. [PMID: 40120959 DOI: 10.1016/j.ijantimicag.2025.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Antimicrobial resistance (AMR) is a critical global threat to human, animal and environmental health, exacerbated by horizontal gene transfer (HGT) via mobile genetic elements. This poses significant challenges that have a negative impact on the sustainability of the One Health approach, hindering its long-term viability and effectiveness in addressing the interconnectedness of global health. Recent studies on livestock animals, specifically ruminants, indicate that culturable ruminal bacteria harbour AMR genes with the potential for HGT. However, these studies have focused predominantly on using the faecobiome as a proxy to the rumen microbiome or using easily isolated and culturable bacteria, overlooking the unculturable population. These unculturable microbial groups could have a profound influence on the rumen resistome and AMR dynamics within livestock ecosystems, potentially holding critical insights for advanced understanding of AMR in One Health. In order to address this gap, this review of current research on the burden of AMR in livestock was undertaken, and it is proposed that combined study of the rumen microbiome and faecobiome, termed the 'rumenofaecobiome', should be performed to enhance understanding of the risks of AMR in ruminant livestock. This review discusses the complexities of the rumen microbiome and the risks of AMR transmission in this microbiome in a One Health context. AMR transmission dynamics and methodologies for assessing the risks of AMR in livestock are summarized, and future considerations for researching the impact of AMR in the rumen microbiome and the implications within the One Health framework are discussed.
Collapse
Affiliation(s)
- Ziming Wu
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| | - Mustasim Famous
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK; Department of Animal Science, Khulna Agricultural University, Khulna, Bangladesh
| | - Theano Stoikidou
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Freya E S Bowden
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Gama Dominic
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Sharon A Huws
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Fernanda Godoy-Santos
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Linda B Oyama
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
4
|
Elena AX, Orel N, Fang P, Herndl GJ, Berendonk TU, Tinta T, Klümper U. Jellyfish blooms-an overlooked hotspot and potential vector for the transmission of antimicrobial resistance in marine environments. mSystems 2025; 10:e0101224. [PMID: 39936903 PMCID: PMC11915797 DOI: 10.1128/msystems.01012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Gelatinous zooplankton (GZ) represents an important component of marine food webs, capable of generating massive blooms with severe environmental impact. When these blooms collapse, considerable amounts of organic matter (GZ-OM) either sink to the seafloor or can be introduced into the ocean's interior, promoting bacterial growth and providing a colonizable surface for microbial interactions. We hypothesized that GZ-OM is an overlooked marine hotspot for transmitting antimicrobial resistance genes (ARGs). To test this, we first re-analyzed metagenomes from two previous studies that experimentally evolved marine microbial communities in the presence and absence of OM from Aurelia aurita and Mnemiopsis leidyi recovered from bloom events and thereafter performed additional time-resolved GZ-OM degradation experiments to improve sample size and statistical power of our analysis. We analyzed these communities for composition, ARG, and mobile genetic element (MGE) content. Communities exposed to GZ-OM displayed up to fourfold increased relative ARG and up to 10-fold increased MGE abundance per 16S rRNA gene copy compared to the controls. This pattern was consistent across ARG and MGE classes and independent of the GZ species, indicating that nutrient influx and colonizable surfaces drive these changes. Potential ARG carriers included genera containing potential pathogens raising concerns of ARG transfer to pathogenic strains. Vibrio was pinpointed as a key player associated with elevated ARGs and MGEs. Whole-genome sequencing of a Vibrio isolate revealed the genetic capability for ARG mobilization and transfer. This study establishes the first link between two emerging issues of marine coastal zones, jellyfish blooms and ARG spread, both likely increasing with future ocean change. Hence, jellyfish blooms are a quintessential "One Health" issue where decreasing environmental health directly impacts human health.IMPORTANCEJellyfish blooms are, in the context of human health, often seen as mainly problematic for oceanic bathing. Here we demonstrate that they may also play a critical role as marine environmental hotspots for the transmission of antimicrobial resistance (AMR). This study employed (re-)analyses of microcosm experiments to investigate how particulate organic matter introduced to the ocean from collapsed jellyfish blooms, specifically Aurelia aurita and Mnemiopsis leidyi, can significantly increase the presence of antimicrobial resistance genes and mobile genetic elements in marine microbial communities by up to one order of magnitude. By providing abundant nutrients and surfaces for bacterial colonization, organic matter from these blooms enhances ARG proliferation, including transfer to and mobility in potentially pathogenic bacteria like Vibrio. Understanding this connection highlights the importance of monitoring jellyfish blooms as part of marine health assessments and developing strategies to mitigate the spread of AMR in coastal ecosystems.
Collapse
Affiliation(s)
- Alan X Elena
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Peiju Fang
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
- Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen, China
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Vienna Metabolomics & Proteomics Center, University of Vienna, Vienna, Austria
| | - Thomas U Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Wang R, Mardalisa, Hara-Yamamura H, Matsuura N, Honda R. Applicability of intI1 as an indicator gene for securing the removal efficiency of extracellular antimicrobial resistance genes in full-scale wastewater treatment plants. BIORESOURCE TECHNOLOGY 2025; 419:132047. [PMID: 39793674 DOI: 10.1016/j.biortech.2025.132047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Mitigating the release of extracellular antimicrobial resistance genes (exARGs) from wastewater treatment plants (WWTPs) is crucial for preventing the spread of antimicrobial resistance from human domains into the environment. This study aimed to evaluate the applicability of intI1 as a performance indicator for securing the removal of exARGs at WWTPs. We investigated the reduction of exARGs and intI1 in a full-scale WWTP, where identical wastewater was treated using conventional activated sludge (CAS) and membrane bioreactor (MBR) systems. The log reduction values (LRVs) for exARGs were lower than those for intracellular ARGs (iARGs) across all ARG species and treatment systems. LRVs for exARGs were consistently higher in the MBR than in the CAS. The intI1 exhibited lower LRVs compared to most exARGs, ensuring a minimum LRV of exARG in both CAS and MBR systems. Consequently, intI1 is an effective indicator gene for securing the removal of exARGs.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology Kanazawa University Kanazawa Japan; Asia-Japan Research Institute Ritsumeikan University Shiga Japan
| | - Mardalisa
- Graduate School of Natural Science and Technology Kanazawa University Kanazawa Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan.
| |
Collapse
|
6
|
Tavares RDS, Tacão M, Henriques I. Integrons are key players in the spread of beta-lactamase-encoding genes. Int J Antimicrob Agents 2025; 65:107421. [PMID: 39710145 DOI: 10.1016/j.ijantimicag.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Integrons mediate the acquisition and expression of gene cassettes (GCs). The production of beta-lactamases (BLs) is the most relevant mechanism of beta-lactams resistance. To explore the role of integrons in BL genes dissemination, sequences and metadata were retrieved from the INTEGRALL database and a literature review performed. Integrons (mostly class 1) carrying ≥1 BL-encoding genes (n = 1981) were detected in 37 bacterial genera and encoded BLs from 18 families. A total of 159 BL-encoding gene cassettes (BLGCs) were identified, representing all Ambler classes, with blaOXA-, blaVIM- and blaIMP-carrying integrons the most prevalent. blaGES, blaBEL and most metallo-BLs were exclusively associated with integrons. BL genes from 13 families were identified as genes captured by ISCR1 in complex integrons (n = 234), namely blaNDM, blaCTX-M and blaTEM. Frequently co-detected GCs encoded resistance to all major classes of antibiotics, namely aminoglycosides, phenicols and trimethoprim. Most BLGCs encoded resistance to carbapenems (n = 90) and Pseudomonas aeruginosa was the most frequent host. Most bla-carrying integrons were from clinical contexts and wastewater was the richest environmental compartment. The frequent association of BLs and integrons indicates a significant role in dissemination of beta-lactams resistance. Considering that integrons are (i) low-cost structures often associated with other mobile elements, and (ii) often carry multiple GCs (interchangeable according to environmental stimuli), the association of BL genes with integrons should always be considered a risk factor for the spread of beta-lactam resistance when performing surveillance and epidemiological studies. Further studies monitoring prevalence and diversity of integrons, particularly across non-clinical environments, will draw a more comprehensive picture of integron-associated dissemination of beta-lactams resistance.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
7
|
Kieffer N, Böhm ME, Berglund F, Marathe NP, Gillings MR, Larsson DGJ. Identification of novel FosX family determinants from diverse environmental samples. J Glob Antimicrob Resist 2025; 41:8-14. [PMID: 39725324 DOI: 10.1016/j.jgar.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES This study aimed to identify novel fosfomycin resistance genes across diverse environmental samples, ranging in levels of anthropogenic pollution. We focused on fosfomycin resistance, and given its increasing clinical importance, explored the prevalence of these genes within different environmental contexts. METHODS Metagenomic DNA was extracted from wastewater and sediment samples collected from sites in India, Sweden, and Antarctica. Class 1 integron gene cassette libraries were prepared, and resistant clones were selected on fosfomycin-supplemented media. Long-read sequencing was performed followed by bioinformatics analysis to identify novel fosfomycin resistance genes. The genes were cloned and functionally characterized in E. coli, and the impact of phosphonoformate on the enzymes was assessed. RESULTS Four novel fosfomycin resistance genes were identified. Phylogenetic analysis placed these genes within the FosX family, a group of metalloenzymes that hydrolyse fosfomycin without thiol conjugation. The genes were subsequently renamed fosE2, fosI2, fosI3, and fosP. Functional assays confirmed that these genes conferred resistance to fosfomycin in E. coli, with MIC ranging from 32 μg/ml to 256 μg/ml. Unlike FosA/B enzymes, these FosX-like proteins were resistant to phosphonoformate inhibitory action. A fosI3 homolog was identified in Pseudomonas aeruginosa, highlighting potential clinical relevance. CONCLUSIONS This study expands the understanding of fosfomycin resistance by identifying new FosX family members across diverse environments. The lack of phosphonoformate inhibition underscores the clinical importance of these poorly studied enzymes, which warrant further investigation, particularly in pathogenic contexts.
