1
|
Rastrepaeva DA, Argunov DA, Puchkin IA, Yashunsky DV, Krylov VB, Nifantiev NE. Synthesis of branched heterooligosaccharides related to Aspergillus galactomannan containing short Galf side chains. Carbohydr Res 2025; 549:109360. [PMID: 39718273 DOI: 10.1016/j.carres.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The members of a widespread Aspergillus fungi genus cause various diseases including the invasive aspergillosis with high morbidity and mortality rates, especially for immunosuppressed patients. One of the main carbohydrate structures on the surface of their cell wall is the galactomannan (GM) which is used in diagnostic kits for the detection of specific types of aspergillosis. However, limited specificity of currently available test systems urges the need for their further improvement. Herein we report the first synthesis of branched heterosaccharides related to GM and containing α-(1→2)-/α-(1→6)-linked tetramannoside backbone chain bearing one galactofuranoside unit or its β-(1→5)-linked dimer. The preparation of conjugates of the obtained spacered oligosaccharides with BSA is also performed to produce tools for the assessment the specificity of anti-Aspergillus immune response and to select antibodies suitable for the development of novel diagnostic kits that may discriminate distinct types of aspergillosis.
Collapse
Affiliation(s)
- Darya A Rastrepaeva
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Ilya A Puchkin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| |
Collapse
|
2
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
3
|
Zaitseva O, Sergushkina M, Polezhaeva T, Solomina O, Khudyakov A. Mechanisms of action of fungal polysaccharides and their therapeutic effect. Eur J Clin Nutr 2024:10.1038/s41430-024-01527-4. [PMID: 39433857 DOI: 10.1038/s41430-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The purpose of this article is to discuss the relationship between the therapeutic bioactivity of basidial fungal polysaccharides (BFPs) BFPs and their structural characteristics and conformational features, as well as to characterize the mechanisms of action of BFPs in diseases of various origins. METHODS The review was conducted using the PubMed (Medline), Scopus, Web of Science and the Russian Science Citation Index databases. 8645 records were identified, of which 5250 were studies (86 were randomized controlled trials). The period covered is from 1960 to the present. The most significant studies conducted mainly in Southeast Asian countries were selected for the review. RESULTS Based on clinical studies, as well as the results obtained on in vivo, in vitro and ex vivo models, it has been proven that BFPs have diverse and highly effective biological activity in the human body in various diseases. The production of BFPs-based vaccines is an innovative strategy from a clinical and biochemical point of view, since as potential immunoprotective and low-toxic biopolymers they have innate immune receptors in the body. Promising results have been obtained in the development of antidiabetic drugs, probiotic, renoprotective and neurodegenerative dietary supplements. CONCLUSIONS The biological activity, mechanism of action and specific therapeutic effect of BFPs largely depend on their structural and physicochemical characteristics. BFPs as multifunctional macromolecular complexes with low toxicity and high safety are ideal as new powerful pharmaceuticals for the treatment and prevention of many diseases.
Collapse
Affiliation(s)
- Oksana Zaitseva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation.
| | - Marta Sergushkina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Tatyana Polezhaeva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Olga Solomina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Andrey Khudyakov
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| |
Collapse
|
4
|
Yugueros SI, Peláez J, Stajich JE, Fuertes-Rabanal M, Sánchez-Vallet A, Largo-Gosens A, Mélida H. Study of fungal cell wall evolution through its monosaccharide composition: An insight into fungal species interacting with plants. Cell Surf 2024; 11:100127. [PMID: 38873189 PMCID: PMC11170279 DOI: 10.1016/j.tcsw.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Every fungal cell is encapsulated in a cell wall, essential for cell viability, morphogenesis, and pathogenesis. Most knowledge of the cell wall composition in fungi has focused on ascomycetes, especially human pathogens, but considerably less is known about early divergent fungal groups, such as species in the Zoopagomycota and Mucoromycota phyla. To shed light on evolutionary changes in the fungal cell wall, we studied the monosaccharide composition of the cell wall of 18 species including early diverging fungi and species in the Basidiomycota and Ascomycota phyla with a focus on those with pathogenic lifestyles and interactions with plants. Our data revealed that chitin is the most characteristic component of the fungal cell wall, and was found to be in a higher proportion in the early divergent groups. The Mucoromycota species possess few glucans, but instead have other monosaccharides such as fucose and glucuronic acid that are almost exclusively found in their cell walls. Additionally, we observed that hexoses (glucose, mannose and galactose) accumulate in much higher proportions in species belonging to Dikarya. Our data demonstrate a clear relationship between phylogenetic position and fungal cell wall carbohydrate composition and lay the foundation for a better understanding of their evolution and their role in plant interactions.
