1
|
Liu R, Chen Y, Li SY, Chen YP, Guo JS, Liu SY, Yan P. Filamentous bacteria in activated sludge: Geographic distribution and impact of treatment processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124859. [PMID: 40056591 DOI: 10.1016/j.jenvman.2025.124859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/15/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
In this study, a global activated sludge communities database was used to investigate the global distribution of filamentous bacteria. The dominant filamentous bacteria worldwide were Zoogloea ramigera and Eikelboom type 1863. The incidence of sludge bulking in samples from Europe (22.4%), South America (18.8%), and North America (15.6%) was significantly higher than in other continents. The distribution of remaining filamentous bacteria shows significant regional variability. In addition, climate significantly affects the distribution of filamentous bacterial populations. The filamentous bacterial abundance in samples from polar climates (7.36%) and cold climates (4.13%) was significantly higher than in other climates. Candidatus Microthrix parvicella and Tetrasphaera spp. were the dominant filamentous bacteria in cold region. Wastewater treatment processes are also key factors affecting filamentous bacterial populations. The incidence of sludge bulking (21.6%) and the average abundance of filamentous bacteria (5.08%) in samples from CM processes were the highest, mainly induced by Thiothrix spp. In addition, filamentous sludge bulking is easily induced by Thiothrix spp. in SBR processes, and sludge bulking is easily induced by Zoogloea ramigera in PFR processes. This study provides new insights into preventing and controlling filamentous sludge bulking globally.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yang Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Song-Ya Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, 36082, AL, USA
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
2
|
Pu C, Guo J, Zhang J, Liu S, Cao G, Lu G. Nitrogen transformation and bacterial community response in O 3-SBR process for treating nitrogen-containing heterocyclic antibiotics. ENVIRONMENTAL RESEARCH 2025; 269:120924. [PMID: 39855411 DOI: 10.1016/j.envres.2025.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O3) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O3-coupled biological processes remain unclear. This study utilized an O3-coupled sequencing batch reactor (O3-SBR) to evaluate its treatment efficacy on three typical NHAs, namely fluconazole, sulfamethizole, and acyclovir, and explored nitrogen transformation and the effects of oxidation products (NHAs-OPs) on bacterial communities. The results showed that the O3-SBR process was more effective for treating NHAs than using O3 or SBR alone. O3 pretreatment converted nitrogen in difficult-to-degrade NHAs into inorganic nitrogen and other organic nitrogen compounds, improving the biodegradability of NHAs. Subsequently, NHAs-OPs were used as the nitrogen/carbon source for SBR. Unlike the low TN removal rate of 14.4-23.4% observed when treating pure NHAs wastewater, the TN and total organic carbon removal rates of the SBR treating NHAs-OPs wastewater reached 62.4-85.2% and 65.2-86.4%, respectively. High-throughput sequencing analysis revealed that the enhanced efficacy of the SBR process may be attributed to the dominance of bacterial genera adapted to NHAs-OPs within the system. Additionally, the abundance of denitrification functions under NHAs-OPs stress was found to be higher than that of nitrification functions. These results provide new theoretical support for the treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Chuan Pu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Junjie Guo
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Jiayue Zhang
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Siyang Liu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Gang Cao
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China.
| | - Gang Lu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
3
|
Wang Y, Liu X, Huang C, Han W, Gu P, Jing R, Yang Q. Antibiotic resistance genes and virulence factors in the plastisphere in wastewater treatment plant effluent: Health risk quantification and driving mechanism interpretation. WATER RESEARCH 2025; 271:122896. [PMID: 39631158 DOI: 10.1016/j.watres.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs) are ubiquitous in wastewater treatment plants (WWTPs) and provide a unique niche for the spread of pollutants. To date, risk assessments and driving mechanisms of pathogens, antibiotic resistance genes (ARGs), and virulence factors (VFs) in the plastisphere are still lacking. Here, the microbiota, ARGs, VFs, their potential health risks, and biologically driving mechanisms on polythene (PE), polyethylene terephthalate (PET), poly (butyleneadipate-co-terephthalate) and polylactic acid blends (PBAT/PLA), PLA MPs, and gravel in WWTP effluent were investigated. The results showed that plastisphere and gravel biofilm harbored more distinctive microorganisms, promoting the uniqueness of pathogens, ARGs, and VFs compared to WWTP effluent. The abundance of major pathogens, ARGs, and VFs in the plastisphere was 1.01-1.35 times higher than that in the effluent. The high health risk of ARGs (HRA) calculated by fully considering the abundance, clinical relevance, pathogenicity, accessibility and mobility, and the high proportion of resistance contigs with mobile genetic elements confirmed that the plastisphere posed the highest potential health risk. Candidatus Microthrix and Candidatus Promineifilum were the essential hosts of ARGs and VFs in the plastisphere and gravel biofilm, respectively. High metabolic activity such as amino acid metabolism and biosynthesis of secondary metabolites, and highly expressed key genes increased the synthesis of ARGs and VFs. The primary mechanisms driving ARG enrichment in the plastisphere were enhanced microbial metabolic activity, increased frequency of horizontal gene transfer, heightened antibiotic inactivation and efflux, and reduced cell permeability. This study provided new insights into the ARGs, VFs, and health risks of the plastisphere and emphasized the importance of strict control of wastewater discharge.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Weipeng Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Pengchao Gu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Ruxian Jing
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Fujii N, Kuroda K, Narihiro T, Aoi Y, Ozaki N, Ohashi A, Kindaichi T. Unique episymbiotic relationship between Candidatus Patescibacteria and Zoogloea in activated sludge flocs at a municipal wastewater treatment plant. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70007. [PMID: 39267333 PMCID: PMC11393006 DOI: 10.1111/1758-2229.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Candidatus Patescibacteria, also known as candidate phyla radiation (CPR), including the class-level uncultured clade JAEDAM01 (formerly a subclass of Gracilibacteria/GN02/BD1-5), are ubiquitous in activated sludge. However, their characteristics and relationships with other organisms are largely unknown. They are believed to be episymbiotic, endosymbiotic or predatory. Despite our understanding of their limited metabolic capacity, their precise roles remain elusive due to the difficulty in cultivating and identifying them. In previous research, we successfully recovered high-quality metagenome-assembled genomes (MAGs), including a member of JAEDAM01 from activated sludge flocs. In this study, we designed new probes to visualize the targeted JAEDAM01-associated MAG HHAS10 and identified its host using fluorescence in situ hybridization (FISH). The FISH observations revealed that JAEDAM01 HHAS10-like cells were located within dense clusters of Zoogloea, and the fluorescence brightness of zoogloeal cells decreased in the vicinity of the CPR cells. The Zoogloea MAGs possessed genes related to extracellular polymeric substance biosynthesis, floc formation and nutrient removal, including a polyhydroxyalkanoate (PHA) accumulation pathway. The JAEDAM01 MAG HHAS10 possessed genes associated with type IV pili, competence protein EC and PHA degradation, suggesting a Zoogloea-dependent lifestyle in activated sludge flocs. These findings indicate a new symbiotic relationship between JAEDAM01 and Zoogloea.
Collapse
Affiliation(s)
- Naoki Fujii
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Mills M, Mollenkopf D, Wittum T, Sullivan MP, Lee J. One Health Threat of Treated Wastewater Discharge in Urban Ohio Rivers: Implications for Surface Water and Fish Gut Microbiome and Resistome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39014939 DOI: 10.1021/acs.est.3c09070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are thought to be a major disseminating source of antibiotic resistance (AR) to the environment, establishing a crucial connection between human and environmental resistome. The objectives of this study were to determine how wastewater effluents impact microbiome and resistome of freshwater and fish, and identify potential AR-carrying clinically relevant pathogens in these matrices. We analyzed wastewater influent and effluent from four WWTPs in three metropolitan areas of Ohio, USA via shotgun metagenomic sequencing. We also sequenced river water and fish guts from three reaches (upstream, at the WWTP outfall, and downstream). Notably, we observed a decline in microbiome diversity and AR gene abundance from wastewater to the receiving river. We also found significant differences by reach and trophic level (diet) in beta-diversity of the fish gut microbiomes. SourceTracker revealed that 0.443 and 0.248 more of the of the fish gut microbiome was sourced from wastewater effluent in fish from the outfall and downstream locations, respectively, compared to upstream fish. Additionally, AR bacteria of public health concern were annotated in effluent and river water samples, indicating potential concern for human exposure. In summary, our findings show the continued role of wastewater as a significant AR reservoir and underscores the considerable impact of wastewater discharge on aquatic wildlife, which highlights the One Health nature of this issue.
Collapse
Affiliation(s)
- Molly Mills
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dixie Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mažeika Patricio Sullivan
- Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, South Carolina 29442, United States
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Food Science & Technology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Freeman CN, Russell JN, Yost CK. Temporal metagenomic characterization of microbial community structure and nitrogen modification genes within an activated sludge bioreactor system. Microbiol Spectr 2024; 12:e0283223. [PMID: 38018980 PMCID: PMC10783093 DOI: 10.1128/spectrum.02832-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Wastewater treatment plays an essential role in minimizing negative impacts on downstream aquatic environments. Microbial communities are known to play a vital role in the wastewater treatment process, particularly in the removal of nitrogen and phosphorus, which can be especially damaging to aquatic ecosystems. There is limited understanding of how these microbial communities may change in response to fluctuating temperatures or how seasonality may impact their ability to participate in the treatment process. The findings of this study indicate that the microbial communities of wastewater are relatively stable both compositionally and functionally across fluctuating temperatures.