Collapse
Affiliation(s)
- Nicolas Kieffer
- Molecular Basis of Adaptation Laboratory, Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, España; Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Michael R Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia; Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Galgano M, Pellegrini F, Catalano E, Capozzi L, Del Sambro L, Sposato A, Lucente MS, Vasinioti VI, Catella C, Odigie AE, Tempesta M, Pratelli A, Capozza P. Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. Antibiotics (Basel) 2025; 14:222. [PMID: 40149034 PMCID: PMC11939227 DOI: 10.3390/antibiotics14030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
The discovery, commercialization, and regular administration of antimicrobial agents have revolutionized the therapeutic paradigm, making it possible to treat previously untreatable and fatal infections. However, the excessive use of antibiotics has led to develop resistance soon after their use in clinical practice, to the point of becoming a global emergency. The mechanisms of bacterial resistance to antibiotics are manifold, including mechanisms of destruction or inactivation, target site modification, or active efflux, and represent the main examples of evolutionary adaptation for the survival of bacterial species. The acquirement of new resistance mechanisms is a consequence of the great genetic plasticity of bacteria, which triggers specific responses that result in mutational adaptation, acquisition of genetic material, or alteration of gene expression, virtually producing resistance to all currently available antibiotics. Understanding resistance processes is critical to the development of new antimicrobial agents to counteract drug-resistant microorganisms. In this review, both the mechanisms of action of antibiotic resistance (AMR) and the antibiotic resistance genes (ARGs) mainly found in clinical and environmental bacteria will be reviewed. Furthermore, the evolutionary background of multidrug-resistant bacteria will be examined, and some promising elements to control or reduce the emergence and spread of AMR will be proposed.
Collapse
Affiliation(s)
- Michela Galgano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Elisabetta Catalano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Alessio Sposato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Carlo Forlanini 2, 27100 Pavia, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Violetta Iris Vasinioti
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Cristiana Catella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Amienwanlen Eugene Odigie
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Maria Tempesta
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Annamaria Pratelli
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| |
Collapse
|
9
|
Xiao C, Ide K, Matsunaga H, Kogawa M, Wagatsuma R, Takeyama H. Metagenomic profiling of antibiotic resistance genes and their associations with the bacterial community along the Kanda River, an urban river in Japan. J Biosci Bioeng 2025; 139:147-155. [PMID: 39488451 DOI: 10.1016/j.jbiosc.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024]
Abstract
Antibiotic resistance genes (ARGs) present in urban rivers have the potential to disseminate antibiotic-resistant bacteria into other environments, posing significant threats to both ecological and public health. Although metagenomic analyses have been widely employed to detect ARGs in rivers, our understanding of their dynamics across different seasons in diverse watersheds remains limited. In this study, we performed a comprehensive genomic analysis of the Kanda River in Japan at 11 sites from upstream to estuary throughout the year to assess the spread of ARGs and their associations with bacterial communities. Analysis of 110 water samples using the 16S rRNA gene revealed variations in bacterial composition corresponding to seasonal changes in environmental parameters along the river. Shotgun metagenomics-based profiling of ARGs in 44 water samples indicated higher ARG abundance downstream, particularly during the summer. Weighted gene co-expression network analysis (WGCNA) linking bacterial lineages and ARGs revealed that 12 ARG subtypes co-occurred with 128 amplicon sequence variants (ASVs). WGCNA suggested potential hosts for ErmB, ErmF, ErmG, tetQ, tet (W/N/W), aadA2, and adeF, including gut-associated bacteria (e.g., Prevotella, Bacteroides, Arcobacter) and indigenous aquatic microbes (e.g., Limnohabitans and C39). In addition, Pseudarcobacter (a later synonym of Arcobater) was identified as a host for adeF, which was also confirmed by single cell genomics. This study shows that ARG distribution in urban rivers is affected by seasonal and geographical factors and demonstrates the importance of monitoring rivers using multiple types of genome sequencing, including 16S rRNA gene sequencing, metagenomics, and single cell genomics.
Collapse
Affiliation(s)
- Chang Xiao
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masato Kogawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
10
|
Ali N, Ali I, Din AU, Akhtar K, He B, Wen R. Integrons in the Age of Antibiotic Resistance: Evolution, Mechanisms, and Environmental Implications: A Review. Microorganisms 2024; 12:2579. [PMID: 39770781 PMCID: PMC11676243 DOI: 10.3390/microorganisms12122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Integrons, which are genetic components commonly found in bacteria, possess the remarkable capacity to capture gene cassettes, incorporate them into their structure, and thereby contribute to an increase in genomic complexity and phenotypic diversity. This adaptive mechanism allows integrons to play a significant role in acquiring, expressing, and spreading antibiotic resistance genes in the modern age. To assess the current challenges posed by integrons, it is necessary to have a thorough understanding of their characteristics. This review aims to elucidate the structure and evolutionary history of integrons, highlighting how the use of antibiotics has led to the preferential selection of integrons in various environments. Additionally, it explores their current involvement in antibiotic resistance and their dissemination across diverse settings, while considering potential transmission factors and routes. This review delves into the arrangement of gene cassettes within integrons, their ability to rearrange, the mechanisms governing their expression, and the process of excision. Furthermore, this study examines the presence of clinically relevant integrons in a wide range of environmental sources, shedding light on how anthropogenic influences contribute to their propagation into the environment.
Collapse
Affiliation(s)
- Niyaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
- Guangxi Baise Modern Agriculture Technology Research and Extension Center, Management Committee of Baise National Agricultural Science and Technology Zone of Guangxi, Baise 530108, China
| | - Izhar Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| |
Collapse
|
11
|
Matlock W, Shaw LP, Stoesser N. Global genomic epidemiology of bla GES-5 carbapenemase-associated integrons. Microb Genom 2024; 10:001312. [PMID: 39630499 PMCID: PMC11616780 DOI: 10.1099/mgen.0.001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Antimicrobial resistance (AMR) gene cassettes comprise an AMR gene flanked by short recombination sites (attI and attC or attC and attC). Integrons are genetic elements able to capture, excise and shuffle these cassettes, providing 'adaptation on demand', and can be found on both chromosomes and plasmids. Understanding the patterns of integron diversity may help to understand the epidemiology of AMR genes. As a case study, we examined the clinical resistance gene bla GES-5, an integron-associated class A carbapenemase first reported in Greece in 2004 and since observed worldwide, which to our knowledge has not been the subject of a previous global analysis. Using a dataset comprising all de-duplicated NCBI contigs containing bla GES-5 (n=104), we developed a pangenome graph-based workflow to characterize and cluster the diversity of bla GES-5-associated integrons. We demonstrate that bla GES-5-associated integrons on plasmids are different to those on chromosomes. Chromosomal integrons were almost all identified in Pseudomonas aeruginosa ST235, with a consistent gene cassette content and order. We observed instances where insertion sequence IS110 disrupted attC sites, which might immobilize the gene cassettes and explain the conserved integron structure despite the presence of intI1 integrase promoters, which would typically facilitate capture or excision and rearrangement. The plasmid-associated integrons were more diverse in their gene cassette content and order, which could be an indication of greater integrase activity and 'shuffling' of integrons on plasmids.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
12
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
13
|
Yan X, Yang M, Ayala JE, Li L, Zhou Y, Hou R, Liu S, Li Y, Yue C, Zhang D, Su X. Antimicrobial resistance, virulence genes profiles and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae strains from captive giant pandas (Ailuropoda melanoleuca). BMC Vet Res 2024; 20:532. [PMID: 39609820 PMCID: PMC11603722 DOI: 10.1186/s12917-024-04377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) increases the difficulty of clinical treatment of giant pandas. This study aimed to investigate the antibiotic susceptibility, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence genes, and molecular epidemiology of CRKP strains isolated from giant pandas. A total of 187 nonduplicated Klebsiella pneumoniae (KP) isolates were collected from fresh feces of captive giant pandas at the Chengdu Research Base of Giant Panda Breeding. Then CRKP were isolated and identified through carbapenase Carba NP assay. Subsequently, the antimicrobial susceptibility testing and antibiotic resistance genes of CRKP isolates were studied by disk diffusion (K-B) and HT-qPCR, respectively. Then both the MGEs and virulence genes of CRKP isolates were analyzed by PCR. In addition, molecular epidemiology was analyzed among the CRKP strains using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). RESULTS Eight strains of CRKP (4.5%) were isolated and identified among the 187 KP strains, and seven of eight CRKP strains both exhibited resistance to imipenem, while one strain showed resistance to meropenem, and one demonstrated multiple resistance; eight CRKP strains carried a large amount of ARGs, among which ampC/blaDHA, blaSHV-01, blaSHV-02, tetB-01, tetB-02, tetC-01, and tetC-02 were the most abundant. The MGEs analysis revealed the presence of intI1 in all strains, while the detection rates of other MGEs varied, and strain 24 exhibited the highest diversity of MGE species. Seven virulence genes, including wabG, uge, ycf, entB, kpn, alls, and wcaG, showed positive results with different proportions across the strains. In addition, PFGE patterns indicated a high level of genetic diversity among the CRKP strains. MLST analysis classified the strains into different sequence types (STs). CONCLUSIONS This study highlighted the diversity of CRKP strains isolated from giant panda feces, which exhibited varying levels of antibiotic resistance along with multiple ARGs, MGEs and virulence genes present. These findings emphasized the importance of monitoring and researching antibiotic resistance within wildlife populations to protect the health status of these conservation dependent animals.