Collapse
Affiliation(s)
- Sara I. Yugueros
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Jorge Peláez
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
5
|
Liu Z, Valsecchi I, Le Meur RA, Simenel C, Guijarro JI, Comte C, Muszkieta L, Mouyna I, Henrissat B, Aimanianda V, Latgé JP, Fontaine T. Conidium Specific Polysaccharides in Aspergillus fumigatus. J Fungi (Basel) 2023; 9:jof9020155. [PMID: 36836270 PMCID: PMC9964227 DOI: 10.3390/jof9020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Earlier studies have shown that the outer layers of the conidial and mycelial cell walls of Aspergillus fumigatus are different. In this work, we analyzed the polysaccharidome of the resting conidial cell wall and observed major differences within the mycelium cell wall. Mainly, the conidia cell wall was characterized by (i) a smaller amount of α-(1,3)-glucan and chitin; (ii) a larger amount of β-(1,3)-glucan, which was divided into alkali-insoluble and water-soluble fractions, and (iii) the existence of a specific mannan with side chains containing galactopyranose, glucose, and N-acetylglucosamine residues. An analysis of A. fumigatus cell wall gene mutants suggested that members of the fungal GH-72 transglycosylase family play a crucial role in the conidia cell wall β-(1,3)-glucan organization and that α-(1,6)-mannosyltransferases of GT-32 and GT-62 families are essential to the polymerization of the conidium-associated cell wall mannan. This specific mannan and the well-known galactomannan follow two independent biosynthetic pathways.
Collapse
Affiliation(s)
- Zhonghua Liu
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Isabel Valsecchi
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France
| | - Rémy A. Le Meur
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Catherine Simenel
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - J. Iñaki Guijarro
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Catherine Comte
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | | | - Isabelle Mouyna
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Unité de Biologie des ARN des Pathogènes Fongiques, 75015 Paris, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université Marseille, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité de Mycologie Moléculaire, 75015 Paris, France
| | - Jean-Paul Latgé
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
- Correspondence:
| |
Collapse
|
6
|
Díaz-Escandón D, Tagirdzhanova G, Vanderpool D, Allen CCG, Aptroot A, Češka O, Hawksworth DL, Huereca A, Knudsen K, Kocourková J, Lücking R, Resl P, Spribille T. Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. Curr Biol 2022; 32:5209-5218.e5. [PMID: 36423639 DOI: 10.1016/j.cub.2022.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Ascomycota account for about two-thirds of named fungal species.1 Over 98% of known Ascomycota belong to the Pezizomycotina, including many economically important species as well as diverse pathogens, decomposers, and mutualistic symbionts.2 Our understanding of Pezizomycotina evolution has until now been based on sampling traditionally well-defined taxonomic classes.3,4,5 However, considerable diversity exists in undersampled and uncultured, putatively early-diverging lineages, and the effect of these on evolutionary models has seldom been tested. We obtained genomes from 30 putative early-diverging lineages not included in recent phylogenomic analyses and analyzed these together with 451 genomes covering all available ascomycete genera. We show that 22 of these lineages, collectively representing over 600 species, trace back to a single origin that diverged from the common ancestor of Eurotiomycetes and Lecanoromycetes over 300 million years BP. The new clade, which we recognize as a more broadly defined Lichinomycetes, includes lichen and insect symbionts, endophytes, and putative mycorrhizae and encompasses a range of morphologies so disparate that they have recently been placed in six different taxonomic classes. To test for shared hidden features within this group, we analyzed genome content and compared gene repertoires to related groups in Ascomycota. Regardless of their lifestyle, Lichinomycetes have smaller genomes than most filamentous Ascomycota, with reduced arsenals of carbohydrate-degrading enzymes and secondary metabolite gene clusters. Our expanded genome sample resolves the relationships of numerous "orphan" ascomycetes and establishes the independent evolutionary origins of multiple mutualistic lifestyles within a single, morphologically hyperdiverse clade of fungi.