Collapse
Affiliation(s)
- Claire N. Freeman
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Chris K. Yost
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
7
|
Bovio-Winkler P, Cabezas A, Etchebehere C. Unveiling the hidden diversity and functional role of Chloroflexota in full-scale wastewater treatment plants through genome-centric analyses. ISME COMMUNICATIONS 2024; 4:ycae050. [PMID: 39698295 PMCID: PMC11653643 DOI: 10.1093/ismeco/ycae050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 12/20/2024]
Abstract
The phylum Chloroflexota has been found to exhibit high abundance in the microbial communities from wastewater treatment plants (WWTPs) in both aerobic and anaerobic systems. However, its metabolic role has not been fully explored due to the lack of cultured isolates. To address this gap, we use publicly available metagenome datasets from both activated sludge (AS) and methanogenic (MET) full-scale wastewater treatment reactors to assembled genomes. Using this strategy, 264 dereplicated, medium- and high-quality metagenome-assembled genomes (MAGs) classified within Chloroflexota were obtained. Taxonomic classification revealed that AS and MET reactors harbored distinct Chloroflexota families. Nonetheless, the majority of the annotated MAGs (166 MAGs with >85% completeness and < 5% contamination) shared most of the metabolic potential features, including the ability to degrade simple sugars and complex polysaccharides, fatty acids and amino acids, as well as perform fermentation of different products. While Chloroflexota MAGs from MET reactors showed the potential for strict fermentation, MAGs from AS harbored the potential for facultatively aerobic metabolism. Metabolic reconstruction of Chloroflexota members from AS unveiled their versatile metabolism and suggested a primary role in hydrolysis, carbon removal and involvement in nitrogen cycling, thus establishing them as fundamental components of the ecosystem. Microbial reference genomes are essential resources for understanding the potential functional role of uncultured organisms in WWTPs. Our study provides a comprehensive genome catalog of Chloroflexota for future analyses aimed at elucidating their role in these ecosystems.
Collapse
Affiliation(s)
- Patricia Bovio-Winkler
- Microbial Ecology Laboratory, Department of Microbial
Biochemistry and Genomic, Biological Research Institute “Clemente
Estable”, Avenida Italia 3318, 11600 Montevideo,
CP, Uruguay
| | - Angela Cabezas
- Departamento de sostenibilidad ambiental, Instituto Tecnológico Regional
Centro Sur, Universidad Tecnológica, Francisco Antonio Maciel s/n,
97000, Durazno, CPUruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial
Biochemistry and Genomic, Biological Research Institute “Clemente
Estable”, Avenida Italia 3318, 11600 Montevideo,
CP, Uruguay
| |
Collapse
|
8
|
Song X, Kong SJ, Seo S, Prabhakar RG, Shamoo Y. Methyl halide transferase-based gas reporters for quantification of filamentous bacteria in microdroplet emulsions. Appl Environ Microbiol 2023; 89:e0076423. [PMID: 37699129 PMCID: PMC10537575 DOI: 10.1128/aem.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
The application of microfluidic techniques in experimental and environmental studies is a rapidly emerging field. Water-in-oil microdroplets can serve readily as controllable micro-vessels for studies that require spatial structure. In many applications, it is useful to monitor cell growth without breaking or disrupting the microdroplets. To this end, optical reporters based on color, fluorescence, or luminescence have been developed. However, optical reporters suffer from limitations when used in microdroplets such as inaccurate readings due to strong background interference or limited sensitivity during early growth stages. In addition, optical detection is typically not amenable to filamentous or biofilm-producing organisms that have significant nonlinear changes in opacity and light scattering during growth. To overcome such limitations, we show that volatile methyl halide gases produced by reporter cells expressing a methyl halide transferase (MHT) can serve as an alternative nonoptical detection approach suitable for microdroplets. In this study, an MHT-labeled Streptomyces venezuelae reporter strain was constructed and characterized. Protocols were established for the encapsulation and incubation of S. venezuelae in microdroplets. We observed the complete life cycle for S. venezuelae including the vegetative expansion of mycelia, mycelial fragmentation, and late-stage sporulation. Methyl bromide (MeBr) production was detected by gas chromatography-mass spectrometry (GC-MS) from S. venezuelae gas reporters incubated in either liquid suspension or microdroplets and used to quantitatively estimate bacterial density. Overall, using MeBr production as a means of quantifying bacterial growth provided a 100- to 1,000-fold increase in sensitivity over optical or fluorescence measurements of a comparable reporter strain expressing fluorescent proteins. IMPORTANCE Quantitative measurement of bacterial growth in microdroplets in situ is desirable but challenging. Current optical reporter systems suffer from limitations when applied to filamentous or biofilm-producing organisms. In this study, we demonstrate that volatile methyl halide gas production can serve as a quantitative nonoptical growth assay for filamentous bacteria encapsulated in microdroplets. We constructed an S. venezuelae gas reporter strain and observed a complete life cycle for encapsulated S. venezuelae in microdroplets, establishing microdroplets as an alternative growth environment for Streptomyces spp. that can provide spatial structure. We detected MeBr production from both liquid suspension and microdroplets with a 100- to 1,000-fold increase in signal-to-noise ratio compared to optical assays. Importantly, we could reliably detect bacteria with densities down to 106 CFU/mL. The combination of quantitative gas reporting and microdroplet systems provides a valuable approach to studying fastidious organisms that require spatial structure such as those found typically in soils.
Collapse
Affiliation(s)
- Xinhao Song
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Sarah J. Kong
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Seokju Seo
- Department of BioSciences, Rice University, Houston, Texas, USA
| | | | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
9
|
Tsukamoto H, Phan HV, Suenaga T, Yasuda S, Kuroiwa M, Riya S, Ogata A, Hori T, Terada A. Microaerophilic Activated Sludge System for Ammonia Retention toward Recovery from High-Strength Nitrogenous Wastewater: Performance and Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13874-13886. [PMID: 37676844 DOI: 10.1021/acs.est.3c03002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A transition to ammonia recovery from wastewater has started; however, a technology for sustainable nitrogen retention in the form of ammonia and organic carbon removal is still in development. This study validated a microaerophilic activated sludge (MAS) system to efficiently retain ammonia from high-strength nitrogenous wastewater. The MAS is based on conventional activated sludge (CAS) with aerobic and settling compartments. Low dissolved oxygen (DO) concentrations (<0.2 mg/L) and short solids retention times (SRTs) (<5 days) eliminated nitrifying bacteria. The two parallel MASs were successfully operated for 300 days and had ammonia retention of 101.7 ± 24.9% and organic carbon removal of 85.5 ± 8.9%. The MASs mitigated N2O emissions with an emission factor of <0.23%, much lower than the default value of CAS (1.6%). A short-term step-change test demonstrated that N2O indicated the initiation of nitrification and the completion of denitrification in the MAS. The parallel MASs had comparable microbial diversity, promoting organic carbon oxidation while inhibiting ammonia-oxidizing microorganisms (AOMs), as revealed by 16S rRNA gene amplicon sequencing, the quantitative polymerase chain reaction of functional genes, and fluorescence in situ hybridization of β-proteobacteria AOB. The microbial analyses also uncovered that filamentous bacteria were positively correlated with effluent turbidity. Together, controlling DO and SRT achieved organic carbon removal and successful ammonia retention, mainly by suppressing AOM activity. This process represents a new nitrogen management paradigm.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Hop V Phan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi- Hiroshima, Hiroshima 739-8527, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| | - Megumi Kuroiwa
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Shohei Riya
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| |
Collapse
|
10
|
Luo Y, Chavez-Rico VS, Sechi V, Bezemer TM, Buisman CJN, Ter Heijne A. Effect of organic amendments obtained from different pretreatment technologies on soil microbial community. ENVIRONMENTAL RESEARCH 2023:116346. [PMID: 37295594 DOI: 10.1016/j.envres.2023.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The application of organic amendments (OAs) obtained from biological treatment technologies is a common agricultural practice to increase soil functionality and fertility. OAs and their respective pretreatment processes have been extensively studied. However, comparing the properties of OAs obtained from different pretreatment processes remains challenging. In most cases, the organic residues used to produce OAs exhibit intrinsic variability and differ in origin and composition. In addition, few studies have focused on comparing OAs from different pretreatment processes in the soil microbiome, and the extent to which OAs affect the soil microbial community remains unclear. This limits the design and implementation of effective pretreatments aimed at reusing organic residues and facilitating sustainable agricultural practices. In this study, we used the same model residues to produce OAs to enable meaningful comparisons among compost, digestate, and ferment. These three OAs contained different microbial communities. Compost had higher bacterial but lower fungal alpha diversity than ferment and digestate. Compost-associated microbes were more prevalent in the soil than ferment- and digestate-associated microbes. More than 80% of the bacterial ASVs and fungal OTUs from the compost were detected 3 months after incorporation into the soil. However, the addition of compost had less influence on the resulting soil microbial biomass and community composition than the addition of ferment or digestate. Specific native soil microbes, members from Chloroflexi, Acidobacteria, and Mortierellomycota, were absent after ferment and digestate application. The addition of OAs increased the soil pH, particularly in the compost-amended soil, whereas the addition of digestate enhanced the concentrations of dissolved organic carbon (DOC) and available nutrients (such as ammonium and potassium). These physicochemical variables were key factors that influenced soil microbial communities. This study furthers our understanding of the effective recycling of organic resources for the development of sustainable soils.
Collapse
Affiliation(s)
- Yujia Luo
- Environmental Technology, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands.
| | - Vania Scarlet Chavez-Rico
- Environmental Technology, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Valentina Sechi
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - T Martijn Bezemer
- Institute of Biology, Aboveground Belowground Interactions Group, Leiden University, P.O. Box 9505, 2300, RA, Leiden, the Netherlands; Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Droevendaalsesteeg 10, 6708, PB, Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| |
Collapse
|
11
|
Xu J, Yuan T, Wang L, Zhang C, Lei Z, Shimizu K, Zhang Z. Enhanced fixation of dissolved inorganic carbon by algal-bacterial aerobic granular sludge during treatment of low-organic-content wastewater. BIORESOURCE TECHNOLOGY 2023; 378:128951. [PMID: 36963698 DOI: 10.1016/j.biortech.2023.128951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The microalgae-based wastewater treatment technologies are believed to contribute to carbon neutrality. This study investigated the inorganic carbon fixation performance in the algal-bacterial aerobic granular sludge (A-BAGS) process under cultivation at different concentrations of organic carbon (OC) and inorganic carbon (IC). The results indicated that A-BAGS in treating wastewater containing organics of 77 mg-C/L contributed little to the fixation of inorganic carbon, while the highest inorganic carbon removal efficiency of 50 % was achieved at the influent IC of 100 mg/L and OC of 7 mg/L. This high IC condition contributed to enhanced biomass growth rate and enhanced extracellular polymeric substances, while it did not affect the granular stability and nitrification efficiency. The microbial diversity was also largely enhanced. The results demonstrated the great potential of A-BAGS for simultaneous resource recovery in wastewater and inorganic carbon fixation, while operation conditions need to be further optimized.