Collapse
Affiliation(s)
- Xia Yan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Mei Yang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - James Edward Ayala
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Lin Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Yang Zhou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Xiaoyan Su
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China.
| |
Collapse
|
14
|
Fang C, Liu KD, Tian FJ, Li JY, Li SJ, Zhang RM, Sun J, Fang LX, Ren H, Wang MG, Liao XP. Metagenomic analysis unveiled the response of microbial community and antimicrobial resistome in natural water body to duck farm sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124784. [PMID: 39182818 DOI: 10.1016/j.envpol.2024.124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Sewages from duck farms are often recognized as a major source of antimicrobial resistance and pathogenic bacteria discharged to natural water bodies, but few studies depicted the dynamic changes in resistome and microbial communities in the rivers under immense exposure of sewage discharge. In this study, we investigated the ecological and environmental risks of duck sewages to the rivers that geographically near to the duck farms with short-distance (<1 km) using 16S rRNA amplicon and metagenomic sequencing. The results showed that a total of 20 ARG types were identified with abundances ranged from 0.61 to 1.33 cpc. Of note, the genes modulate resistances against aminoglycoside, bacitracin and beta-lactam were the most abundant ARGs. Limnohabitans, Fluviibacter and Cyanobium were the top 3 predominant genera in the microbial community. The alpha diversity of overall microbial community decrease while the abundance of pathogen increase during the input of sewage within 200 m. Sul1 and bacA were the dominant ARGs brought from duck farm sewage. The community variations of ARGs and microbiome were primarily driven by pH and temperature. Total phosphorus was significantly correlated to alpha diversity and top 30 ARGs subtype. Stochastic processes was the dominated microbial assembly pattern and did not be altered by sewage. We also highlighted the ecological risk caused by blaGES which possibly could be mitigated by Cyanobacteria, and the natural water body can purify partial ARGs as well as microbiome from duck farms sewage. These findings expanded our knowledge regarding the ecological risks by wastes from the livestock farm, and underscoring the necessity to monitor ARGs in farm-surrounding water bodies.
Collapse
Affiliation(s)
- Chang Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; College of Marine Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kai-di Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Feng-Jie Tian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jin-Ying Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Si-Jie Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Hao Ren
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Phage Research Center, Liaocheng University, Liaocheng, 252000, PR China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
15
|
Murray AK, Stanton IC, Tipper HJ, Wilkinson H, Schmidt W, Hart A, Singer AC, Gaze WH. A critical meta-analysis of predicted no effect concentrations for antimicrobial resistance selection in the environment. WATER RESEARCH 2024; 266:122310. [PMID: 39217643 DOI: 10.1016/j.watres.2024.122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health with a growing body of evidence demonstrating that selection for AMR can occur at environmental antimicrobial concentrations. Understanding the concentrations at which selection for resistance may occur is critical to help inform environmental risk assessments and highlight where mitigation strategies are required. A variety of experimental and data approaches have been used to determine these concentrations. However, there is minimal standardisation of existing approaches and no consensus on the relative merits of different methods. We conducted a semi-systematic literature review to collect and critically appraise available minimal selective concentration (MSC) and predicted no effect concentration for resistance (PNECR) data and the approaches used to derive them. There were 21 relevant articles providing 331 selective concentrations, ranging from 0.00087 µg/L (ciprofloxacin) to 2000 µg/L (carbenicillin). Meta-analyses of these data found that selective concentrations are highly compound-dependent, and only a subset of all antimicrobials have been the focus of most of the research. The variety of approaches that have been used, knowledge gaps and future research priorities were identified, as well as recommendations for those considering the selective risks of antimicrobials in the environment.
Collapse
Affiliation(s)
- Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment & Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom.
| | - Isobel C Stanton
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Holly J Tipper
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Helen Wilkinson
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Alwyn Hart
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Andrew C Singer
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment & Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
16
|
Zhao H, Ma H, Song C, Fan S, Fan H, Zhou W, Cao J. Prevalence and molecular characterization of multi-resistant Escherichia coli isolates from clinical bovine mastitis in China. Anim Biotechnol 2024; 35:2322541. [PMID: 38478400 DOI: 10.1080/10495398.2024.2322541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Different antibiotics are used to treat mastitis in dairy cows that is caused by Escherichia coli (E. coli). Antimicrobial resistance in food-producing animals in China has been monitored since 2000. Surveillance data have shown that the prevalence of multiresistant E. coli in animals has increased significantly. This study aimed to investigate the occurrence and molecular characteristics of resistance determinants in E. coli strains (n = 105) obtained from lactating cows with clinical bovine mastitis (CBM) in China. A total of 220 cows with clinical mastitis, which has swollen mammary udder with reduced and red or gangrenous milk, were selected from 5000 cows. The results showed 94.3% of the isolates were recognized as multidrug resistant. The isolates (30.5%) were positive for the class I integrase gene along with seven gene cassettes that were accountable for resistance to trimethoprim resistance (dfrA17, dfr2d and dfrA1), aminoglycosides resistance (aadA1 and aadA5) and chloramphenicol resistance (catB3 and catB2), respectively. The blaTEM gene was present in all the isolates, and these carried the blaCTX gene. A double mutation in gyrA (i.e., Ser83Leu and Asp87Asn) was observed in all fluoroquinolone-resistant isolates. In total, nine fluoroquinolone-resistant E. coli isolates were identified with five different types of mutations in parC. In four (44.4%) isolates, Ser458Ala was present in parE, and in all nine (9/9) fluoroquinolone-resistant isolates, Pro385Ala was present in gyrB. Meanwhile, fluoroquinolone was observed as highly resistant, especially in isolates with gyrA and parC mutations. In summary, the findings of this research recognize the fluoroquinolone resistance mechanism and disclose integron prevalence and ESBLs in E. coli isolates from lactating cattle with CBM.
Collapse
Affiliation(s)
- Hongxia Zhao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Hailan Ma
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Chen Song
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Shuting Fan
- Middle East College of Beijing International Studies University, Beijing, PR China
| | - Hongliang Fan
- Inner Mongolia Yili Industrial Group Co. Ltd., Huhhot, PR China
| | - Weiguang Zhou
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Jinshan Cao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, PR China
| |
Collapse
|
17
|
Licea-Herrera JI, Guerrero A, Mireles-Martínez M, Rodríguez-González Y, Aguilera-Arreola G, Contreras-Rodríguez A, Fernandez-Davila S, Requena-Castro R, Rivera G, Bocanegra-García V, Martínez-Vázquez AV. Agricultural Soil as a Reservoir of Pseudomonas aeruginosa with Potential Risk to Public Health. Microorganisms 2024; 12:2181. [PMID: 39597570 PMCID: PMC11596188 DOI: 10.3390/microorganisms12112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a high capacity to adapt to different factors. The aim of this study is to analyze the pathogenicity in P. aeruginosa strains and their resistance to heavy metals and antibiotics, in agricultural soil of the state of Tamaulipas, Mexico. Susceptibility to 16 antibiotics was tested using the Kirby-Bauer method (CLSI). Eight virulence factors (FV) and six genes associated with heavy metal resistance were detected by PCR. As a result, P. aeruginosa was detected in 55% of the samples. The eight virulence factors were identified in ≥80% of the strains. The strains showed some level of resistance to only three antibiotics: 32.8% to ticarcillin, 40.8% to ticarcillin/clavulanic acid and 2.4% to aztreonam. The most frequent heavy metal resistance genes were arsC (92.8%) and copA (90.4%). However, copB and arsB genes were also identified in a percentage greater than 80%, and the least frequent genes were merA in 14.4% and czcA in 7.2%. Although P. aeruginosa strains showed a high percentage of factor virulence (potential ability to cause infections), their high levels of susceptibility to antibiotics lead to the assumption that infections are easily curable.
Collapse
Affiliation(s)
- Jessica I. Licea-Herrera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Abraham Guerrero
- Consejo Nacional de Ciencia y Tecnología (CONAHCyT), Centro de Investigación en Alimentación y Desarrollo (CIAD), Mazatlán 82100, Sinaloa, Mexico;
| | - Maribel Mireles-Martínez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Yuridia Rodríguez-González
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Guadalupe Aguilera-Arreola
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City 11340, Mexico; (G.A.-A.); (A.C.-R.)
| | - Araceli Contreras-Rodríguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City 11340, Mexico; (G.A.-A.); (A.C.-R.)
| | - Susana Fernandez-Davila
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Rocío Requena-Castro
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Virgilio Bocanegra-García
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Ana Verónica Martínez-Vázquez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| |
Collapse
|
18
|
Carvalho A, Hipólito A, Trigo da Roza F, García-Pastor L, Vergara E, Buendía A, García-Seco T, Escudero JA. The expression of integron arrays is shaped by the translation rate of cassettes. Nat Commun 2024; 15:9232. [PMID: 39455579 PMCID: PMC11511950 DOI: 10.1038/s41467-024-53525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Integrons are key elements in the rise and spread of multidrug resistance in Gram-negative bacteria. These genetic platforms capture cassettes containing promoterless genes and stockpile them in arrays of variable length. In the current integron model, expression of cassettes is granted by the Pc promoter in the platform and is assumed to decrease as a function of its distance. Here we explored this model using a large collection of 136 antibiotic resistance cassettes and show the effect of distance is in fact negligible. Instead, cassettes have a strong impact in the expression of downstream genes because their translation rate affects the stability of the whole polycistronic mRNA molecule. Hence, cassettes with reduced translation rates decrease the expression and resistance phenotype of cassettes downstream. Our data puts forward an integron model in which expression is contingent on the translation of cassettes upstream, rather than on the distance to the Pc.