Collapse
Affiliation(s)
- David Díaz-Escandón
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Dan Vanderpool
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E Beckwith, Missoula, MT 59812, USA
| | - Carmen C G Allen
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Aptroot
- Laboratório de Botânica / Liquenologia, Instituto de Biociências Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | | | - David L Hawksworth
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Alejandro Huereca
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kerry Knudsen
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, Praha-Suchdol 165 00, Czech Republic
| | - Jana Kocourková
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, Praha-Suchdol 165 00, Czech Republic
| | - Robert Lücking
- Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Philipp Resl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
7
|
Tagirdzhanova G, Saary P, Tingley JP, Díaz-Escandón D, Abbott DW, Finn RD, Spribille T. Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes. Genome Biol Evol 2021; 13:6163286. [PMID: 33693712 PMCID: PMC8355462 DOI: 10.1093/gbe/evab047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Basidiomycete yeasts have recently been reported as stably associated secondary
fungal symbionts of many lichens, but their role in the symbiosis remains
unknown. Attempts to sequence their genomes have been hampered both by the
inability to culture them and their low abundance in the lichen thallus
alongside two dominant eukaryotes (an ascomycete fungus and chlorophyte alga).
Using the lichen Alectoria sarmentosa, we selectively dissolved
the cortex layer in which secondary fungal symbionts are embedded to enrich
yeast cell abundance and sequenced DNA from the resulting slurries as well as
bulk lichen thallus. In addition to yielding a near-complete genome of the
filamentous ascomycete using both methods, metagenomes from cortex slurries
yielded a 36- to 84-fold increase in coverage and near-complete genomes for two
basidiomycete species, members of the classes Cystobasidiomycetes and
Tremellomycetes. The ascomycete possesses the largest gene repertoire of the
three. It is enriched in proteases often associated with pathogenicity and
harbors the majority of predicted secondary metabolite clusters. The
basidiomycete genomes possess ∼35% fewer predicted genes than the
ascomycete and have reduced secretomes even compared with close relatives, while
exhibiting signs of nutrient limitation and scavenging. Furthermore, both
basidiomycetes are enriched in genes coding for enzymes producing secreted
acidic polysaccharides, representing a potential contribution to the shared
extracellular matrix. All three fungi retain genes involved in dimorphic
switching, despite the ascomycete not being known to possess a yeast stage. The
basidiomycete genomes are an important new resource for exploration of lifestyle
and function in fungal–fungal interactions in lichen symbioses.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Saary
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jeffrey P Tingley
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - David Díaz-Escandón
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Yao HYY, Wang JQ, Yin JY, Nie SP, Xie MY. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res Int 2021; 143:110290. [PMID: 33992390 DOI: 10.1016/j.foodres.2021.110290] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/31/2022]
Abstract
Nuclear magnetic resonance (NMR) has been widely used as an analytical chemistry technique to investigate the molecular structure and conformation of polysaccharides. Combined with 1D spectra, chemical shifts and coupling constants in both homo- and heteronuclear 2D NMR spectra are able to infer the linkage and sequence of sugar residues. Besides, NMR has also been applied in conformation, quantitative analysis, cell wall in situ, degradation, polysaccharide mixture interaction analysis, as well as carbohydrates impurities profiling. This review summarizes the principle and development of NMR in polysaccharides analysis, and provides NMR spectra data collections of some common polysaccharides. It will help to promote the application of NMR in complex polysaccharides of biochemical interest, and provide valuable information on commercial polysaccharide products.