Collapse
Affiliation(s)
- Jing Xu
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Lanting Wang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chi Zhang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Oura-gun Itakura, Gunma 374-0193, Japan
| | - Zhenya Zhang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
12
|
Li Z, Cun S, Han G, Guo X, Liu B, Huang T, Hou D, Liu R, Liu X. New insight into soluble extracellular metabolites during sludge bulking process based on excitation-emission matrix spectroscopy and ultrahigh-performance liquid chromatography-mass spectrometry. ENVIRONMENTAL RESEARCH 2023; 219:115161. [PMID: 36580981 DOI: 10.1016/j.envres.2022.115161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Soluble extracellular metabolites (SEM) produced by microorganisms might significantly change during sludge bulking, which is a major operational problem caused by the excessive growth of filamentous bacteria. However, knowledge remains limited about the dynamics and potential role of SEM in the bulking of sludge. In this study, filamentous bulking was simulated in a laboratory-scale reactor and changes to SEM characteristics during the bulking process were investigated using excitation-emission matrix spectroscopy and ultrahigh-performance liquid chromatography-mass spectrometry. SEM components changed significantly at different phases of sludge bulking. Changes in SEM were closely correlated with the structure of the bacterial community. Based on the EEM profiles, significant increases in fulvic acid-like and humic acid-like substances in SEM were observed with the development of filamentous bulking. The degree of humification in SEM showed a clear increasing trend. Untargeted extracellular metabolomic analysis showed that the intensity of berberine and isorhamnetin in SEM increased significantly during the bulking phase, which might synergistically facilitate the development of filamentous bulking.
Collapse
Affiliation(s)
- Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Cun
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Ganghua Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Ting Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Deyin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Campos DMDO, Silva MKD, Barbosa ED, Leow CY, Fulco UL, Oliveira JIN. Exploiting reverse vaccinology approach for the design of a multiepitope subunit vaccine against the major SARS-CoV-2 variants. Comput Biol Chem 2022; 101:107754. [PMID: 36037724 PMCID: PMC9385604 DOI: 10.1016/j.compbiolchem.2022.107754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
The current COVID-19 pandemic, an infectious disease caused by the novel coronavirus (SARS-CoV-2), poses a threat to global health because of its high rate of spread and death. Currently, vaccination is the most effective method to prevent the spread of this disease. In the present study, we developed a novel multiepitope vaccine against SARS-CoV-2 containing Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (BA.1) variants. To this end, we performed a robust immunoinformatics approach based on multiple epitopes of the four structural proteins of SARS-CoV-2 (S, M, N, and E) from 475 SARS-CoV-2 genomes sequenced from the regions with the highest number of registered cases, namely the United States, India, Brazil, France, Germany, and the United Kingdom. To investigate the best immunogenic epitopes for linear B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL), we evaluated antigenicity, allergenicity, conservation, immunogenicity, toxicity, human population coverage, IFN-inducing, post-translational modifications, and physicochemical properties. The tertiary structure of a vaccine prototype was predicted, refined, and validated. Through docking experiments, we evaluated its molecular coupling to the key immune receptor Toll-Like Receptor 3 (TLR3). To improve the quality of docking calculations, quantum mechanics/molecular mechanics calculations (QM/MM) were used, with the QM part of the simulations performed using the density functional theory formalism (DFT). Cloning and codon optimization were performed for the successful expression of the vaccine in E. coli. Finally, we investigated the immunogenic properties and immune response of our SARS-CoV-2 multiepitope vaccine. The results of the simulations show that administering our prototype three times significantly increases the antibody response and decreases the amount of antigens. The proposed vaccine candidate should therefore be tested in clinical trials for its efficacy in neutralizing SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Melo de Oliveira Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Maria Karolaynne da Silva
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | | | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| |
Collapse
|
14
|
He H, Carlson AL, Nielsen PH, Zhou J, Daigger GT. Comparative analysis of floc characteristics and microbial communities in anoxic and aerobic suspended growth processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10822. [PMID: 36544219 PMCID: PMC10107865 DOI: 10.1002/wer.10822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 06/09/2023]
Abstract
A fully anoxic suspended growth process is an appealing alternative to conventional activated sludge (AS) due to considerable aeration reduction and improved carbon processing efficiency for biological nutrient removal (BNR). With development of the hybrid membrane aerated biofilm reactor (MABR) technology, implementation of a fully anoxic suspended growth community in BNR facilities became practical. To better understand potential limitations with the elimination of aeration, we carried out microscopic examination and 16S rRNA gene-based microbial community profiling to determine how an anoxic suspended growth would differ from the conventional aerobic process in floc characteristics, microbial diversity, microbial temporal dynamics, and community assembly pattern. Fewer filamentous populations were found in the anoxic mixed liquor, suggesting easily sheared flocs. The anoxic microbial community had distinct composition and structure, but its diversity and temporal dynamics were similar to the conventional aerobic community. A variety of well-studied functional guilds were also identified in the anoxic community. The anoxic microbial community assembly was more stochastic than the conventional aerobic community, but deterministic assembly was still significant with a large core microbiome adapted to the anoxic condition. PRACTITIONER POINTS: Flocs developed under the anoxic conditions had less filamentous backbones, implying reduced flocculation capacity and easily sheared flocs. Knowledge about the ecophysiology of Thauera, Thiothrix, and Trichococcus can help achieve good properties of the anoxic flocs. A diverse microbial community sustainably adapted to the fully anoxic condition, containing a variety of filaments, denitrifiers, and PAOs. The anoxic microbial community displayed a similar degree of diversity and temporal dynamics compared to the aerobic counterpart. The anoxic community's assembly was more stochastic, so it may be less subject to changes in environmental variables.
Collapse
Affiliation(s)
- Huanqi He
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Avery L. Carlson
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, and School of Computer ScienceUniversity of OklahomaNormanOklahomaUSA
| | - Glen T. Daigger
- Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
15
|
Roman MD, Sava C, Iluțiu-Varvara DA, Mare R, Pruteanu LL, Pică EM, Jäntschi L. Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11323. [PMID: 36141596 PMCID: PMC9517470 DOI: 10.3390/ijerph191811323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic and the related measures brought a change in daily life that affected the characteristics of the municipal wastewater and further, of the biological activated sludge. The activated sludge process is the most widely used biological wastewater treatment process in developed areas. In this paper, we aim to show the situation of specific investigations concerning the variation of the physicochemical parameters and biological composition of the activated sludge from one conventional wastewater treatment plant from a metropolitan area. The investigations were carried out for three years: 2019, 2020 and 2021. The results showed the most representative taxa of microorganisms: Microtrix, Aspidisca cicada, Vorticella convallaria, Ciliata free of the unknown and Epistylis and Rotifers. Even if other microorganisms were found in the sludge flocs, their small presence did not influence in any way the quality of the activated sludge and of the wastewater treatment process. That is why we conclude that protozoa (especially Flagellates and Ciliates) and rotifers were the most important. Together with the values and variation of the physicochemical parameters, they indicated a good, healthy, and stable activated sludge, along with an efficient purifying treatment process, no matter the loading conditions.
Collapse
Affiliation(s)
- Marius-Daniel Roman
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Cornel Sava
- Faculty of Engineering Materials and the Environment, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Dana-Adriana Iluțiu-Varvara
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Roxana Mare
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania
| | - Elena Maria Pică
- Faculty of Engineering Materials and the Environment, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Lorentz Jäntschi
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 103-105 Bd. Muncii, 400641 Cluj-Napoca, Romania
- Institute for Doctoral Studies, Babes-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Cai W, Han X, Sangeetha T, Yao H. Causality and correlation analysis for deciphering the microbial interactions in activated sludge. Front Microbiol 2022; 13:870766. [PMID: 35992723 PMCID: PMC9387910 DOI: 10.3389/fmicb.2022.870766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Time series data has been considered to be a massive information provider for comprehending more about microbial dynamics and interaction, leading to a causality inference in a complex microbial community. Granger causality and correlation analysis have been investigated and applied for the construction of a microbial causal correlation network (MCCN) and efficient prediction of the ecological interaction within activated sludge, which thereby exhibited ecological interactions at the OTU-level. Application of MCCN to a time series of activated sludge data revealed that the hub species OTU56, classified as the one belonging to the genus Nitrospira, was responsible for nitrification in activated sludge and interaction with Proteobacteria and Bacteroidetes in the form of amensal and commensal relationships, respectively. The phylogenetic tree suggested a mutualistic relationship between Nitrospira and denitrifiers. Zoogloea displayed the highest ncf value within the classified OTUs of the MCCN, indicating that it could be a foundation for activated sludge through the formation of characteristic cell aggregate matrices where other organisms embed during floc formation. Inclusively, the research outcomes of this study have provided a deep insight into the ecological interactions within the communities of activated sludge.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiangyu Han
- School of Civil Engineering, Beijing Jiaotong University, Beijing, China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei, Taiwan
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hong Yao
- School of Civil Engineering, Beijing Jiaotong University, Beijing, China
- *Correspondence: Hong Yao,
| |
Collapse
|
17
|
Modelling filamentous bacteria in activated sludge systems and the advancements of secondary settling tank models: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Syamimi Zaidi N, Syafiuddin A, Sillanpää M, Burhanuddin Bahrodin M, Zhang Zhan L, Ratnasari A, Kadier A, Aamer Mehmood M, Boopathy R. Insights into the potential application of magnetic field in controlling sludge bulking and foaming: A review. BIORESOURCE TECHNOLOGY 2022; 358:127416. [PMID: 35660656 DOI: 10.1016/j.biortech.2022.127416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The formation of bulking and foaming in biological wastewater treatment could cause a series of operational issues with biomass and effluent quality, ultimately affect the treatment performance of the system. The essential parameters influencing the growth of bulking and foaming bacteria are comprehensively summarised in this paper. Existing bulking and foaming control approached are critically reviewed and addressed, as well as their drawbacks and limitations. Despite the abundance of information and implementation, a complete control technique for limiting filamentous sludge bulking and foaming remains insufficient. Magnetic field application is emphasised as a viable control strategy in this regard. The present review study provides new insight of this application by comparing the use of magnetic fields to conventional treatments. Future outlooks on the use of magnetic fields to prevent BFB proliferation were also highlighted.