Collapse
Affiliation(s)
- André Carvalho
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| | - Alberto Hipólito
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Ester Vergara
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Aranzazu Buendía
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - José Antonio Escudero
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
20
|
Zhou Z, Zhu R, Song Y, Zhang W, Sun B, Zhang Z, Yao H. Penguin-Driven Dissemination and High Enrichment of Antibiotic Resistance Genes in Lake Sediments across Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083437 DOI: 10.1021/acs.est.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Numerous penguins can propagate pathogens with antibiotic resistance genes (ARGs) into Antarctica. However, the effects of penguin dissemination on the lake ARGs still have received little attention via guano deposition. Here, we have profiled ARGs in ornithogenic sediments subject to penguin guano (OLS) and nonornithogenic sediments (NOLS) from 16 lakes across Antarctica. A total of 191 ARGs were detected in all sediment samples, with a much higher abundance and diversity in OLS than in NOLS. Surprisingly, highly diverse and abundant ARGs were found in the OLS with a detection frequency of >40% and an absolute abundance of (2.34 × 109)-(4.98 × 109) copies g-1, comparable to those in coastal estuarine sediments and pig farms. The strong correlations of identified resistance genes with penguin guano input amount, environmental factors, mobile genetic elements, and bacterial community, in conjunction with network and redundancy analyses, all indicated that penguins were responsible for the dissemination and high enrichment of ARGs in lake sediments via the guano deposition, which might greatly outweigh local human-activity effects. Our results revealed that ARGs could be carried into lakes across the Antarctica through penguin migration, food chains, and guano deposition, which were closely connected with the widespread pollution of ARGs at the global scale.
Collapse
Affiliation(s)
- Zeming Zhou
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Song
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, U.K
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
21
|
Harmer CJ, Nelson MJ, Lebreton F, Lertsethtakarn P, McGann PT, Hall RM. Distribution and expression of the aac(6')-Im (aacA16) aminoglycoside resistance gene. J Antimicrob Chemother 2024; 79:1569-1576. [PMID: 38742708 PMCID: PMC11215538 DOI: 10.1093/jac/dkae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The aac(6')-Im (aacA16) amikacin, netilmicin and tobramycin resistance gene cassette had been circulating globally undetected for many years in a sublineage of Acinetobacter baumannii global clone 2. OBJECTIVES To identify sources for the aac(6')-Im fragment found in A. baumannii. METHODS MinION long-read sequencing and Unicycler hybrid assemblies were used to determine the genetic context of the aac(6')-Im gene. Quantitative reverse transcriptase PCR was used to measure expression. RESULTS Among >60 000 non-Acinetobacter draft genomes in the MRSN collection, the aac(6')-Im gene was detected in Pseudomonas putida and Enterobacter hormaechei isolates recovered from patients in Thailand between 2016 and 2019. Genomes of multiply resistant P. putida MRSN365855 and E. hormaechei MRSN791417 were completed. The class 1 integron containing the aac(6')-Im cassette was in the chromosome in MRSN365855, and in an HI2 plasmid in MRSN791417. However, MRSN791417 was amikacin susceptible and the gene was not expressed due to loss of the Pc promoter of the integron. Further examples of aac(6')-Im in plasmids from or the chromosome of various Gram-negative species were found in the GenBank nucleotide database. The aac(6')-Im context in integrons in pMRSN791417-8 and a Klebsiella plasmid pAMR200031 shared similarities with the aac(6')-Im region of AbGRI2-Im islands in A. baumannii. In other cases, the cassette array including the aac(6')-Im cassette was different. CONCLUSIONS The aac(6')-Im gene is widespread, being found so far in several different species and in several different gene cassette arrays. The lack of amikacin resistance in E. hormaechei highlights the importance of correlating resistance gene content and antibiotic resistance phenotype.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Messiah J Nelson
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Francois Lebreton
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paphavee Lertsethtakarn
- Bacterial and Parasitic Diseases Department, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Patrick T McGann
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
22
|
Abdelaziz MA, El-Aziz AMA, El-Sokkary MMA, Barwa R. Characterization and genetic analysis of extensively drug-resistant hospital acquired Pseudomonas aeruginosa isolates. BMC Microbiol 2024; 24:225. [PMID: 38926687 PMCID: PMC11201863 DOI: 10.1186/s12866-024-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The incidence of hospital-acquired infections in extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) has been increasing worldwide and is frequently associated with an increase in mortality and morbidity rates. The aim of this study was to characterize clinical XDR-PA isolates recovered during six months at three different hospitals in Egypt. RESULTS Seventy hospital-acquired clinical isolates of P. aeruginosa were classified into multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR), according to their antimicrobial resistance profile. In addition, the possession of genes associated with mobile genetic elements and genes encoding antimicrobial resistance determinants among isolates were detected using polymerase chain reaction. As a result, a significant percentage of the isolates (75.7%) were XDR, while 18.5% were MDR, however only 5.7% of the isolates were non-MDR. The phenotypic detection of carbapenemases, extended-spectrum β-lactamases (ESBLs) and metallo β-lactamase (MBL) enzymes showed that 73.6% of XDR-PA isolates were carbapenemases producers, whereas 75.5% and 88.7% of XDR-PA isolates produced ESBLs and MBL respectively. In addition, PCR screening showed that oxa gene was the most frequently detected gene of carbapenemases (91.4%), while aac(6')-lb gene was mostly detected (84.3%) among the screened aminoglycosides-resistance genes. Furthermore, the molecular detection of the colistin resistance gene showed that 12.9% of isolates harbored mcr-1 gene. Concerning mobile genetic element markers (intI, traA, tnp513, and merA), intI was the highest detected gene as it was amplified in 67 isolates (95.7%). Finally, phylogenetic and molecular typing of the isolates via ERIC-PCR analysis revealed 10 different ERIC fingerprints. CONCLUSION The present study revealed a high prevalence of XDR-PA in hospital settings which were resistant to a variety of antibiotics due to several mechanisms. In addition, 98% of the XDR-PA clinical isolates contained at least one gene associated with movable genetic elements, which could have aided the evolution of these XDR-PA strains. To reduce spread of drug resistance, judicious use of antimicrobial agents and strict infection control measures are therefore essential.
Collapse
Affiliation(s)
- Mai A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed M A El-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
24
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Mercuri C, Bulotta RM, Britti D, Palma E. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics (Basel) 2024; 13:551. [PMID: 38927217 PMCID: PMC11200672 DOI: 10.3390/antibiotics13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial resistance represents an alarming public health problem; its importance is related to the significant clinical implications (increased morbidity, mortality, disease duration, development of comorbidities, and epidemics), as well as its economic effects on the healthcare sector. In fact, therapeutic options are severely limited by the advent and spread of germs resistant to many antibiotics. The situation worldwide is worrying, especially in light of the prevalence of Gram-negative bacteria-Klebsiella pneumoniae and Acinetobacter baumannii-which are frequently isolated in hospital environments and, more specifically, in intensive care units. The problem is compounded by the ineffective treatment of infections by patients who often self-prescribe therapy. Resistant bacteria also show resistance to the latest generation antibiotics, such as carbapenems. In fact, superbacteria, grouped under the acronym extended-spectrum betalactamase (ESBL), are becoming common. Antibiotic resistance is also found in the livestock sector, with serious repercussions on animal production. In general, this phenomenon affects all members of the biosphere and can only be addressed by adopting a holistic "One Health" approach. In this literature overview, a stock is taken of what has been learned about antibiotic resistance, and suggestions are proposed to stem its advance.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Caterina Mercuri
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
25
|
Poey ME, de los Santos E, Aznarez D, García-Laviña CX, Laviña M. Genetics of resistance to trimethoprim in cotrimoxazole resistant uropathogenic Escherichia coli: integrons, transposons, and single gene cassettes. Front Microbiol 2024; 15:1395953. [PMID: 38946902 PMCID: PMC11213556 DOI: 10.3389/fmicb.2024.1395953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Cotrimoxazole, the combined formulation of sulfamethoxazole and trimethoprim, is one of the treatments of choice for several infectious diseases, particularly urinary tract infections. Both components of cotrimoxazole are synthetic antimicrobial drugs, and their combination was introduced into medical therapeutics about half a century ago. In Gram-negative bacteria, resistance to cotrimoxazole is widespread, being based on the acquisition of genes from the auxiliary genome that confer resistance to each of its antibacterial components. Starting from previous knowledge on the genotype of resistance to sulfamethoxazole in a collection of cotrimoxazole resistant uropathogenic Escherichia coli strains, this work focused on the identification of the genetic bases of the trimethoprim resistance of these same strains. Molecular techniques employed included PCR and Sanger sequencing of specific amplicons, conjugation experiments and NGS sequencing of the transferred plasmids. Mobile genetic elements conferring the trimethoprim resistance phenotype were identified and included integrons, transposons and single gene cassettes. Therefore, strains exhibited several ways to jointly resist both antibiotics, implying different levels of genetic linkage between genes conferring resistance to sulfamethoxazole (sul) and trimethoprim (dfrA). Two structures were particularly interesting because they represented a highly cohesive arrangements ensuring cotrimoxazole resistance. They both carried a single gene cassette, dfrA14 or dfrA1, integrated in two different points of a conserved cluster sul2-strA-strB, carried on transferable plasmids. The results suggest that the pressure exerted by cotrimoxazole on bacteria of our environment is still promoting the evolution toward increasingly compact gene arrangements, carried by mobile genetic elements that move them in the genome and also transfer them horizontally among bacteria.
Collapse
Affiliation(s)
- María Eloísa Poey
- Sección Fisiología & Genética Bacterianas, Facultad de Ciencias, Montevideo, Uruguay
| | - Eliana de los Santos
- Sección Fisiología & Genética Bacterianas, Facultad de Ciencias, Montevideo, Uruguay
| | - Diego Aznarez
- Sección Fisiología & Genética Bacterianas, Facultad de Ciencias, Montevideo, Uruguay
| | | | - Magela Laviña
- Sección Fisiología & Genética Bacterianas, Facultad de Ciencias, Montevideo, Uruguay
| |
Collapse
|
26
|
Flórez NY, Silva C, Villarreal JM, Wiesner M. Presence of integrons and their correlation with multidrug resistance in Salmonella enterica serovar Typhimurium: Exploratory systematic review. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:258-276. [PMID: 39088536 PMCID: PMC11374117 DOI: 10.7705/biomedica.6816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/18/2024] [Indexed: 08/03/2024]
Abstract
In Salmonella enterica serovar Typhimurium (Typhimurium), multidrug resistance is associated with integrons carrying resistance genes dispersed by mobile genetic elements. This exploratory systematic review sought to identify integron types and their resistance genes in multidrug resistance Typhimurium isolates. We used Medline, PubMed, SciELO, ScienceDirect, Redalyc, and Google Scholar as motor searchers for articles in Spanish or English published between 2012 and 2020, including the keywords “integrons”, “antibiotic resistance”, and “Salmonella Typhimurium”. We included 38 articles reporting multidrug resistance up to five antibiotic families. Class 1 integrons with aadA2 and blaPSE-1 gene cassettes were predominant, some probably related to the Salmonella genomic island 1. We did not find studies detailing class 1 and 2 integrons in the same isolate, nor class 3 integrons reported. The presence of integrons largely explains the resistance profiles found in isolates from different sources in 15 countries.