Collapse
Affiliation(s)
- Hao-Ying-Ye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
9
|
Gong P, Wang S, Liu M, Chen F, Yang W, Chang X, Liu N, Zhao Y, Wang J, Chen X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr Res 2020; 494:108037. [DOI: 10.1016/j.carres.2020.108037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
10
|
Spribille T, Tagirdzhanova G, Goyette S, Tuovinen V, Case R, Zandberg WF. 3D biofilms: in search of the polysaccharides holding together lichen symbioses. FEMS Microbiol Lett 2020; 367:fnaa023. [PMID: 32037451 PMCID: PMC7164778 DOI: 10.1093/femsle/fnaa023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Stable, long-term interactions between fungi and algae or cyanobacteria, collectively known as lichens, have repeatedly evolved complex architectures with little resemblance to their component parts. Lacking any central scaffold, the shapes they assume are casts of secreted polymers that cement cells into place, determine the angle of phototropic exposure and regulate water relations. A growing body of evidence suggests that many lichen extracellular polymer matrices harbor unicellular, non-photosynthesizing organisms (UNPOs) not traditionally recognized as lichen symbionts. Understanding organismal input and uptake in this layer is key to interpreting the role UNPOs play in lichen biology. Here, we review both polysaccharide composition determined from whole, pulverized lichens and UNPOs reported from lichens to date. Most reported polysaccharides are thought to be structural cell wall components. The composition of the extracellular matrix is not definitively known. Several lines of evidence suggest some acidic polysaccharides have evaded detection in routine analysis of neutral sugars and may be involved in the extracellular matrix. UNPOs reported from lichens include diverse bacteria and yeasts for which secreted polysaccharides play important biological roles. We conclude by proposing testable hypotheses on the role that symbiont give-and-take in this layer could play in determining or modifying lichen symbiotic outcomes.
Collapse
Affiliation(s)
- Toby Spribille
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Spencer Goyette
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Veera Tuovinen
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Rebecca Case
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Wesley F Zandberg
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3427 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
11
|
Wang J, Nie S, Chen S, Phillips AO, Phillips GO, Li Y, Xie M, Cui SW. Structural characterization of an α-1, 6-linked galactomannan from natural Cordyceps sinensis. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, Muñoz-Barrios A, Pacios LF, Molina A. Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:34-49. [PMID: 29083116 DOI: 10.1111/tpj.13755] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 05/20/2023]
Abstract
Fungal cell walls, which are essential for environmental adaptation and host colonization by the fungus, have been evolutionarily selected by plants and animals as a source of microbe-associated molecular patterns (MAMPs) that, upon recognition by host pattern recognition receptors (PRRs), trigger immune responses conferring disease resistance. Chito-oligosaccharides [β-1,4-N-acetylglucosamine oligomers, (GlcNAc)n ] are the only glycosidic structures from fungal walls that have been well-demonstrated to function as MAMPs in plants. Perception of (GlcNAc)4-8 by Arabidopsis involves CERK1, LYK4 and LYK5, three of the eight members of the LysM PRR family. We found that a glucan-enriched wall fraction from the pathogenic fungus Plectosphaerella cucumerina which was devoid of GlcNAc activated immune responses in Arabidopsis wild-type plants but not in the cerk1 mutant. Using this differential response, we identified the non-branched 1,3-β-d-(Glc) hexasaccharide as a major fungal MAMP. Recognition of 1,3-β-d-(Glc)6 was impaired in cerk1 but not in mutants defective in either each of the LysM PRR family members or in the PRR-co-receptor BAK1. Transcriptomic analyses of Arabidopsis plants treated with 1,3-β-d-(Glc)6 further demonstrated that this fungal MAMP triggers the expression of immunity-associated genes. In silico docking analyses with molecular mechanics and solvation energy calculations corroborated that CERK1 can bind 1,3-β-d-(Glc)6 at effective concentrations similar to those of (GlcNAc)4 . These data support that plants, like animals, have selected as MAMPs the linear 1,3-β-d-glucans present in the walls of fungi and oomycetes. Our data also suggest that CERK1 functions as an immune co-receptor for linear 1,3-β-d-glucans in a similar way to its proposed function in the recognition of fungal chito-oligosaccharides and bacterial peptidoglycan MAMPs.