Collapse
Affiliation(s)
- Nur Syamimi Zaidi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia; Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Achmad Syafiuddin
- Environmental Health Division, Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, Miami, USA
| | - Muhammad Burhanuddin Bahrodin
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Loh Zhang Zhan
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Anisa Ratnasari
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
19
|
Simona C, Laura L, Francesco V, Marianna V, Cristina MG, Barbara T, Mauro M, Simona R. Effect of the organic loading rate on the PHA-storing microbiome in sequencing batch reactors operated with uncoupled carbon and nitrogen feeding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153995. [PMID: 35192819 DOI: 10.1016/j.scitotenv.2022.153995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Over the last years, in a search for sustainable and biodegradable alternatives to petrol-based plastics, biotechnological applications turned to the potentialities of mixed microbial cultures (MMC) for producing polyhydroxyalkanoates (PHAs). Under a feast and famine regime, an uncoupled carbon (C) and nitrogen (N)-feeding strategy may be adopted by dosing the C-source at the beginning of the feast and the N-source at the beginning of the famine in order to stimulate a PHA storage response and microbial growth. Even though this strategy has been already successfully applied for the PHA production, very few information is to date available regarding the MMC operating in these systems and the influence of Organic Loading Rate (OLR) on their selection and enrichment. To fill the gap, this study investigated the effect of the OLR on the selection of PHA-accumulating microorganisms in a sequencing batch reactor (SBR) operated with an uncoupled C and N feeding strategy. The SBR cycle length was set at 12 h and four OLRs values (4.25, 8.50, 12.75 and 18 gCOD L-1 d-1) were tested by changing the concentration of the feeding solution, made of a synthetic mixture of acetic (85% of the overall COD) and propionic (15%) acids. The PHA-storage yield increased by increasing the OLR (up to 0.69 COD/COD at 12.75 gCOD L-1 d-1) but significantly decreased (0.27 COD/COD) at 18 gCOD L-1 d-1 concomitantly with a longer feast phase and a lower PHA content in the biomass at the end of the feast phase. The selective pressure induced by the applied OLRs strongly influenced the microbiome composition revealing a high content of putative PHA-storing bacteria, such as Rhodobacter, Thauera and Paracoccus, in the SBR operated at OLRs 4.25, 8.50 and 12.75 g COD L-1 d-1 (up to 97.4% of total reads) and a low content (5.4%) in the SBR at 18 g COD L-1 d-1where the predominance of genus Nitrinicola was instead observed.
Collapse
Affiliation(s)
- Crognale Simona
- Water Research Institute, National Research Council (IRSA-CNR), Monterotondo, Rome, Italy.
| | - Lorini Laura
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valentino Francesco
- Department of Environmental Sciences, Informatics and Statistics, "Cà Foscari" University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Villano Marianna
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marzo Gago Cristina
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Chemical Engineering and Food Technology, Faculty of Science, IVAGRO, University of Cádiz, Puerto Real, Spain
| | - Tonanzi Barbara
- Water Research Institute, National Research Council (IRSA-CNR), Monterotondo, Rome, Italy
| | - Majone Mauro
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossetti Simona
- Water Research Institute, National Research Council (IRSA-CNR), Monterotondo, Rome, Italy
| |
Collapse
|
20
|
Wágner DS, Peces M, Nierychlo M, Mielczarek AT, Thornberg D, Nielsen PH. Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs. WATER RESEARCH 2022; 216:118340. [PMID: 35364352 DOI: 10.1016/j.watres.2022.118340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The activated sludge wastewater treatment process has been thoroughly researched in more than 100 years, yet there are still operational challenges that have not been fully resolved. Such a challenge is the control of filamentous bulking caused by the overgrowth of certain filamentous bacteria. In this study, we tested different mitigation strategies to reduce filamentous bulking, caused by two common filamentous genera found in full-scale water resource recovery facilities (WRRF), Candidatus Microthrix and Candidatus Amarolinea. PAX dosing, ozone addition, hydrocyclone implementation, and the addition of nano-coagulants were tested as mitigation strategies in four parallel treatment lines in a full-scale WRRF over three consecutive years. Unexpectedly, the activated sludge settleability was not affected by any of the mitigation strategies. Some of the strategies appeared to have a strong mitigating effect on the two filamentous species. However, detailed analyses of the microbial communities revealed strong recurrent seasonal variations in all four lines, including the control line which masked the real effect. After removing the effect of the seasonal variation by using a time-series decomposition approach, it was clear that the filamentous bacteria were mostly unaffected by the mitigation strategies. Only PAX dosing had some effect on Ca. Microthrix, but only on one species, Ca. Microthrix subdominans, and not on the most common Ca. Microthrix parvicella. Overall, our study shows the importance of long-term monitoring of microbial communities at species level to understand the normal seasonal pattern to effectively plan and execute full-scale experiments. Moreover, the results highlight the importance of using parallel reference treatment lines when evaluating the effect of mitigation strategies in full-scale treatment plants.
Collapse
Affiliation(s)
- Dorottya S Wágner
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark; Biofos, Copenhagen, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | | | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Shi HX, Wang J, Liu SY, Guo JS, Fang F, Chen YP, Yan P. New insight into filamentous sludge bulking: Potential role of AHL-mediated quorum sensing in deteriorating sludge floc stability and structure. WATER RESEARCH 2022; 212:118096. [PMID: 35085842 DOI: 10.1016/j.watres.2022.118096] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The microcosmic mechanisms underlying filamentous bulking remain unclear. The role of extracellular polymeric substances (EPS) governed by quorum sensing (QS) in deteriorating sludge floc stability and structure during filamentous bulking and the feasibility of using quorum quenching (QQ) to maintain sludge floc stability and structure and sludge settling were investigated in this study. The results indicated that the concentration of C6HSL increased from 22.08±3.22 ng/g VSS to 81.42±5.98 ng/g VSS during filamentous bulking. The filamentous bacteria gradually evolved the hdtS gene related to the synthesis of C6HSL with increases in the population density. Triggered QS by filamentous bacteria proliferation induced variation in the composition and structure of EPS within the sludge flocs. The proteins (PN) content of the EPS increased evidently from 40.06 ± 2.41 mg/g VSS to 110.32 ± 4.32 mg/g VSS, and the polysaccharides (PS) content slightly increased during filamentous bulking. The upregulated proteins in the EPS led to a decrease in the relative hydrophobicity of the sludge and an increase in negative surface charge. The α-helix/(β-sheet+random coil) ratio evidently increased from 0.76 to 0.99 during filamentous bulking, revealing that the proteins were tightly structured, which prevented the exposure of inner hydrophobic groups. The total energy of the interaction (WT) between bacteria increased during sludge bulking, which resulted in the weakening of sludge aggregation. Variation in the physicochemical properties of EPS induced by QS in the filamentous bacteria markedly restrained adhesion between the filamentous bacteria and floc-forming bacteria. The production of PN in the EPS and the expression of the hdtS gene were inhibited by vanillin, which served as a QS inhibitor. The WT between bacteria with 50 mg/L of vanillin basically did not change. Filamentous bulking was significantly inhibited by the addition of vanillin. Therefore, QQ is a potential strategy for the prevention and control of filamentous bulking. This study provides new information regarding the microcosmic mechanisms of filamentous bulking.
Collapse
Affiliation(s)
- Hong-Xin Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, United States of America
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
22
|
Nuppunen-Puputti M, Kietäväinen R, Raulio M, Soro A, Purkamo L, Kukkonen I, Bomberg M. Epilithic Microbial Community Functionality in Deep Oligotrophic Continental Bedrock. Front Microbiol 2022; 13:826048. [PMID: 35300483 PMCID: PMC8921683 DOI: 10.3389/fmicb.2022.826048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 01/03/2023] Open
Abstract
The deep terrestrial biosphere hosts vast sessile rock surface communities and biofilms, but thus far, mostly planktic communities have been studied. We enriched deep subsurface microbial communities on mica schist in microcosms containing bedrock groundwater from the depth of 500 m from Outokumpu, Finland. The biofilms were visualized using scanning electron microscopy, revealing numerous different microbial cell morphologies and attachment strategies on the mica schist surface, e.g., bacteria with outer membrane vesicle-like structures, hair-like extracellular extensions, and long tubular cell structures expanding over hundreds of micrometers over mica schist surfaces. Bacterial communities were analyzed with amplicon sequencing showing that Pseudomonas, Desulfosporosinus, Hydrogenophaga, and Brevundimonas genera dominated communities after 8–40 months of incubation. A total of 21 metagenome assembled genomes from sessile rock surface metagenomes identified genes involved in biofilm formation, as well as a wide variety of metabolic traits indicating a high degree of environmental adaptivity to oligotrophic environment and potential for shifting between multiple energy or carbon sources. In addition, we detected ubiquitous organic carbon oxidation and capacity for arsenate and selenate reduction within our rocky MAGs. Our results agree with the previously suggested interaction between the deep subsurface microbial communities and the rock surfaces, and that this interaction could be crucial for sustaining life in the harsh anoxic and oligotrophic deep subsurface of crystalline bedrock environment.