Collapse
Affiliation(s)
- Nancy Yaneth Flórez
- Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D. C., Colombia; Doctorado en Ciencias de la Salud, Facultad de Medicina, Universidad Antonio Nariño, Bogotá, D. C., Colombia
| | - Claudia Silva
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - José Miguel Villarreal
- Grupo de Bioquímica y Biología Molecular de las Micobacterias, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D. C., Colombia; Grupo de Investigación en Enfermedades Infecciosas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D. C., Colombia
| | - Magdalena Wiesner
- Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D. C., Colombia
| |
Collapse
|
27
|
Romero-González LE, Montelongo-Martínez LF, González-Valdez A, Quiroz-Morales SE, Cocotl-Yañez M, Franco-Cendejas R, Soberón-Chávez G, Pardo-López L, Bustamante VH. Pseudomonas aeruginosa Isolates from Water Samples of the Gulf of Mexico Show Similar Virulence Properties but Different Antibiotic Susceptibility Profiles than Clinical Isolates. Int J Microbiol 2024; 2024:6959403. [PMID: 38784405 PMCID: PMC11115996 DOI: 10.1155/2024/6959403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.
Collapse
Affiliation(s)
- Luis E. Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis F. Montelongo-Martínez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Rafael Franco-Cendejas
- Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
28
|
Watson E, Hamilton S, Silva N, Moss S, Watkins C, Baily J, Forster T, Hall AJ, Dagleish MP. Variations in antimicrobial resistance genes present in the rectal faeces of seals in Scottish and Liverpool Bay coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123936. [PMID: 38588972 DOI: 10.1016/j.envpol.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Antibiotic resistance genes originating from human activity are considered important environmental pollutants. Wildlife species can act as sentinels for coastal environmental contamination and in this study we used qPCR array technology to investigate the variety and abundance of antimicrobial resistance genes (ARGs), mobile genetic elements (MGEs) and integrons circulating within seal populations both near to and far from large human populations located around the Scottish and northwest English coast. Rectal swabs were taken from 50 live grey seals and nine live harbour seals. Nucleic acids were stabilised upon collection, enabling extraction of sufficient quality and quantity DNA for downstream analysis. 78 ARG targets, including genes of clinical significance, four MGE targets and three integron targets were used to monitor genes within 22 sample pools. 30 ARGs were detected, as well as the integrons intl1 and intl2 and tnpA transposase. Four β-lactam, nine tetracycline, two phenicol, one trimethoprim, three aminoglycoside and ten multidrug resistance genes were detected as well as mcr-1 which confers resistance to colistin, an important drug of last resort. No sulphonamide, vancomycin, macrolide, lincosamide or streptogramin B (MLSB) resistance genes were detected. Resistance genes were detected in all sites but the highest number of ARGs (n = 29) was detected in samples derived from grey seals on the Isle of May, Scotland during the breeding season, and these genes also had the highest average abundance in relation to the 16S rRNA gene. This pilot study demonstrates the effectiveness of a culture-independent workflow for global analysis of ARGs within the microbiota of live, free-ranging, wild animals from habitats close to and remote from human habitation, and highlights seals as a valuable indicator species for monitoring the presence, abundance and land-sea transference of resistance genes within and between ecosystems.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK.
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Nuno Silva
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Simon Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Craig Watkins
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Johanna Baily
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Thorsten Forster
- LifeArc, Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, Scotland, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| |
Collapse
|
29
|
Wang X, Dai Y, Kong N, Cao M, Zhang L, Wei Q. Screening Key Sites of Class 2 Integron Integrase that Impact Recombination Efficiency. Curr Microbiol 2024; 81:163. [PMID: 38710822 DOI: 10.1007/s00284-024-03674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
By capturing and expressing exogenous resistance gene cassettes through site-specific recombination, integrons play important roles in the horizontal transfer of antimicrobial resistant genes among bacteria. The characteristics of integron integrase make it to be a potential gene editing tool enzyme. In this study, a random mutation library using error-prone PCR was constructed, and amino acid residues mutants that impact on attI2 × attC or attC × attC recombination efficiency were screened and analyzed. Thirteen amino acid mutations were identified to be critical impacted on site-specific recombination of IntI2, including the predicted catalyzed site Y301. Nine of 13 mutated amino acid residues that have critically impacted on IntI2 activity were relative concentrated and near the predicted catalyzed site Y301 in the predicted three-dimensional structure indicated the importance of this area in maintain the activity of IntI2. No mutant with obviously increased recombination activity (more than four-fold as high as that of wild IntI2) was found in library screening, except P95S, R100K slightly increased (within two-fold) the excision activity of IntI2, and S243T slightly increased (within two-fold) both excision and integration activity of IntI2. These findings will provide clues for further specific modification of integron integrase to be a tool enzyme as well as establishing a new gene editing system and applied practically.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai JiaoTong University School of Medicine, 748 Middle Zhongshan Road, Shanghai, 201602, China
| | - Yueru Dai
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Nana Kong
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Mei Cao
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Long Zhang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
30
|
Kikuchi Y, Yoshida M, Kuwae A, Asami Y, Inahashi Y, Abe A. Correlation between the spread of IMP-producing bacteria and the promoter strength of bla IMP genes. J Antibiot (Tokyo) 2024; 77:315-323. [PMID: 38491135 DOI: 10.1038/s41429-024-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
The first report of transmissible carbapenem resistance encoded by blaIMP-1 was discovered in Pseudomonas aeruginosa GN17203 in 1988, and blaIMP-1 has since been detected in other bacteria, including Enterobacterales. Currently, many variants of blaIMPs exist, and point mutations in the blaIMP promoter have been shown to alter promoter strength. For example, the promoter (Pc) of blaIMP-1, first reported in P. aeruginosa GN17203, was a weak promoter (PcW) with low-level expression intensity. This study investigates whether point mutations in the promoter region have helped to create strong promoters under antimicrobial selection pressure. Using bioinformatic approaches, we retrieved 115 blaIMPs from 14,529 genome data of Pseudomonadota and performed multiple alignment analyses. The results of promoter analysis of the 115 retrieved blaIMPs showed that most of them used the Pc located in class 1 integrons (n = 112, 97.4%). The promoter analysis by year revealed that the blaIMP population with the strong promoter, PcS, was transient. In contrast, the PcW-TG population, which had acquired a TGn-extended -10 motif in PcW and had an intermediate promoter strength, gradually spread throughout the world. An inverse correlation between Pc promoter strength and Intl1 integrase excision efficiency has been reported previously [1]. Because of this trade-off, it is unlikely that blaIMPs with strong promoters will increase rapidly, but the possibility that promoter strength will increase with the use of other integrons cannot be ruled out. Monitoring of the blaIMP genes, including promoter analysis, is necessary for global surveillance of carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Yuta Kikuchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Mariko Yoshida
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Asaomi Kuwae
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Akio Abe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
31
|
Ye M, Jiang Y, Qian L, Qiu F, Liu Z, Wang Z, Hu C. Enhanced removal of ciprofloxacin and associated antibiotic-resistant genes from wastewater using a biological aeration filters in combination with Fe 3O 4-modified zeolite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2839-2850. [PMID: 38822618 DOI: 10.2166/wst.2024.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Antibiotics release into the water environment through sewage discharge is a significant environmental concern. In the present study, we investigated the removal of ciprofloxacin (CIP) in simulated sewage by biological aeration filter (BAF) equipped with Fe3O4-modified zeolite (Fe3O4@ZF). Fe3O4@ZF were prepared with impregnation method, and the Fe3O4 particles were successfully deposited on the surface of ZF in an amorphous form according to the results of XPS and XRD analysis. The modification also increased the specific surface area (from 16.22 m²/g to 22 m²/g) and pore volume (from 0.0047 cm³/g to 0.0063 cm³/g), improving the adsorption efficiency of antibiotics. Fe3O4 modified ZF improved the treatment performance significantly, and the removal efficiency of CIP in BAF-Fe3O4@ZF was 79%±2.4%. At 10ml/L CIP, the BAF-Fe3O4@ZF reduced the relative abundances of antibiotics resistance genes (ARGs) int, mexA, qnrB and qnrS in the effluent by 57.16%, 39.59%, 60.22%, and 20.25%, respectively, which effectively mitigate the dissemination risk of ARGs. The modification of ZF increased CIP-degrading bacteria abundance, such as Rhizobium and Deinococcus-Thermus, and doubled bacterial ATP activity, promoting CIP degradation. This study offers a viable, efficient method to enhance antibiotic treatment and prevent leakage via sewage discharge.
Collapse
Affiliation(s)
- Minzhi Ye
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiping Jiang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Fuzhou Environmental Monitoring Center Station in Fujian Province, Fujian 350002, China
| | - Laying Qian
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Feng Qiu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiquan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China E-mail:
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
32
|
Karampatakis T, Tsergouli K, Behzadi P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:257. [PMID: 38534692 DOI: 10.3390/antibiotics13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for a variety of community- and hospital-acquired infections. It is recognized as a life-threatening pathogen among hospitalized individuals and, in particular, immunocompromised patients in many countries. A. baumannii, as a member of the ESKAPE group, encompasses high genomic plasticity and simultaneously is predisposed to receive and exchange the mobile genetic elements (MGEs) through horizontal genetic transfer (HGT). Indeed, A. baumannii is a treasure trove that contains a high number of virulence factors. In accordance with these unique pathogenic characteristics of A. baumannii, the authors aim to discuss the natural treasure trove of pan-genome and virulence factors pertaining to this bacterial monster and try to highlight the reasons why this bacterium is a great concern in the global public health system.