Collapse
Affiliation(s)
- Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Antonio Muñoz-Barrios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
13
|
Scarpari M, Reverberi M, Parroni A, Scala V, Fanelli C, Pietricola C, Zjalic S, Maresca V, Tafuri A, Ricciardi MR, Licchetta R, Mirabilii S, Sveronis A, Cescutti P, Rizzo R. Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects. PLoS One 2017; 12:e0171412. [PMID: 28829786 PMCID: PMC5567496 DOI: 10.1371/journal.pone.0171412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Mushrooms represent a formidable source of bioactive compounds. Some of these may be considered as biological response modifiers; these include compounds with a specific biological function: antibiotics (e.g. plectasin), immune system stimulator (e,g, lentinan), antitumor agents (e.g. krestin, PSK) and hypolipidemic agents (e.g. lovastatin) inter alia. In this study, we focused on the Chinese medicinal mushroom "yun zhi", Trametes versicolor, traditionally used for (cit.) "replenish essence and qi (vital energy)". Previous studies indicated the potential activity of extracts from culture filtrate of asexual mycelia of T. versicolor in controlling the growth and secondary metabolism (e.g. mycotoxins) of plant pathogenic fungi. The quest of active principles produced by T. versicolor, allowed us characterising an exo-polysaccharide released in its culture filtrate and naming it Tramesan. Herein we evaluate the biological activity of Tramesan in different organisms: plants, mammals and plant pathogenic fungi. We suggest that the bioactivity of Tramesan relies mostly on its ability to act as pro antioxidant molecule regardless the biological system on which it was applied.
Collapse
Affiliation(s)
- Marzia Scarpari
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Massimo Reverberi
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Alessia Parroni
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Valeria Scala
- Research Unit for Plant Pathology, Council for Agricultural Research and Economics, Rome, Italy, Roma, Italy
| | - Corrado Fanelli
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Chiara Pietricola
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, HR, Zadar
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Maria R Ricciardi
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Roberto Licchetta
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Simone Mirabilii
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | | | | | | |
Collapse
|
14
|
Xu M, Heidmarsson S, Olafsdottir ES, Buonfiglio R, Kogej T, Omarsdottir S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:441-459. [PMID: 27064003 DOI: 10.1016/j.phymed.2016.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Lichens, as a symbiotic association of photobionts and mycobionts, display an unmatched environmental adaptability and a great chemical diversity. As an important morphological group, cetrarioid lichens are one of the most studied lichen taxa for their phylogeny, secondary chemistry, bioactivities and uses in folk medicines, especially the lichen Cetraria islandica. However, insufficient structure elucidation and discrepancy in bioactivity results could be found in a few studies. PURPOSE This review aimed to present a more detailed and updated overview of the knowledge of secondary metabolites from cetrarioid lichens in a critical manner, highlighting their potentials for pharmaceuticals as well as other applications. Here we also highlight the uses of molecular phylogenetics, metabolomics and ChemGPS-NP model for future bioprospecting, taxonomy and drug screening to accelerate applications of those lichen substances. CHAPTERS