Collapse
Affiliation(s)
| | | | - Mari Raulio
- European Chemicals Agency (ECHA), Helsinki, Finland
| | - Aino Soro
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
23
|
da Silva MK, Azevedo AAC, Campos DMDO, de Souto JT, Fulco UL, Oliveira JIN. Computational vaccinology guided design of multi-epitope subunit vaccine against a neglected arbovirus of the Americas. J Biomol Struct Dyn 2022; 41:3321-3338. [PMID: 35285772 DOI: 10.1080/07391102.2022.2050301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mayaro virus (MAYV) is an arbovirus found in the Americas that can cause debilitating arthritogenic disease. Although it is an emerging virus, the only current approach is vector control, as there are no approved vaccines to prevent MAYV infection nor therapeutics to treat it. In search of an effective vaccine candidate against MAYV, we used immunoinformatics and molecular modeling to attempt to identify promiscuous T-cell epitopes of the nonstructural polyproteins (nsP1, nsP2, nsP3, and nsP4) from 127 MAYV genomes sequenced in the Americas (08 Bolivia, 72 Brazil, 04 French Guiana, 05 Haiti, 20 Peru, 04 Trinidad and Tobago, and 14 Venezuela). For this purpose, consensus sequences of 360 proteins were used to identify short protein sequences that can bind to MHC I class (MHC II). Our analysis revealed 56 potential MHC-I/TCD8+ (29 MHC-II/TCD4+) epitopes, but only 6 (16) TCD8+ (TCD4+) epitopes showed high antigenicity and conservation, non-allergenicity, non-toxicity, and excellent population coverage. Finally, classical and quantum mechanical calculations (QM:MM) were used to improve the quality of the docking calculations, with the QM part of the simulations performed using the density functional theory formalism (DFT). These results provide insights for the advancement of diagnostic platforms, vaccine development, and immunotherapeutic interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maria Karolaynne da Silva
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Janeusa Trindade de Souto
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
24
|
Kagemasa S, Kuroda K, Nakai R, Li YY, Kubota K. Diversity of <i>Candidatus</i> Patescibacteria in Activated Sludge Revealed by a Size-Fractionation Approach. Microbes Environ 2022; 37. [PMID: 35676047 PMCID: PMC9530733 DOI: 10.1264/jsme2.me22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncultivated members of Candidatus Patescibacteria are commonly found in activated sludge treating sewage and are widely distributed in wastewater treatment plants in different regions and countries. However, the phylogenetic diversity of Ca. Patescibacteria is difficult to examine because of their low relative abundance in the environment. Since Ca. Patescibacteria members have small cell sizes, we herein collected small microorganisms from activated sludge using a filtration-based size-fractionation approach (i.e., 0.45–0.22 μm and 0.22–0.1 μm fractions). Fractionated samples were characterized using 16S rRNA gene amplicon and shotgun metagenomic sequence analyses. The amplicon analysis revealed that the relative abundance of Ca. Patescibacteria increased to 73.5% and 52.5% in the 0.45–0.22 μm and 0.22–0.1 μm fraction samples, respectively, from 5.8% in the unfractionated sample. The members recovered from the two size-fractionated samples included Ca. Saccharimonadia, Ca. Gracilibacteria, Ca. Paceibacteria, Ca. Microgenomatia, class-level uncultured lineage ABY1, Ca. Berkelbacteria, WS6 (Ca. Dojkabacteria), and WWE3, with Ca. Saccharimonadia being predominant in both fraction samples. The number of operational taxonomic units belonging to Ca. Patescibacteria was approximately 6-fold higher in the size-fractionated samples than in the unfractionated sample. The shotgun metagenomic analysis of the 0.45–0.22 μm fractioned sample enabled the reconstruction of 24 high-quality patescibacterial bins. The bins obtained were classified into diverse clades at the family and genus levels, some of which were rarely detected in previous activated sludge studies. Collectively, the present results suggest that the overall diversity of Ca. Patescibacteria inhabiting activated sludge is higher than previously expected.
Collapse
Affiliation(s)
- Shuka Kagemasa
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Tohoku University
| |
Collapse
|
25
|
Demirkaya E, Ciftcioglu B, Ozyildiz G, Zengin GE, Pala-Ozkok I, Cokgor E, Tas DO. Comprehensive evaluation of starter culture impact on the bioreactor performance and microbial kinetics. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Molecular Characterization and Designing of a Novel Multiepitope Vaccine Construct Against Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:49. [PMID: 35069055 PMCID: PMC8762192 DOI: 10.1007/s10989-021-10356-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
ABSTRACT Pseudomonas aeruginosa, an ESKAPE pathogen causes many fatal clinical diseases in humans across the globe. Despite an increase in clinical instances of Pseudomonas infection, there is currently no effective vaccine or treatment available. The major membrane protein candidate of the P. aeruginosa bacterial cell is known to be a critical component for cellular bacterial susceptibility to antimicrobial peptides and survival inside the host organisms. Therefore, the current computational study aims to examine P. aeruginosa's major membrane protein, OprF, and OprI, in order to design linear B-cell, cytotoxic T-cell, and helper T-cell peptide-based vaccine constructs. Utilizing various immune-informatics tools and databases, a total of two B-cells and twelve T-cells peptides were predicted. The final vaccine design was simulated to generate a high-quality three-dimensional structure, which included epitopes, adjuvant, and linkers. The vaccine was shown to be nonallergenic, antigenic, soluble, and had the best biophysical properties. The vaccine and Toll-like receptor 4 have a strong and stable interaction, according to protein-protein docking and molecular dynamics simulations. Additionally, in silico cloning was employed to see how the developed vaccine expressed in the pET28a (+) vector. Ultimately, an immune simulation was performed to see the vaccine efficacy. In conclusion, the newly developed vaccine appears to be a promising option for a vaccine against P. aeruginosa infection. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10356-z.
Collapse
|
27
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
28
|
Song Y, Jiang CY, Liang ZL, Zhu HZ, Jiang Y, Yin Y, Qin YL, Huang HJ, Wang BJ, Wei ZY, Cheng RX, Liu ZP, Liu Y, Jin T, Wang AJ, Liu SJ. Candidatus Kaistella beijingensis sp. nov., Isolated from a Municipal Wastewater Treatment Plant, Is Involved in Sludge Foaming. Appl Environ Microbiol 2021; 87:e0153421. [PMID: 34586909 PMCID: PMC8612268 DOI: 10.1128/aem.01534-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Biological foaming (or biofoaming) is a frequently occurring problem in wastewater treatment plants (WWTPs) and is attributed to the overwhelming growth of filamentous bulking and foaming bacteria (BFB). Biological foaming has been intensively investigated, with BFB like Microthrix and Skermania having been identified from WWTPs and implicated in foaming. Nevertheless, studies are still needed to improve our understanding of the microbial diversity of WWTP biofoams and how microbial activities contribute to foaming. In this study, sludge foaming at the Qinghe WWTP of China was monitored, and sludge foams were investigated using culture-dependent and culture-independent microbiological methods. The foam microbiomes exhibited high abundances of Skermania, Mycobacterium, Flavobacteriales, and Kaistella. A previously unknown bacterium, Candidatus Kaistella beijingensis, was cultivated from foams, its genome was sequenced, and it was phenotypically characterized. Ca. K. beijingensis exhibits hydrophobic cell surfaces, produces extracellular polymeric substances (EPS), and metabolizes lipids. Ca. K. beijingensis abundances were proportional to EPS levels in foams. Several proteins encoded by the Ca. K. beijingensis genome were identified from EPS that was extracted from sludge foams. Ca. K. beijingensis populations accounted for 4 to 6% of the total bacterial populations in sludge foam samples within the Qinghe WWTP, although their abundances were higher in spring than in other seasons. Cooccurrence analysis indicated that Ca. K. beijingensis was not a core node among the WWTP community network, but its abundances were negatively correlated with those of the well-studied BFB Skermania piniformis among cross-season Qinghe WWTP communities. IMPORTANCE Biological foaming, also known as scumming, is a sludge separation problem that has become the subject of major concern for long-term stable activated sludge operation in decades. Biological foaming was considered induced by foaming bacteria. However, the occurrence and deterioration of foaming in many WWTPs are still not completely understood. Cultivation and characterization of the enriched bacteria in foaming are critical to understand their genetic, physiological, phylogenetic, and ecological traits, as well as to improve the understanding of their relationships with foaming and performance of WWTPs.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Environmental Biotechnology and RCEES-IMCAS-UCAS Joint Laboratory for Environmental Microbial Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- The Ecology and Environment Branch of State Center for Research and Development of Oil Shale Exploitation, PetroChina Planning and Engineering Institute, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Environmental Biotechnology and RCEES-IMCAS-UCAS Joint Laboratory for Environmental Microbial Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Lin Liang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Jiang
- Beijing Drainage Group Co., Ltd, Beijing, China
| | - Ye Yin
- BGI-Qingdao, Qingdao, China
| | - Ya-Ling Qin
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Jie Huang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Bao-Jun Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Yan Wei
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui-Xue Cheng
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Liu
- Beijing Drainage Group Co., Ltd, Beijing, China
| | | | - Ai-Jie Wang
- CAS Key Laboratory of Environmental Biotechnology and RCEES-IMCAS-UCAS Joint Laboratory for Environmental Microbial Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Hvala N, Kocijan J. Input variable selection using machine learning and global sensitivity methods for the control of sludge bulking in a wastewater treatment plant. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
He H, Wagner BM, Carlson AL, Yang C, Daigger GT. Recent progress using membrane aerated biofilm reactors for wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2131-2157. [PMID: 34810302 DOI: 10.2166/wst.2021.443] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The membrane biofilm reactor (MBfR), which is based on the counter diffusion of the electron donors and acceptors into the biofilm, represents a novel technology for wastewater treatment. When process air or oxygen is supplied, the MBfR is known as the membrane aerated biofilm reactor (MABR), which has high oxygen transfer rate and efficiency, promoting microbial growth and activity within the biofilm. Over the past few decades, laboratory-scale studies have helped researchers and practitioners understand the relevance of influencing factors and biological transformations in MABRs. In recent years, pilot- to full-scale installations are increasing along with process modeling. The resulting accumulated knowledge has greatly improved understanding of the counter-diffusional biological process, with new challenges and opportunities arising. Therefore, it is crucial to provide new insights by conducting this review. This paper reviews wastewater treatment advancements using MABR technology, including design and operational considerations, microbial community ecology, and process modeling. Treatment performance of pilot- to full-scale MABRs for process intensification in existing facilities is assessed. This paper also reviews other emerging applications of MABRs, including sulfur recovery, industrial wastewater, and xenobiotics bioremediation, space-based wastewater treatment, and autotrophic nitrogen removal. In conclusion, commercial applications demonstrate that MABR technology is beneficial for pollutants (COD, N, P, xenobiotics) removal, resource recovery (e.g., sulfur), and N2O mitigation. Further research is needed to increase packing density while retaining efficient external mass transfer, understand the microbial interactions occurring, address existing assumptions to improve process modeling and control, and optimize the operational conditions with site-specific considerations.