Collapse
Affiliation(s)
| | - Katerina Tsergouli
- Microbiology Department, Agios Pavlos General Hospital, 55134 Thessaloniki, Greece
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
33
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
34
|
Freddi S, Rajabal V, Tetu SG, Gillings MR, Penesyan A. Microbial biofilms on macroalgae harbour diverse integron gene cassettes. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001446. [PMID: 38488860 PMCID: PMC10963911 DOI: 10.1099/mic.0.001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions with other cells and with the extracellular environment. Because cell interactions are essential for biofilm stability, we sequenced gene cassettes from biofilms growing on the surface of the marine macroalgae Ulva australis and Sargassum linearifolium. Algal samples were obtained from coastal rock platforms around Sydney, Australia, using seawater as a control. We demonstrated that integrons in microbial biofilms did not sample genes randomly from the surrounding seawater, but harboured specific functions that potentially provided an adaptive advantage to both the bacterial cells in biofilm communities and their macroalgal host. Further, integron gene cassettes had a well-defined spatial distribution, suggesting that each bacterial biofilm acquired these genetic elements via sampling from a large but localized pool of gene cassettes. These findings suggest two forms of filtering: a selective acquisition of different integron-containing bacterial species into the distinct biofilms on Ulva and Sargassum surfaces, and a selective retention of unique populations of gene cassettes at each sampling location.
Collapse
Affiliation(s)
- Stefano Freddi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| |
Collapse
|
35
|
McDougall FK, Speight N, Funnell O, Boardman WSJ, Power ML. Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. MICROBIAL ECOLOGY 2024; 87:39. [PMID: 38332161 PMCID: PMC10853082 DOI: 10.1007/s00248-024-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Fiona K McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA, 5001, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Michelle L Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
36
|
Sun X, Wang X, Han Q, Yu Q, Wanyan R, Li H. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168597. [PMID: 37981129 DOI: 10.1016/j.scitotenv.2023.168597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging pollutants, are widely distributed in aquatic environments, and are tightly linked to human health. However, the research progress and trends in recent years on ARGs of aquatic environments are still unclear. This paper made a comprehensive understanding of the research advance, study trends and key topics of 1592 ARGs articles from 2012 to 2022 by bibliometrics. Publications on ARGs increased rapidly from 2012 to 2022, and scholars paid closer attention to the field of Environmental Sciences & Ecology. The most influential country and institution was mainly China and Chinese Academy of Sciences, respectively. The most articles (14.64 %) were published in the journal Science of the total environment. China and USA had the most cooperation, and USA was more inclined to international cooperation. PCR-based methods for water ARG research were the most widely used, followed by metagenomics. The most studied ARG types were sulfonamides, tetracyclines. Moreover, ARGs from wastewater and rivers were popularly concerned. Current topics mainly included pollution investigation, characteristics, transmission, reduction and risk identification of ARGs. Additionally, future research directions were proposed. Generally, by bibliometrics, this paper reviews the research hotspots and future directions of ARGs on a global scale, and summarizes the more important categories of ARGs, the pollution degree of ARGs in the relevant water environment and the research methods, which can provide a more comprehensive information for the future breakthrough of resistance mechanism, prevention and control standard formulation of ARGs.
Collapse
Affiliation(s)
- Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
37
|
Dželalija M, Fredotović Ž, Udiković-Kolić N, Kalinić H, Jozić S, Šamanić I, Ordulj M, Maravić A. Large-Scale Biogeographical Shifts of Abundance of Antibiotic Resistance Genes and Marine Bacterial Communities as Their Carriers along a Trophic Gradient. Int J Mol Sci 2024; 25:654. [PMID: 38203824 PMCID: PMC10779287 DOI: 10.3390/ijms25010654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The role of marine environments in the global spread of antibiotic resistance still remains poorly understood, leaving gaps in the One Health-based research framework. Antibiotic resistance genes (ARGs) encoding resistance to five major antibiotic classes, including sulfonamides (sul1, sul2), tetracyclines (tetA, tetB), β-lactams (blaCTX-M, blaTEMblaVIM), macrolides (ermB, mphA), aminoglycosides (aac3-2), and integrase gene (intl1) were quantified by RT-qPCR, and their distribution was investigated in relation to environmental parameters and the total bacterial community in bottom layer and surface waters of the central Adriatic (Mediterranean), over a 68 km line from the wastewater-impacted estuary to coastal and pristine open sea. Seasonal changes (higher in winter) were observed for antibiotic resistance frequency and the relative abundances of ARGs, which were generally higher in eutrophic coastal areas. In particular, intl1, followed by blaTEM and blaVIM, were strongly associated with anthropogenic influence and Gammaproteobacteria as their predominant carriers. Water column stratification and geographic location had a significant influence on ARGs distribution in the oligotrophic zone, where the bacterial community exhibited a seasonal shift from Gammaproteobacteria in winter to Marine group II in summer.
Collapse
Affiliation(s)
- Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, 10002 Zagreb, Croatia;
| | - Hrvoje Kalinić
- Department of Informatics, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Slaven Jozić
- Institute of Oceanography and Fisheries, 21000 Split, Croatia;
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| | - Marin Ordulj
- University Department of Marine Studies, University of Split, 21000 Split, Croatia;
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| |
Collapse
|
38
|
Qi Q, Ghaly TM, Rajabal V, Gillings MR, Tetu SG. Dissecting molecular evolution of class 1 integron gene cassettes and identifying their bacterial hosts in suburban creeks via epicPCR. J Antimicrob Chemother 2024; 79:100-111. [PMID: 37962091 DOI: 10.1093/jac/dkad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVES Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of their molecular evolution. METHODS We applied a single-cell fusion PCR-based technique-emulsion, paired isolation and concatenation PCR (epicPCR)-to link class 1 integron gene cassette arrays to the phylogenetic markers of their bacterial hosts. The levels of streptomycin resistance conferred by the WT and altered aadA5 and aadA11 gene cassettes that encode aminoglycoside (3″) adenylyltransferases were experimentally quantified in an Escherichia coli host. RESULTS Class 1 integron gene cassette arrays were detected in Alphaproteobacteria and Gammaproteobacteria hosts. A subset of three gene cassettes displayed signatures of molecular evolution, namely the gain of a regulatory 5'-untranslated region (5'-UTR), the loss of attC recombination sites between adjacent gene cassettes, and the invasion of a 5'-UTR by an IS element. Notably, our experimental testing of a novel variant of the aadA11 gene cassette demonstrated that gaining the observed 5'-UTR contributed to a 3-fold increase in the MIC of streptomycin relative to the ancestral reference gene cassette in E. coli. CONCLUSIONS Dissecting the observed signatures of molecular evolution of class 1 integrons allowed us to explain their effects on antibiotic resistance phenotypes, while identifying their bacterial hosts enabled us to make better inferences on the likely origins of novel gene cassettes and IS that invade known gene cassettes.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Timothy M Ghaly
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Vaheesan Rajabal
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Michael R Gillings
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Sasha G Tetu
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
39
|
Han S, Shin R, Ryu SH, Unno T, Hur HG, Shin H. A Potential Indicator Gene, tetM, to Assess Contamination by Antibiotic Resistance Genes in Greenhouses in South Korea. Microbes Environ 2024; 39:ME24053. [PMID: 39756985 PMCID: PMC11821766 DOI: 10.1264/jsme2.me24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/07/2024] [Indexed: 01/07/2025] Open
Abstract
Antibiotic resistance genes (ARGs) have been emerging as a concerning threat to both environment and public health. The continuous input of manure, irrigation water, and fertilizers increases the abundance of ARGs in agricultural environments. However, current risk assessments have focused on clinical settings, which are not applicable to environmental settings. Therefore, we herein aimed to identify and assess indicator genes to reduce the time and effort required for ARG surveillance. A nationwide ana-lysis of 322 ARGs and 58 mobile genetic elements (MGEs) was performed on 42 greenhouse and 19 control soil samples. The chemical properties and pH of soil were also investigated to characterize differences between greenhouse and control soil samples. The results obtained showed that the abundance of ARGS was significantly higher and ion concentrations were higher in greenhouse samples than in control samples. These results indicate that agricultural activities increased the abundance of ARGs. Furthermore, the abundance of core genes was significantly higher in greenhouse samples than in control samples, and the chemical characteristics of soil significantly differed between these samples. Among the discriminatory genes selected, tetM was identified as an ARG surveillance indicator gene based on its clinical relevance, prevalence in the soil resistome, and relationship with mobile genetic elements. The present results will contribute to the continuous and rapid surveillance of antibiotic resistance dissemination and proliferation in greenhouses in South Korea.