The paper starts with a short introduction in to the studies of lichen secondary metabolites, the biological classification of cetrarioid lichens and the aim. In light of ethnic uses of cetrarioid lichens for therapeutic purposes, molecular phylogeny is proposed as a tool for future bioprospecting of cetrarioid lichens, followed by a brief discussion of the taxonomic value of lichen substances. Then a delicate description of the bioactivities, patents, updated chemical structures and lichen sources is presented, where lichen substances are grouped by their chemical structures and discussed about their bioactivity in comparison with reference compounds. To accelerate the discovery of bioactivities and potential drug targets of lichen substances, the application of the ChemGPS NP model is highlighted. Finally the safety concerns of lichen substances (i.e. toxicity and immunogenicity) and future-prospects in the field are exhibited. CONCLUSION While the ethnic uses of cetrarioid lichens and the pharmaceutical potential of their secondary metabolites have been recognized, the knowledge of a large number of lichen substances with interesting structures is still limited to various in vitro assays with insufficient biological annotations, and this area still deserves more research in bioactivity, drug targets and screening. Attention should be paid on the accurate interpretation of their bioactivity for further applications avoiding over-interpretations from various in vitro bioassays.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Starri Heidmarsson
- Icelandic Institute of Natural History, Akureyri Division, IS-600 Akureyri, Iceland
| | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Rosa Buonfiglio
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Thierry Kogej
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
15
|
Comparative proteomic analyses reveal that Gnt2-mediated N-glycosylation affects cell wall glycans and protein content in Fusarium oxysporum. J Proteomics 2015; 128:189-202. [PMID: 26254006 DOI: 10.1016/j.jprot.2015.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 01/22/2023]
Abstract
Protein N-glycosylation is a ubiquitous post-translational modification that contributes to appropriate protein folding, stability, functionality and localization. N-glycosylation has been identified as an important process for morphogenesis and virulence in several fungal pathogens including Fusarium oxysporum. Here we conducted comparative chemical and proteome-based analyses to better understand the physiological changes associated with protein hypo-N-glycosylation in F. oxysporum N-glycosyltransferase Gnt2-deficient mutant. The results suggest that lack of functional Gnt2 alters the size of galactofuranose chains in cell wall glycans, resulting in polysaccharides with a broad range of polymerization degrees and differential protein glycosylation patterns. Functional Gnt2 is necessary for normal conidium size and morphology and wild-type hyphal fusion rates. Hypo-N-glycosylation in ∆gnt2 mutant results in enhanced oxidative stress resistance and reduced levels of proteins involved in cell wall organization, biogenesis and remodelling. Deletion of gnt2 gene led to accumulation of trafficking vesicles at hyphal tips, reduced secretion of extracellular proteins related to detoxification of antifungal compounds and degradation of plant cell walls, and lowered extracellular polygalacturonase activity. Altogether, the results confirm that Gnt2-mediated N-glycosylation plays a crucial role in morphogenesis and virulence, and demonstrate that Gnt2 is essential for protein function, transport and relative abundance in F. oxysporum.