Collapse
Affiliation(s)
- Huanqi He
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Brett M Wagner
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Avery L Carlson
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Cheng Yang
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| |
Collapse
|
31
|
Attal R, Schwartz L. Thermally driven fission of protocells. Biophys J 2021; 120:3937-3959. [PMID: 34480850 DOI: 10.1016/j.bpj.2021.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/29/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
We propose a simple mechanism for the self-replication of protocells. Our main hypothesis is that the amphiphilic molecules composing the membrane bilayer are synthesized inside the protocell through exothermic chemical reactions. The slow increase of the inner temperature forces the hottest molecules to move from the inner leaflet to the outer leaflet of the bilayer. Because of this outward translocation flow, the outer leaflet grows faster than the inner leaflet. This differential growth increases the mean curvature and amplifies any local shrinking of the protocell until it splits in two. The proposed model, based on mere laws of physics, is a step in the study of the origin of life, as well as a clue for a better understanding of cell proliferation in cancer.
Collapse
Affiliation(s)
- Romain Attal
- Cité des Sciences et de l'Industrie, Paris, France.
| | | |
Collapse
|
32
|
Fei X, Li S, Wang L, Wang L, Chen F. Impact of light on anoxic/oxic reactors: performance, quorum sensing, and metagenomic characteristics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1452-1463. [PMID: 34559079 DOI: 10.2166/wst.2021.338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of light has raised attention on wastewater treatment. However, little research has concentrated on the influences of light on activated sludge. In this study, the influences of light on the performance, quorum sensing (QS) and metagenomic characteristics of anoxic/oxic reactors were investigated. The reactor without light (AO1) showed higher total nitrogen (TN) removal (79.15 ± 1.69%) than the reactor with light (AO2) (74.54 ± 1.30%), and significant differences were observed. It was observed that light facilitated the production of protein-like and tryptophan-like substances by employing parallel factor analysis for extracellular polymeric substance (EPS), resulting in more EPS production in AO2, indicating light was beneficial to EPS production. The concentrations of N-acyl-homoserine lactones (AHLs) were various in the two reactors, so the AHLs-mediated QS behaviors in both reactors were also different. These results revealed that light significantly influenced nitrogen removal, EPS, and QS. Metagenomic analysis based on Tax4Fun demonstrated that light reduced the denitrification, stimulated the polysaccharide and protein biosynthesis pathways and down-regulated the AHLs synthesis pathway, resulting in lower TN removal, more EPS production, and lower AHLs concentrations. Based on the above, the likely mechanism was proposed for the influences of light on the reactor.
Collapse
Affiliation(s)
- Xuening Fei
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Songya Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Linpei Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Le Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Fuqiang Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
33
|
Batinovic S, Rose JJA, Ratcliffe J, Seviour RJ, Petrovski S. Cocultivation of an ultrasmall environmental parasitic bacterium with lytic ability against bacteria associated with wastewater foams. Nat Microbiol 2021; 6:703-711. [PMID: 33927381 DOI: 10.1038/s41564-021-00892-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
Many wastewater treatment plants around the world suffer from the operational problem of foaming. This is characterized by a persistent stable foam that forms on the aeration basin, which reduces effluent quality. The foam is often stabilized by a highly hydrophobic group of Actinobacteria known as the Mycolata1. Gordonia amarae is one of the most frequently reported foaming members1. With no currently reliable method for treating foams, phage biocontrol has been suggested as an attractive treatment strategy2. Phages isolated from related foaming bacteria can destabilize foams at the laboratory scale3,4; however, no phage has been isolated that lyses G. amarae. Here, we assemble the complete genomes of G. amarae and a previously undescribed species, Gordonia pseudoamarae, to examine mechanisms that encourage stable foam production. We show that both of these species are recalcitrant to phage infection via a number of antiviral mechanisms including restriction, CRISPR-Cas and bacteriophage exclusion. Instead, we isolate and cocultivate an environmental ultrasmall epiparasitic bacterium from the phylum Saccharibacteria that lyses G. amarae and G. pseudoamarae and several other Mycolata commonly associated with wastewater foams. The application of this parasitic bacterium, 'Candidatus Mycosynbacter amalyticus', may represent a promising strategy for the biocontrol of bacteria responsible for stabilizing wastewater foams.
Collapse
Affiliation(s)
- Steven Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Jayson J A Rose
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Robert J Seviour
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Silva MK, Gomes HSS, Silva OLT, Campanelli SE, Campos DMO, Araújo JMG, Fernandes JV, Fulco UL, Oliveira JIN. Identification of promiscuous T cell epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approaches. INFECTION GENETICS AND EVOLUTION 2021; 91:104826. [PMID: 33781966 DOI: 10.1016/j.meegid.2021.104826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The Mayaro virus (MAYV) belongs to genus Alphavirus (family Togaviridae) and has been reported in several countries, especially in tropical regions of America. Due to its outbreaks and potential lack of medication, an effective vaccine formulation is strongly required. This study aimed to predict promiscuous T cell epitopes from structural polyproteins of MAYV using an immunoinformatics approach. For this purpose, consensus sequences were used to identify short protein sequences capable of binding to MHC class I and class II alleles. Our analysis pointed out 4 MHC-I/TCD8+ and 21 MHC-II/TCD4+ epitopes on capside (1;3), E1 (2;5), E2 (1;10), E3 (0;2), and 6 K (0;1) proteins. These predicted epitopes were characterized by high antigenicity, immunogenicity, conservancy, non-allergenic, non-toxic, and good population coverage rate values for North and South American geographical areas. Afterwards, we used the crystal structure of human toll-like receptor 3 (TLR3) ectodomain as a template to predict, through docking essays, the placement of a vaccine prototype at the TLR3 receptor binding site. Finally, classical and quantum mechanics/molecular mechanics (QM:MM) computations were employed to improve the quality of docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. These results provide important insights into the advancement of diagnostic platforms, the development of vaccines, and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Maria K Silva
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Heloísa S S Gomes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Ohana L T Silva
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Stephany E Campanelli
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Daniel M O Campos
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Josélio M G Araújo
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - José V Fernandes
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Jonas I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| |
Collapse
|
35
|
Sun Y, Gomeiz AT, Van Aken B, Angelotti B, Brooks M, Wang ZW. Dynamic response of aerobic granular sludge to feast and famine conditions in plug flow reactors fed with real domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144155. [PMID: 33316597 DOI: 10.1016/j.scitotenv.2020.144155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plug flow reactors (PFRs) approximated by the connection of multiple completely stirred tank reactors (CSTRs) in series were used to achieve continuous flow aerobic granulation in real domestic wastewater. This study revealed, possibly for the first time, that the morphology and characteristics of aerobic granular sludge transformed in the course of a mixed liquor flow through a PFR. The feast zone, located at the front end of the PFR, can quickly develop filamentous structure on the surface of aerobic granular sludge which later disappeared in the famine zone at the back end of the PFR. Detention time from the front to the back end of the PFR was only 6.5 h. During this period the observed sludge morphological change led to sludge settleability fluctuation as much as 66% in zone settling velocity, 16% in specific gravity, and 40% in settled sludge volume. Further analysis revealed these types of sludge morphologies and characteristics were closely related to the specific substrate removal rate profiles of the PFR, i.e., the feast zone might have encouraged filamentous bacteria to extend outward into the bulk solution for soluble substrate, and the famine zone appeared to play an essential role in solidifying the structure of granular sludge structure prior to subjecting it to the gravity selection pressure. It can be inferred from this study that the lack of a famine zone in aerobic granulation reactors can loosen the granule structure and in turn deteriorate granule settleability. For a PFR, a famine zone following the feast zone is essential for maintaining the structural integrity of aerobic granular sludge in a continuous flow wastewater treatment system.
Collapse
Affiliation(s)
- Yewei Sun
- Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, United States of America; Hazen and Sawyer, 4035 Ridge Top Rd, Suite 500, Fairfax, VA 22030, United States of America
| | - Alison T Gomeiz
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Dr., Fairfax, VA 22030, United States of America
| | - Benoit Van Aken
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Dr., Fairfax, VA 22030, United States of America
| | - Bob Angelotti
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, United States of America
| | - Matt Brooks
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, United States of America
| | - Zhi-Wu Wang
- Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, United States of America.
| |
Collapse
|
36
|
Li BB, Peng ZY, Zhi LL, Li HB, Zheng KK, Li J. Distribution and diversity of filamentous bacteria in wastewater treatment plants exhibiting foaming of Taihu Lake Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115644. [PMID: 33254706 DOI: 10.1016/j.envpol.2020.115644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Foaming caused by filamentous bacteria in activated sludge (AS) is a common phenomenon in municipal wastewater treatment plants (WWTPs) in Taihu Lake Basin of South China. In this study, total bacterial and filamentous bacterial communities were comprehensively characterized in AS and foams from eight municipal WWTPs by high-throughput sequencing technology. Results showed that alpha diversities of total bacterial communities in foams were obviously lower than those in AS samples. The bacterial community structures were significantly different between WWTPs rather than sample types (AS vs. foam). For most WWTPs, the Actinobacteria phylum was highly enriched in foams and the most abundant genera in foams were common mycolata. Sixteen filamentous bacteria were identified against the improved bulking and foaming bacteria (BFB) database. Abundance and composition of BFB in different WWTPs and different sample types were significantly different. 'Nostocoida limicola' I Trichococcus and Microthrix were generally dominant in AS samples. The dominant BFB in foams were associated with Microthrix, Skermania, Gordonia, and Mycobacterium. A new Defluviicoccus spp. in cluster III was identified in severe and continuous foams. Moreover, dominant BFB in stable and continuous foams with light level in one typical WWTP were diverse, even, and dynamic. Bacterial co-occurrence network analysis implied that the bacterial community of AS was more sensitive to disturbance than that of foam.
Collapse
Affiliation(s)
- Bing-Bing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi-Ying Peng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li-Ling Zhi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huai-Bo Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai-Kai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
37
|
Fernandez-Gonzalez N, Braz GHR, Regueiro L, Lema JM, Carballa M. Microbial invasions in sludge anaerobic digesters. Appl Microbiol Biotechnol 2020; 105:21-33. [PMID: 33205286 DOI: 10.1007/s00253-020-11009-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Among processes that control microbial community assembly, microbial invasion has received little attention until recently, especially in the field of anaerobic digestion. However, knowledge of the principles regulating the taxonomic and functional stability of microbial communities is key to truly develop better predictive models and effective management strategies for the anaerobic digestion process. To date, available studies focus on microbial invasions in digesters feed with activated sludge from municipal wastewater treatment plants. Herein, this review summarizes the importance of invasions for anaerobic digestion management, the ecological theories about microbial invasions, the traits of activated sludge microorganisms entering the digesters, and the resident communities of anaerobic reactors that are relevant for invasions and the current knowledge about the success and impacts of invasions, and discusses the research needs on this topic. The initial data indicate that the impact of invasions is low and only a small percentage of the mostly aerobic microorganisms present in the activated sludge feed are able to become stablished in the anaerobic digesters. However, there are still numerous unknowns about microbial invasions in anaerobic digestion including the influence of anaerobic feedstocks or process perturbances that new approaches on microbial ecology could unveil. KEY POINTS: • Microbial invasions are key processes to develop better strategies for digesters management. • Knowledge on pathogen invasions can improve anaerobic digestion microbial safety. • To date, the number of successful invasions on anaerobic digesters from activated sludge organisms is low. • Feed organisms detected in digesters are mostly inactive residual populations. • Need to expand the range of invaders and operational scenarios studied.