Collapse
Affiliation(s)
- Seunggyun Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Raan Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Song-Hee Ryu
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju-gun, South Korea
| | - Tatsuya Unno
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hanseob Shin
- Center for Health Effects of Environmental Contamination, University of Iowa, W195 Chemistry Building, University of Iowa, Iowa city, Iowa, United States
- State Hygienic Laboratory, University of Iowa, Coralville, Iowa, United States
| |
Collapse
|
40
|
Męcik M, Buta-Hubeny M, Paukszto Ł, Maździarz M, Wolak I, Harnisz M, Korzeniewska E. Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119303. [PMID: 37832303 DOI: 10.1016/j.jenvman.2023.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
41
|
Tyagi I, Tyagi K, Gupta V, Dutta R, Singhvi N, Kumar V, Bhutiani R, Prakash O. Microbial diversity characterizations, associated pathogenesis and antimicrobial resistance profiling of Najafgarh drain. ENVIRONMENTAL RESEARCH 2023; 238:117140. [PMID: 37716389 DOI: 10.1016/j.envres.2023.117140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
The Najafgarh drain plays a significant role in the pollution of the Yamuna River, accounting for 40% of the total pollution. Therefore, it is crucial to investigate and analyze the microbial diversity, metabolic functional capacity, and antibiotic resistance genes (ARGs) present in the Najafgarh drain. Additionally, studying the water quality and its relationship with the proliferation of microorganisms in the drain is of utmost importance. Results obtained confirmed the deteriorated water quality as physico-chemical parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), and total suspended solids (TSS) in the range of 125-140, 400-460, 0-0.2, 25-140.4 mg/l respectively violated the standard permissible national and global standards. In addition, the next generation sequencing (NGS) analysis confirm the presence of genus such as Thauera, Arcobacter, Pseudomonas, Geobacter, Dechloromonas, Tolumonas, Sulfurospirullum, Desulfovibrio, Aeromonas, Bacteroides, Prevotella, Cloacibacterium, Bifidobacterium, Clostridium etc. along with 864 ARGs in the wastewater obtained from the Najafgarh drain. Findings confirm that the pathogenic species reported from this dataset possess severe detrimental impact on faunal and human health. Further, Pearson's r correlation analysis indicated that environmental variables, mainly total dissolved solids (TDS) and chemical oxygen demand (COD), play a pivotal role in driving microbial community structure of this heavily polluted drain. Thus, the poor water quality, presence of a microbial nexus, pathogenic markers, and ARGs throughout this drain confirmed that it would be one potential contributor to the dissemination of disease-causing agents (pathogens) to the household and drinking water supplies in the near future.
Collapse
Affiliation(s)
- Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Koamud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India
| | - Vipin Gupta
- Ministry of Environment Forest and Climate Change, Integrated Regional Office-Dehradun, India, 248001, Uttarakhand, India
| | - Ritesh Dutta
- Kiit School of Biotechnology, Bhubaneswar, 751024, Odisha, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Rakesh Bhutiani
- Limnology and Ecological Modelling Lab, Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to be University), Haridwar, 249404, UK, India
| | - Om Prakash
- Symbiosis Centre for Climate Change and Sustainability (SCCCS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharastra, India
| |
Collapse
|
42
|
Chen F, Yu T, Yin Z, Wang P, Lu X, He J, Zheng Y, Zhou D, Gao B, Mu K. Uncovering the hidden threat: The widespread presence of chromosome-borne accessory genetic elements and novel antibiotic resistance genetic environments in Aeromonas. Virulence 2023; 14:2271688. [PMID: 37848422 PMCID: PMC10614715 DOI: 10.1080/21505594.2023.2271688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
The emergence of antibiotic-resistant Aeromonas strains in clinical settings has presented an escalating burden on human and public health. The dissemination of antibiotic resistance in Aeromonas is predominantly facilitated by chromosome-borne accessory genetic elements, although the existing literature on this subject remains limited. Hence, the primary objective of this study is to comprehensively investigate the genomic characteristics of chromosome-borne accessory genetic elements in Aeromonas. Moreover, the study aims to uncover novel genetic environments associated with antibiotic resistance on these elements. Aeromonas were screened from nonduplicated strains collected from two tertiary hospitals in China. Complete sequencing and population genetics analysis were performed. BLAST analysis was employed to identify related elements. All newly identified elements were subjected to detailed sequence annotation, dissection, and comparison. We identified and newly designated 19 chromosomal elements, including 18 integrative and mobilizable elements (IMEs) that could be classified into four categories: Tn6737-related, Tn6836-related, Tn6840-related, and Tn6844a-related IMEs. Each class exhibited a distinct pattern in the types of resistance genes carried by the IMEs. Several novel antibiotic resistance genetic environments were uncovered in these elements. Notably, we report the first identification of the blaOXA-10 gene and blaVEB-1 gene in clinical A. veronii genome, the first presence of a tetA(E)-tetR(E) resistance gene environment within the backbone region in IMEs, and a new mcr-3.15 resistance gene environment. The implications of these findings are substantial, as they provide new insights into the evolution, structure, and dissemination of chromosomal-borne accessory elements.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiaqi He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yali Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kai Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
43
|
Shaw LP, Neher RA. Visualizing and quantifying structural diversity around mobile resistance genes. Microb Genom 2023; 9:001168. [PMID: 38117673 PMCID: PMC10763510 DOI: 10.1099/mgen.0.001168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023] Open
Abstract
Understanding the evolution of mobile genes is important for understanding the spread of antimicrobial resistance (AMR). Many clinically important AMR genes have been mobilized by mobile genetic elements (MGEs) on the kilobase scale, such as integrons and transposons, which can integrate into both chromosomes and plasmids and lead to rapid spread of the gene through bacterial populations. Looking at the flanking regions of these mobile genes in diverse genomes can highlight common structures and reveal patterns of MGE spread. However, historically this has been a largely descriptive process, relying on gene annotation and expert knowledge. Here we describe a general method to visualize and quantify the structural diversity around genes using pangraph to find blocks of homologous sequence. We apply this method to a set of 12 clinically important beta-lactamase genes and provide interactive visualizations of their flanking regions at https://liampshaw.github.io/flanking-regions. We show that nucleotide-level variation in the mobile gene itself generally correlates with increased structural diversity in its flanking regions, demonstrating a relationship between rates of mutational evolution and rates of structural evolution, and find a bias for greater structural diversity upstream. Our framework is a starting point to investigate general rules that apply to the horizontal spread of new genes through bacterial populations.
Collapse
Affiliation(s)
- Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biosciences, University of Durham, Durham, UK
| | | |
Collapse
|
44
|
Ghaly TM, Rajabal V, Penesyan A, Coleman NV, Paulsen IT, Gillings MR, Tetu SG. Functional enrichment of integrons: Facilitators of antimicrobial resistance and niche adaptation. iScience 2023; 26:108301. [PMID: 38026211 PMCID: PMC10661359 DOI: 10.1016/j.isci.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Integrons are genetic elements, found among diverse bacteria and archaea, that capture and rearrange gene cassettes to rapidly generate genetic diversity and drive adaptation. Despite their broad taxonomic and geographic prevalence, and their role in microbial adaptation, the functions of gene cassettes remain poorly characterized. Here, using a combination of bioinformatic and experimental analyses, we examined the functional diversity of gene cassettes from different environments. We find that cassettes encode diverse antimicrobial resistance (AMR) determinants, including those conferring resistance to antibiotics currently in the developmental pipeline. Further, we find a subset of cassette functions is universally enriched relative to their broader metagenomes. These are largely involved in (a)biotic interactions, including AMR, phage defense, virulence, biodegradation, and stress tolerance. The remainder of functions are sample-specific, suggesting that they confer localised functions relevant to their microenvironment. Together, they comprise functional profiles different from bulk metagenomes, representing niche-adaptive components of the prokaryotic pangenome.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Nicholas V. Coleman
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
45
|
Van Camp PJ, Prasath VBS, Haslam DB, Porollo A. MGS2AMR: a gene-centric mining of metagenomic sequencing data for pathogens and their antimicrobial resistance profile. MICROBIOME 2023; 11:223. [PMID: 37833777 PMCID: PMC10571262 DOI: 10.1186/s40168-023-01674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Identification of pathogenic bacteria from clinical specimens and evaluating their antimicrobial resistance (AMR) are laborious tasks that involve in vitro cultivation, isolation, and susceptibility testing. Recently, a number of methods have been developed that use machine learning algorithms applied to the whole-genome sequencing data of isolates to approach this problem. However, making AMR assessments from more easily available metagenomic sequencing data remains a big challenge. RESULTS We present the Metagenomic Sequencing to Antimicrobial Resistance (MGS2AMR) pipeline, which detects antibiotic resistance genes (ARG) and their possible organism of origin within a sequenced metagenomics sample. This in silico method allows for the evaluation of bacterial AMR directly from clinical specimens, such as stool samples. We have developed two new algorithms to optimize and annotate the genomic assembly paths within the raw Graphical Fragment Assembly (GFA): the GFA Linear Optimal Path through seed segments (GLOPS) algorithm and the Adapted Dijkstra Algorithm for GFA (ADAG). These novel algorithms improve the sensitivity of ARG detection and aid in species annotation. Tests based on 1200 microbiome samples show a high ARG recall rate and correct assignment of the ARG origin. The MGS2AMR output can further be used in many downstream applications, such as evaluating AMR to specific antibiotics in samples from emerging intestinal infections. We demonstrate that the MGS2AMR-derived data is as informative for the entailing prediction models as the whole-genome sequencing (WGS) data. The performance of these models is on par with our previously published method (WGS2AMR), which is based on the sequencing data of bacterial isolates. CONCLUSIONS MGS2AMR can provide researchers with valuable insights into the AMR content of microbiome environments and may potentially improve patient care by providing faster quantification of resistance against specific antibiotics, thereby reducing the use of broad-spectrum antibiotics. The presented pipeline also has potential applications in other metagenome analyses focused on the defined sets of genes. Video Abstract.
Collapse
Affiliation(s)
- Pieter-Jan Van Camp
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - V B Surya Prasath
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Aleksey Porollo
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA.
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
46
|
Hipólito A, García-Pastor L, Vergara E, Jové T, Escudero JA. Profile and resistance levels of 136 integron resistance genes. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:13. [PMID: 39843947 PMCID: PMC11721406 DOI: 10.1038/s44259-023-00014-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2025]
Abstract
Integrons have played a major role in the rise and spread of multidrug resistance in Gram-negative pathogens and are nowadays commonplace among clinical isolates. These platforms capture, stockpile, and modulate the expression of more than 170 antimicrobial resistance cassettes (ARCs) against most clinically-relevant antibiotics. Despite their importance, our knowledge on their profile and resistance levels is patchy, because data is scattered in the literature, often reported in different genetic backgrounds and sometimes extrapolated from sequence similarity alone. Here we have generated a collection of 136 ARCs against 8 antibiotic families and disinfectants. Cassettes are cloned in a vector designed to mimic the genetic environment of a class 1 integron, and transformed in Escherichia coli. We have measured the minimal inhibitory concentration (MIC) to the most relevant molecules from each antibiotic family. With more than 500 MIC values, we provide an exhaustive and comparable quantitation of resistance conferred by ARCs. Our data confirm known resistance trends and profiles while revealing important differences among closely related genes. We have also detected genes that do not confer the expected resistance, to the point of challenging the role of the whole family of qac genes in resistance against disinfectants. Our work provides a detailed characterization of integron resistance genes at-a-glance.