Collapse
|
16
|
Chen YL, Mao WJ, Tao HW, Zhu WM, Yan MX, Liu X, Guo TT, Guo T. Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:219-228. [PMID: 25627692 DOI: 10.1007/s10126-015-9611-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Marine fungi are recognized as an abundant source of extracellular polysaccharides with novel structures. Mangrove fungi constitute the second largest ecological group of the marine fungi, and many of them are new or inadequately described species and may produce extracellular polysaccharides with novel functions and structures that could be explored as a source of useful polymers. The mangrove-associated fungus Fusarium oxysporum produces an extracellular polysaccharide, Fw-1, when grown in potato dextrose-agar medium. The homogeneous Fw-1 was isolated from the fermented broth by a combination of ethanol precipitation, ion-exchange, and gel filtration chromatography. Chemical and spectroscopic analyses, including one- and two-dimensional nuclear magnetic resonance spectroscopies showed that Fw-1 consisted of galactose, glucose, and mannose in a molar ratio of 1.33:1.33:1.00, and its molecular weight was about 61.2 kDa. The structure of Fw-1 contains a backbone of (1 → 6)-linked β-D-galactofuranose residues with multiple side chains. The branches consist of terminal α-D-glucopyranose residues, or short chains containing (1 → 2)-linked α-D-glucopyranose, (1 → 2)-linked β-D-mannopyranose, and terminal β-D-mannopyranose residues. The side chains are connected to C-2 of galactofuranose residues of backbone. The antioxidant activity of Fw-1 was evaluated with the scavenging abilities on hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl radicals in vitro, and the results indicated that Fw-1 possessed good antioxidant activity, especially the scavenging ability on hydroxyl radicals. The investigation demonstrated that Fw-1 is a novel galactofuranose-containing polysaccharide with different structural characteristics from extracellular polysaccharides from other marine microorganisms and could be a potential source of antioxidant.
Collapse
Affiliation(s)
- Yan-Li Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pena R, Lang C, Naumann A, Polle A. Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. FRONTIERS IN PLANT SCIENCE 2014; 5:229. [PMID: 24904624 PMCID: PMC4034152 DOI: 10.3389/fpls.2014.00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/06/2014] [Indexed: 06/01/2023]
Abstract
Roots of forest trees are associated with various ectomycorrhizal (ECM) fungal species that are involved in nutrient exchange between host plant and the soil compartment. The identification of ECM fungi in small environmental samples is difficult. The present study tested the feasibility of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy followed by hierarchical cluster analysis (HCA) to discriminate in situ collected ECM fungal species. Root tips colonized by distinct ECM fungal species, i.e., Amanita rubescens, Cenococcum geophilum, Lactarius subdulcis, Russula ochroleuca, and Xerocomus pruinatus were collected in mono-specific beech (Fagus sylvatica) and mixed deciduous forests in different geographic areas to investigate the environmental variability of the ECM FTIR signatures. A clear HCA discrimination was obtained for ECM fungal species independent of individual provenance. Environmental variability neither limited the discrimination between fungal species nor provided sufficient resolution to discern species sub-clusters for different sites. However, the de-convoluted FTIR spectra contained site-related spectral information for fungi with wide nutrient ranges, but not for Lactarius subdulcis, a fungus residing only in the litter layer. Specific markers for distinct ECM were identified in spectral regions associated with carbohydrates (i.e., mannans), lipids, and secondary protein structures. The present results support that FTIR spectroscopy coupled with multivariate analysis is a reliable and fast method to identify ECM fungal species in minute environmental samples. Moreover, our data suggest that the FTIR spectral signatures contain information on physiological and functional traits of ECM fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Forest Botany and Tree Physiology, Büsgen-Institut, Georg-August University GöttingenGöttingen, Germany
| | | | | | | |
Collapse
|
18
|
Guo S, Mao W, Yan M, Zhao C, Li N, Shan J, Lin C, Liu X, Guo T, Guo T, Wang S. Galactomannan with novel structure produced by the coral endophytic fungus Aspergillus ochraceus. Carbohydr Polym 2014; 105:325-33. [DOI: 10.1016/j.carbpol.2014.01.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
|
19
|
Wang C, Mao W, Chen Z, Zhu W, Chen Y, Zhao C, Li N, Yan M, Liu X, Guo T. Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Notararigo S, Nácher-Vázquez M, Ibarburu I, Werning ML, de Palencia PF, Dueñas MT, Aznar R, López P, Prieto A. Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydr Polym 2012; 93:57-64. [PMID: 23465901 DOI: 10.1016/j.carbpol.2012.05.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/26/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
Lactic acid bacteria (LAB) produce homopolysaccharides (HoPS) and heteropolysaccharides (HePS) with potential functional properties. In this work, we have performed a comparative analysis of production and purification trials of these biopolymers from bacterial culture supernatants. LAB strains belonging to four different genera, both natural as well as recombinant, were used as model systems for the production of HoPS and HePS. Two well characterized strains carrying the gft gene were used for β-glucan production, Pediococcus parvulus 2.6 (P. parvulus 2.6) isolated from cider, and the recombinant strain Lactococcus lactis NZ9000[pGTF] (L. lactis NZ9000[pGTF]). In addition, another cider isolate, Lactobacillus suebicus CUPV225 (L. suebicus CUPV225), and Leuconostoc mesenteroides RTF10 (L. mesenteroides RTF10), isolated from meat products were included in the study. Chemical analysis of the EPS revealed that L. mesenteroides produces a dextran, L. suebicus a complex heteropolysaccharide, and the β-glucan producing-strains the expected 2-substituted (1,3)-β-glucan.