Collapse
Affiliation(s)
- Nuria Fernandez-Gonzalez
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Institute of Sustainable Processes, University of Valladolid, Valladolid, Spain.
| | - G H R Braz
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,, Ribeirão Preto, Brazil
| | | | - J M Lema
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Carballa
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
38
|
Orschler L, Agrawal S, Lackner S. Targeted metagenomics reveals extensive diversity of the denitrifying community in partial nitritation anammox and activated sludge systems. Biotechnol Bioeng 2020; 118:433-441. [PMID: 32979228 DOI: 10.1002/bit.27581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023]
Abstract
The substantial presence of denitrifiers has already been reported in partial nitritation anammox (PNA) systems using the 16S ribosomal RNA (rRNA) gene, but little is known about the phylogenetic diversity based on denitrification pathway functional genes. Therefore, we performed a metagenomic analysis to determine the distribution of denitrification genes and the associated phylogeny in PNA systems and whether a niche separation between PNA and conventional activated sludge (AS) systems exists. The results revealed a distinct abundance pattern of denitrification pathway genes and their association to the microbial species between PNA and AS systems. In contrast, the taxonomic analysis, based on the 16S rRNA gene, did not detect notable variability in denitrifying community composition across samples. In general, narG and nosZa2 genes were dominant in all samples. While the potential for different stages of denitrification was redundant, variation in species composition and lack of the complete denitrification gene pool in each species appears to confer niche separation between PNA and AS systems. This study suggests that targeted metagenomics can help to determine the denitrifying microbial composition at a fine-scale resolution while overcoming current biases in quantitative polymerase chain reaction approaches due to a lack of appropriate primers.
Collapse
Affiliation(s)
- Laura Orschler
- Department of Wastewater Engineering, Institute IWAR, Technical University of Darmstadt, Darmstadt, Germany
| | - Shelesh Agrawal
- Department of Wastewater Engineering, Institute IWAR, Technical University of Darmstadt, Darmstadt, Germany
| | - Susanne Lackner
- Department of Wastewater Engineering, Institute IWAR, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
39
|
Yang Y, Ding J, Chi Y, Yuan J. Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora. Sci Rep 2020; 10:17985. [PMID: 33093514 PMCID: PMC7583234 DOI: 10.1038/s41598-020-75041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022] Open
Abstract
Heavy metal pollution has seriously disrupted eco-balance and transformed estuaries into sewage depots. Quanzhou bay is a typical heavy metal-contaminated estuary, in which Spartina alterniflora has widely invaded. Plant-associated microbial communities are crucial for biogeochemical cycles, studies of which would be helpful to demonstrate the invasion mechanisms of plants. Meanwhile, they are indispensable to phytoremediation by enhancing the heavy metal tolerance of plants, facilitating heavy metal absorption rate and promoting growth of plants. In the present study, S. alterniflora-associated rhizo- and endobacterial communities from 3 experimental sites were investigated by 454-pyrosequencing. Heavy metal screening generated 16 culturable isolates, further biochemical assays suggested these clones possess various abilities such as phosphate solubilization, indole-3-acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production to accelerate heavy metal uptake and growth of the host. This study revealed the bacterial community structures and characterized the predominant resident bacterial strains of S. alterniflora-associated rhizo- and endobacteria under heavy metal stress, and isolated several bacterial species with potential ecological function.
Collapse
Affiliation(s)
- Ying Yang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jian Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
- Sunshine Guojian Pharmaceutical (Shanghai) Co., Ltd, Shanghai, China
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Jianjun Yuan
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
40
|
Lequette K, Ait-Mouheb N, Wéry N. Hydrodynamic effect on biofouling of milli-labyrinth channel and bacterial communities in drip irrigation systems fed with reclaimed wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139778. [PMID: 32531594 DOI: 10.1016/j.scitotenv.2020.139778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The clogging of drippers due to the development of biofilms reduces the benefits and is an obstacle to the implementation of drip irrigation technology in a reclaimed water context. The narrow section and labyrinth geometry of the dripper channel results the development of a heterogeneous flow behaviours with the vortex zones which it enhance the fouling mechanisms. The objective of this study was to analyse the influence of the three dripper types, defined by their geometric and hydraulic parameters, fed with reclaimed wastewater, on the biofouling kinetics and the bacterial communities. Using optical coherence tomography, we demonstrated that the inlet of the drippers (mainly the first baffle) and vortex zones are the most sensitive area for biofouling. Drippers with the lowest Reynolds number and average cross-section velocity v (1 l·h-1) were the most sensible to biofouling, even if detachment events seemed more frequent in this dripper type. Therefore, dripper flow path with larger v should be consider to improve the anti-clogging performance. In addition, the dripper type and the geometry of the flow path influenced the structure of the bacterial communities from dripper biofilms. Relative abundancy of filamentous bacteria belonging to Chloroflexi phylum was higher in 1 l·h-1 drippers, which presented a higher level of biofouling. However, further research on the role of this phylum in dripper biofouling is required.
Collapse
Affiliation(s)
- Kévin Lequette
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France; INRAE, University of Montpellier, UMR G-Eau Avenue Jean-François Breton, 34000 Montpellier, France.
| | - Nassim Ait-Mouheb
- INRAE, University of Montpellier, UMR G-Eau Avenue Jean-François Breton, 34000 Montpellier, France
| | - Nathalie Wéry
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
41
|
Ferro L, Hu YO, Gentili FG, Andersson AF, Funk C. DNA metabarcoding reveals microbial community dynamics in a microalgae-based municipal wastewater treatment open photobioreactor. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Wang Q, Liang J, Zhang S, Yoza BA, Li QX, Zhan Y, Ye H, Zhao P, Chen C. Characteristics of bacterial populations in an industrial scale petrochemical wastewater treatment plant: Composition, function and their association with environmental factors. ENVIRONMENTAL RESEARCH 2020; 189:109939. [PMID: 32980019 DOI: 10.1016/j.envres.2020.109939] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/21/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of petrochemical wastewater biological treatment is dependent upon complex bacterial communities. A well understanding of the structure and function of bacterial community and their association with environmental variables is essential for the elucidation of contaminant removal mechanisms and optimization of wastewater treatment processes. In this study, the bacterial communities and metabolic functions in the primary hydrolysis acidification unit (PHAU), cyclic activated sludge system (CASS), secondary hydrolysis acidification unit (SHAU), and biological aerated filter (BAF) of a petrochemical wastewater treatment plant (WWTP) were studied via Illumina high-throughput sequencing. The correlations between bacterial community and environmental variables were also investigated. The phylum Proteobacteria, Planctomycetes, Chloroflexi, Acidobacteria and Bacteroidetes were dominant in the petroleum WWTP. The bacterial communities varied with wastewater characteristics and operational parameters, as a result of the differences in biosystems functions. Phylogenetic analysis showed that the genes involved in the degradation of benzoate, nitrotoluene and aminobenzoate degradation were abundant in PHAU, and the genes related to the degradation of benzoate, aminobenzoate, chloroalkane, chloroalkene, caprolactam, naphthalene and toluene were abundant in CASS, SHAU and BAF. The Redundancy analysis (RDA) suggested that biochemical oxygen demand (BOD5), NH4+-N and total nitrogen concentrations exhibited significant impacts in shaping the structure of bacterial community. Variance partitioning analysis (VPA) showed that 18.6% of the community variance was related to wastewater characteristics, higher than operational parameters of 4.5%. These results provide insight into microbial community structure and metabolic function during petrochemical wastewater treatment, and discern the relationships between bacterial community and environmental variables, which can provide basic data and a theoretical analysis of the design and operation optimization in petrochemical WWTP.
Collapse
Affiliation(s)
- Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Simin Zhang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Brandon A Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI, 96822, United States
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, United States
| | - Yali Zhan
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huangfan Ye
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
43
|
Wu M, Chen Y, Lin H, Zhao L, Shen L, Li R, Xu Y, Hong H, He Y. Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights. WATER RESEARCH 2020; 181:115932. [PMID: 32454321 DOI: 10.1016/j.watres.2020.115932] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Though sludge foaming often occurs and thus causes serious membrane fouling in membrane bioreactors (MBRs), the fouling mechanisms related with the foaming phenomenon have not been well addressed, hindering better understanding and solving foaming problem. In this work, it was interestingly found that, the foulants during the foaming period possessed extremely high specific filtration resistance (SFR) (over 1016 m kg-1) and strong adhesion ability to membrane surface. Chemical characterization showed that the proteins (178.57 mg/L) and polysaccharides (209.21 mg/L) in the foaming sample were about 6.4 times and 5.4 times of those in the supernatant sample, suggesting existence of a mechanism permitting continuous production of these foulants in the MBR during the foaming period. It was revealed that the fouling caused by foams was associated with gel layer filtration process, and the extremely high SFR can be interpreted by chemical potential change in the gel filtration process depicted in Flory-Huggins theory. Meanwhile, analyses by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory showed that the strong adhesion ability stemmed from the high interaction energy between the foaming foulants and membrane surface. In addition, 16S rDNA gene sequencing identified that the abundance of the foaming related bacteria species in the sludge suspension during the foaming period was more than 10 times of that during the non-foaming period. This study offered new mechanism insights into foaming fouling in MBRs.