Collapse
Affiliation(s)
- Alberto Hipólito
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Ester Vergara
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
47
|
Ikegaya K, Aoki K, Komori K, Ishii Y, Tateda K. Analysis of the stepwise acquisition of blaCTX-M-2 and subsequent acquisition of either blaIMP-1 or blaIMP-6 in highly conserved IncN-pST5 plasmids. JAC Antimicrob Resist 2023; 5:dlad106. [PMID: 37772074 PMCID: PMC10532110 DOI: 10.1093/jacamr/dlad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Objectives ESBL and carbapenemase genes in Enterobacterales spread via plasmids. Nosocomial outbreaks caused by Enterobacterales producing both CTX-M-2 and either IMP-1 or IMP-6-type carbapenemases have been reported. These organisms carry the incompatibility type N plasmid belonging to plasmid ST 5 (IncN-pST5). We investigated the construction process of the ESBL and carbapenemase genes co-carrying IncN-pST5. Methods We retrospectively performed draft WGS analysis for blaIMP- or blaCTX-M-positive Enterobacterales in our strain collection (n = 281). Results We selected four types of Escherichia coli plasmids for our study: type A, which carries both blaCTX-M-2 and blaIMP-1 (n = 6); type B, which carries both blaCTX-M-2 and blaIMP-6 (n = 2); type C, which carries blaCTX-M-2 (n = 10); and type D, which carries no β-lactamase genes (n = 1). It should be noted that type D plasmid was only detected in E. coli TUM2805, which carries the blaCTX-M-14 on the IncB/O/B/Z plasmid. Long-read sequencing using MinION revealed that all types of IncN-pST5 were highly conserved and carried a class 1 integron. Integron numbers were type A for In798, type B for In1690, type C for In127 and type D for In207. Because the gene cassettes downstream of blaIMP were different between In798 and In1690, the change from blaIMP-1 to blaIMP-6 by point mutation was unlikely. Representative plasmids from types A, B and C were conjugatively transferred with quite a high frequency between 1.3 × 10-1 and 2.5 × 10-2. Conclusions This study suggested that IncN-pST5 acquired blaCTX-M-2 by ISEcp1 in a stepwise manner, followed by either blaIMP-1 or blaIMP-6 into a class 1 integron.
Collapse
Affiliation(s)
- Kazuko Ikegaya
- Department of Microbiology and Infection Control and Prevention, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Laboratory, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kohji Komori
- Department of Microbiology and Infection Control and Prevention, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infection Control and Prevention, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infection Control and Prevention, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
48
|
Fadare FT, Fadare TO, Okoh AI. Prevalence, molecular characterization of integrons and its associated gene cassettes in Klebsiella pneumoniae and K. oxytoca recovered from diverse environmental matrices. Sci Rep 2023; 13:14373. [PMID: 37658232 PMCID: PMC10474106 DOI: 10.1038/s41598-023-41591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
The high prevalence of infections arising from Klebsiella species is related to their ability to acquire and disseminate exogenous genes associated with mobile genetic elements such as integrons. We assessed the prevalence, diversity, and associated gene cassettes (GCs) of integrons in Klebsiella species. The isolates recovered from wastewater and hospital effluents, rivers, and animal droppings were identified using the conventional Polymerase Chain Reaction (PCR) with primers targeting the gryA, pehX, and 16S-23S genes. The antimicrobial resistance profile and the Extended-Spectrum and Metallo β-lactamases production were carried out using standard microbiological techniques. PCR, DNA sequencing analyses, and Restriction Fragment Length Polymorphism were used to characterize the integrons and their associated GCs. Furthermore, the genotypic relationships between the different isolated K. pneumoniae were determined using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR. About 98% (51/52) of the confirmed isolates harboured an integrase gene, with 80% intI1, while the remaining 20% concurrently harboured intI1 and intI2, with no intI3 observed. About 78% (40/51) of the bacterial strains were positive for a promoter, the P2R2, investigated, while 80% (41/51) harboured at least one of the qacEΔ1 and sul1. Three different GCs arrangements identified were aac(6')-Ib, aadA1-dfrA1, and dfrA1-sat2. At a similarity index of 60%, the ERIC-PCR fingerprints generated were categorized into nine clusters. Our study is the first to reveal the features of integrons in Klebsiella spp. recovered from environmental sources in the Eastern Cape Province, South Africa. We conclude that the organisms' sources are repositories of integrons harbouring various gene cassettes, which can be readily mobilized to other microorganisms in similar or varied niches.
Collapse
Affiliation(s)
- Folake Temitope Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Taiwo Olawole Fadare
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
49
|
Kneis D, Lemay-St-Denis C, Cellier-Goetghebeur S, Elena AX, Berendonk TU, Pelletier JN, Heß S. Trimethoprim resistance in surface and wastewater is mediated by contrasting variants of the dfrB gene. THE ISME JOURNAL 2023; 17:1455-1466. [PMID: 37369703 PMCID: PMC10432401 DOI: 10.1038/s41396-023-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Trimethoprim (TMP) is a low-cost, widely prescribed antibiotic. Its effectiveness is increasingly challenged by the spread of genes coding for TMP-resistant dihydrofolate reductases: dfrA, and the lesser-known, evolutionarily unrelated dfrB. Despite recent reports of novel variants conferring high level TMP resistance (dfrB10 to dfrB21), the prevalence of dfrB is still unknown due to underreporting, heterogeneity of the analyzed genetic material in terms of isolation sources, and limited bioinformatic processing. In this study, we explored a coherent set of shotgun metagenomic sequences to quantitatively estimate the abundance of dfrB gene variants in aquatic environments. Specifically, we scanned sequences originating from influents and effluents of municipal sewage treatment plants as well as river-borne microbiomes. Our analyses reveal an increased prevalence of dfrB1, dfrB2, dfrB3, dfrB4, dfrB5, and dfrB7 in wastewater microbiomes as compared to freshwater. These gene variants were frequently found in genomic neighborship with other resistance genes, transposable elements, and integrons, indicating their mobility. By contrast, the relative abundances of the more recently discovered variants dfrB9, dfrB10, and dfrB13 were significantly higher in freshwater than in wastewater microbiomes. Moreover, their direct neighborship with other resistance genes or markers of mobile genetic elements was significantly less likely. Our findings suggest that natural freshwater communities form a major reservoir of the recently discovered dfrB gene variants. Their proliferation and mobilization in response to the exposure of freshwater communities to selective TMP concentrations may promote the prevalence of high-level TMP resistance and thus limit the future effectiveness of antimicrobial therapies.
Collapse
Affiliation(s)
- David Kneis
- TU Dresden, Institute of Hydrobiology, 01062, Dresden, Germany.
| | - Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Stella Cellier-Goetghebeur
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
| | - Alan X Elena
- TU Dresden, Institute of Hydrobiology, 01062, Dresden, Germany
| | | | - Joelle N Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
- Department of Biochemistry & Molecular Medicine, University of Montréal, Montréal, QC, H3T 1J4, Canada
- Chemistry Department, University of Montréal, Montréal, QC, H2V 0B3, Canada
| | - Stefanie Heß
- TU Dresden, Institute of Microbiology, 01062, Dresden, Germany
| |
Collapse
|
50
|
Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA. Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol 2023; 14:1231938. [PMID: 37720149 PMCID: PMC10500605 DOI: 10.3389/fmicb.2023.1231938] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Antibiotic resistance development and pathogen cross-dissemination are both considered essential risks to human health on a worldwide scale. Antimicrobial resistance genes (AMRs) are acquired, expressed, disseminated, and traded mainly through integrons, the key players capable of transferring genes from bacterial chromosomes to plasmids and their integration by integrase to the target pathogenic host. Moreover, integrons play a central role in disseminating and assembling genes connected with antibiotic resistance in pathogenic and commensal bacterial species. They exhibit a large and concealed diversity in the natural environment, raising concerns about their potential for comprehensive application in bacterial adaptation. They should be viewed as a dangerous pool of resistance determinants from the "One Health approach." Among the three documented classes of integrons reported viz., class-1, 2, and 3, class 1 has been found frequently associated with AMRs in humans and is a critical genetic element to serve as a target for therapeutics to AMRs through gene silencing or combinatorial therapies. The direct method of screening gene cassettes linked to pathogenesis and resistance harbored by integrons is a novel way to assess human health. In the last decade, they have witnessed surveying the integron-associated gene cassettes associated with increased drug tolerance and rising pathogenicity of human pathogenic microbes. Consequently, we aimed to unravel the structure and functions of integrons and their integration mechanism by understanding horizontal gene transfer from one trophic group to another. Many updates for the gene cassettes harbored by integrons related to resistance and pathogenicity are extensively explored. Additionally, an updated account of the assessment of AMRs and prevailing antibiotic resistance by integrons in humans is grossly detailed-lastly, the estimation of AMR dissemination by employing integrons as potential biomarkers are also highlighted. The current review on integrons will pave the way to clinical understanding for devising a roadmap solution to AMR and pathogenicity. Graphical AbstractThe graphical abstract displays how integron-aided AMRs to humans: Transposons capture integron gene cassettes to yield high mobility integrons that target res sites of plasmids. These plasmids, in turn, promote the mobility of acquired integrons into diverse bacterial species. The acquisitions of resistant genes are transferred to humans through horizontal gene transfer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Hafsa Qadri
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rohan Dhiman
- Department of Life Sciences, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|