Collapse
Affiliation(s)
- Sara Notararigo
- Department of Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Spanish Council for Scientific Research (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Veignie E, Vinogradov E, Sadovskaya I, Coulon C, Rafin C. Preliminary Characterizations of a Carbohydrate from the Concentrated Culture Filtrate from <i>Fusarium solani</i> and Its Role in Benzo[a]Pyrene Solubilization. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.23047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, Bozza S, Moretti S, Schwarz F, Trichot C, Aebi M, Delepierre M, Elbim C, Romani L, Latgé JP. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog 2011; 7:e1002372. [PMID: 22102815 PMCID: PMC3213105 DOI: 10.1371/journal.ppat.1002372] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/27/2011] [Indexed: 01/24/2023] Open
Abstract
A new polysaccharide secreted by the human opportunistic fungal pathogen Aspergillus fumigatus has been characterized. Carbohydrate analysis using specific chemical degradations, mass spectrometry, 1H and 13C nuclear magnetic resonance showed that this polysaccharide is a linear heterogeneous galactosaminogalactan composed of α1-4 linked galactose and α1-4 linked N-acetylgalactosamine residues where both monosacharides are randomly distributed and where the percentage of galactose per chain varied from 15 to 60%. This polysaccharide is antigenic and is recognized by a majority of the human population irrespectively of the occurrence of an Aspergillus infection. GalNAc oligosaccharides are an essential epitope of the galactosaminogalactan that explains the universal antibody reaction due to cross reactivity with other antigenic molecules containing GalNAc stretches such as the N-glycans of Campylobacter jejuni. The galactosaminogalactan has no protective effect during Aspergillus infections. Most importantly, the polysaccharide promotes fungal development in immunocompetent mice due to its immunosuppressive activity associated with disminished neutrophil infiltrates. Aspergillus fumigatus is an opportunistic human fungal pathogen that causes a wide range of diseases including allergic reactions and local or systemic infections such as invasive pulmonary aspergillosis that has emerged in the recent years as a leading cause of infection related mortality among immunocompromised patients. Polysaccharides from the fungal cell wall play essential biological functions in the fungal cell biology and in host-pathogen interactions. Indeed, it has been shown that polysaccharides can modulate the human immune response; some of them (β-glucan and α-glucans) having a protective effect against Aspergillus infection. We report here the purification and chemical characterization of a new antigenic polysaccharide (galactosaminogalactan) produced by A. fumigatus. This polymer is secreted during infection. In murine models of aspergillosis, this galactosaminogalactan is not protective but it is immunosuppressive and favors A. fumigatus infection. Particularly it induces the apoptotic death of neutrophils that are the phagocytes playing an essential role in the killing of fungal pathogens.
Collapse
|
23
|
Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. Fungal Biol 2011; 115:862-70. [DOI: 10.1016/j.funbio.2011.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
|