Collapse
Affiliation(s)
- Mengfei Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yifeng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Leihong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
44
|
Gilcrease E, Williams R, Goel R. Evaluating the effect of silver nanoparticles on bacteriophage lytic infection cycle-a mechanistic understanding. WATER RESEARCH 2020; 181:115900. [PMID: 32504909 DOI: 10.1016/j.watres.2020.115900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bacteriophages and engineered nano-material (AgNPS) interactions is a relatively unexplored area of research. To answer the fundamental question whether bacteriophage lytic growth cycle is affected by the presence of AgNPs, laboratory experiments were performed with phages of Klebsiella pneumoniae, Delftia tsuruhatensis, Salmonella typhimurium, and Shigella flexneri using silver nanoparticles (AgNPs) with coating materials. One-step growth curves of bacteriophages indicated that the presence of these nanoparticles, and the associated ions of silver, produced pronounced effects on the lytic infection of certain bacteriophages. Effects included 96% reductions in post-infection phage yield in terms of plaque forming units (PFUs) after phages were incubated with silver nanoparticles and 28%-43% reductions from the presence of Ag+ alone. However, when Klebsiella pneumonia phage KL and Salmonella typhimurium phage Det7 were exposed to silver nanoparticles coated with poly-N-vinyl-2 pyrrolidone (PVP), an increase in final phage yield by as much as 250% was observed compared with the same phage not incubated with nanoparticles. A proposed mechanism, observed by transmission electron microscopy and verified using synthetic biology by which the nanoparticle binding phenotype can be produced, is that the binding of metal nanomaterial to phage virions results in potentially inhibitory effects. This binding was found to be dependent on the presence of exposed positively charged C-terminal amino-acid residues on the phage capsid surface, implied at first by amino-acid sequence comparisons between capsid proteins of the different phages used in this study. This was then proven experimentally using targeted DNA editing methods to fuse positive charged amino-acid residues to the coat protein C-terminus of non-binding phage. This induced the AgNP binding phenotype, as observed by TEM, DLS size measurements, and growth curve data that show the mutant constructs to be functionally inhibited after exposure to AgNPs. This research sets up a first platform for further research in the unexplored area of phage and AgNP interactions and provides useful findings.
Collapse
Affiliation(s)
- Eddie Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ryan Williams
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|
45
|
Fei X, Xing Y, Zhang B, Zhu S, Liu L. A novel dicationic Quinoline-Carzole fluorescent probe: preparation and labelling of Microthrix parvicella. ENVIRONMENTAL TECHNOLOGY 2020; 41:2393-2399. [PMID: 30640558 DOI: 10.1080/09593330.2019.1567606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
A novel dicationic Quinoline-Carbazole fluorescent probe with hydrophobic long-chain alkane was designed and synthesized based on the property of Microthrix parvicella (M. parvicella) in situ utilizing long-chain fatty acids (LCFA) in the activated sludge system. 1H NMR spectrum, ultraviolet-visible (UV-Vis) absorption spectra, and fluorescent spectra analysis demonstrated that the probe was successfully obtained. The probe had a large stokes-shift ranging from 102 to 144 nm in different solvents, which were benefit for the fluorescent labelling properties. The labelling experiment indicated that the prepared probe could absorb onto the surface of M. parvicella through hydrophobic bond. Much stronger yellow fluorescence of M. parvicella was observed at the concentration of 1.0 × 10-5 mol/L when compared with the zooglea, which makes it easy to distinguish M. parvicella from the zooglea. In addition, the photostability of the probe was also investigated, and the result showed that the probe was quite stable in a long period of time. All the results indicated that the prepared probe was suitable for the labelling of M. parvicella.
Collapse
Affiliation(s)
- Xuening Fei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yanjun Xing
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Buqing Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Sen Zhu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Lijuan Liu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| |
Collapse
|
46
|
Nierychlo M, McIlroy SJ, Kucheryavskiy S, Jiang C, Ziegler AS, Kondrotaite Z, Stokholm-Bjerregaard M, Nielsen PH. Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for Filamentous Bulking in Danish Municipal Wastewater Treatment Plants. Front Microbiol 2020; 11:1214. [PMID: 32582118 PMCID: PMC7296077 DOI: 10.3389/fmicb.2020.01214] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 01/23/2023] Open
Abstract
Filamentous bulking is a common serious operational problem leading to deteriorated sludge settling that has long been observed in activated sludge biological wastewater treatment systems. A number of bacterial genera found therein possess filamentous morphology, where some have been shown to be implicated in bulking episodes (e.g., Ca. Microthrix), the impact of many others is still not clear. In this study we performed a survey of 17 Danish municipal wastewater treatment plants (WWTPs) with nutrient removal using 16S rRNA amplicon sequencing over a period of 13 years, where all known filamentous bacteria from 30 genera were analyzed. The filamentous community constituted on average 13 ± 6%, and up to 43% of total read abundance with the same genera common to all plants. Ca. Microthrix and several genera belonging to phylum Chloroflexi were among the most abundant filamentous bacteria. The effect of filamentous bacteria on sludge settling properties was analyzed using measurements of the diluted sludge volume index (DSVI). Strong positive correlations with DSVI were observed only for Ca. Microthrix and Ca. Amarolinea, the latter being a novel, recently characterized genus belonging to the phylum Chloroflexi. The bulking potential of other filamentous bacteria was not significant despite their presence in many plants. Low phylogenetic diversity was observed for both Ca. Microthrix and Ca. Amarolinea, making physiological characterization of individual species and potential development of control strategies more feasible. In this study we show that, despite the high diversity of filamentous phylotypes in Danish WWTPs, only few of them were responsible for severe bulking episodes.
Collapse
Affiliation(s)
- Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon J. McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Sergey Kucheryavskiy
- Section of Chemical Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anja S. Ziegler
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Krüger A/S, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
47
|
Exploring the operating factors controlling Kouleothrix (type 1851), the dominant filamentous bacterial population, in a full-scale A2O plant. Sci Rep 2020; 10:6809. [PMID: 32321952 PMCID: PMC7176654 DOI: 10.1038/s41598-020-63534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 11/08/2022] Open
Abstract
This study reveals that the abundance of the filament Kouleothrix (Eikelboom type 1851) correlated positively with poor settleability of activated sludge biomass in a Japanese full-scale nutrient removal wastewater treatment plant sampled over a one-year period. 16S rRNA amplicon sequence data confirmed that Kouleothrix was the dominant filament in the plant, with a relative abundance of 3.06% positively correlated with sludge volume index (SVI) (R = 0.691). Moreover, Kouleothrix (type 1851) appeared to form interfloc bridges, typical of bulking sludge, regardless of season. Together with earlier studies that indicated the responsibility of Kouleothrix (type 1851) on bulking events, these data suggest that their high relative abundances alone may be responsible for sludge bulking. 16S rRNA qPCR data for this filament showed changes in its relative abundance correlated with changes in several operational parameters, including mixed liquor temperature, sludge retention time, and suspended solids concentration, and it may be that manipulating these may help control Kouleothrix bulking.
Collapse
|
48
|
Wang YQ, Xiao GQ, Cheng YY, Wang MX, Sun BY, Zhou ZF. The linkage between methane production activity and prokaryotic community structure in the soil within a shale gas field in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7453-7462. [PMID: 31884532 DOI: 10.1007/s11356-019-07454-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Soil methane generation mainly driven by soil prokaryotic microbes can be coupled with the degradation of petroleum hydrocarbons (PHCs); however, the relationship between prokaryotic community structure and methane production activity in soil with the potential risk of PHC contamination is seldom reported. In this study, 3 soil samples (CS-1 to CS-3) in the area nearby an exploratory gas well and 5 soil samples (DC-1 to DC-5) in a drill cutting dump area were obtained from the Fuling shale gas field (Chongqing City, China). Then, the prokaryotic community structure was examined by Illumina Miseq sequencing, and the linkage between soil methane production rate (MPR) and prokaryotic community composition was analyzed. The results indicated that 2 samples (DC-4 and DC-5) collected from the drill cutting dump area had significantly higher MPR than the other samples, and a significant and positive relationship (r = 0.44, P < 0.05) was found between soil MPR and soil organic matter (OM) content. The prokaryotic community composition in the sample (DC-5) with the highest MPR was different from those in the other samples, and soil OM and MPR were the major factors significantly correlated with the prokaryotic community structure in this soil. The samples (DC-4 and DC-5) with higher MPR had a higher relative abundance of Archaea and different archaeal community structures from the other samples, and the MPR was the sole factor significantly correlated with the archaeal genus composition in this soil. Therefore, both the prokaryotic and archaeal community structures are essential in the determination of soil MPR, and the bacterial genus of Saccharibacteria and the archaeal genus of Methanolobus might be the key contributors for methane generation in this soil from the shale gas field.
Collapse
Affiliation(s)
- Yan-Qin Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Guang-Quan Xiao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yong-Yi Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming-Xia Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Bo-Ya Sun
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Zhi-Feng Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
49
|
Genome-resolved metagenomics links microbial dynamics to failure and recovery of a bioreactor removing nitrate and selenate from mine-influenced water. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Crognale S, Tonanzi B, Valentino F, Majone M, Rossetti S. Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:765-773. [PMID: 31280158 DOI: 10.1016/j.scitotenv.2019.06.491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
This study analyses the bacterial population dynamics of a mixed microbial community (MMC) selected in a pilot plant producing polyhydroxyalkanoate (PHA) from the fermentation of the organic fraction of urban waste (OFMSW) and sewage sludge (SS). 16S rRNA gene high-throughput sequencing revealed the occurrence of a variety of PHA accumulating bacteria that ensured a stable PHA production in an open system operating with real substrates and without temperature control. The Volatile Fatty Acids (VFA) changes in the feed and the temperature variation affected the dynamics of the PHA-accumulating bacteria over the plant operation. Remarkably, the higher PHA content was associated to a MMC largely comprising of Hydrogenophaga species during the operation at higher working temperature. The involvement of a heterogeneous PHA-accumulating MMC was associated with a high phaC synthase genes biodiversity confirming the occurrence of a functional redundancy.
Collapse
Affiliation(s)
- Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria, km 29.300, Monterotondo, 00015 Rome, Italy
| | - Barbara Tonanzi
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria, km 29.300, Monterotondo, 00015 Rome, Italy
| | - Francesco Valentino
- Department of Chemistry, "La Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mauro Majone
- Department of Chemistry, "La Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria, km 29.300, Monterotondo, 00015 Rome, Italy.
| |
Collapse
|