1
|
Hu Y, Oleshko S, Firmani S, Zhu Z, Cheng H, Ulmer M, Arnold M, Colomé-Tatché M, Tang J, Xhonneux S, Marsico A. BioPathNet: Enhancing Link Prediction in Biomedical Knowledge Graphs through Path Representation Learning. RESEARCH SQUARE 2024:rs.3.rs-5057842. [PMID: 39372928 PMCID: PMC11451641 DOI: 10.21203/rs.3.rs-5057842/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Understanding complex interactions in biomedical networks is crucial for advancements in biomedicine, but traditional link prediction (LP) methods are limited in capturing this complexity. Representation-based learning techniques improve prediction accuracy by mapping nodes to low-dimensional embeddings, yet they often struggle with interpretability and scalability. We present BioPathNet, a novel graph neural network framework based on the Neural Bellman-Ford Network (NBFNet), addressing these limitations through path-based reasoning for LP in biomedical knowledge graphs. Unlike node-embedding frameworks, BioPathNet learns representations between node pairs by considering all relations along paths, enhancing prediction accuracy and interpretability. This allows visualization of influential paths and facilitates biological validation. BioPathNet leverages a background regulatory graph (BRG) for enhanced message passing and uses stringent negative sampling to improve precision. In evaluations across various LP tasks, such as gene function annotation, drug-disease indication, synthetic lethality, and lncRNA-mRNA interaction prediction, BioPathNet consistently outperformed shallow node embedding methods, relational graph neural networks and task-specific state-of-the-art methods, demonstrating robust performance and versatility. Our study predicts novel drug indications for diseases like acute lymphoblastic leukemia (ALL) and Alzheimer's, validated by medical experts and clinical trials. We also identified new synthetic lethality gene pairs and regulatory interactions involving lncRNAs and target genes, confirmed through literature reviews. BioPathNet's interpretability will enable researchers to trace prediction paths and gain molecular insights, making it a valuable tool for drug discovery, personalized medicine and biology in general.
Collapse
Affiliation(s)
- Yue Hu
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Svitlana Oleshko
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Samuele Firmani
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Zhaocheng Zhu
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Hui Cheng
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Maria Ulmer
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Matthias Arnold
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- Department of Psychiatry and Behavioural Sciences, Duke University, 905 W Main St., Durham, NC 27701, North Carolina, United States
| | - Maria Colomé-Tatché
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
- Faculty of Biology, Ludwig-Maximilian University of Munich, Grosshaderner Str. 2, Planegg-Martinsried, 82152, Bavaria, Germany
| | - Jian Tang
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, CIFAR AI Chair, 661 University Ave, Toronto, ON M5G 1M1, Ontario, Canada
- Department, HEC Montréal, 3000 Chem. de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Quebec, Canada
| | - Sophie Xhonneux
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| |
Collapse
|
2
|
Hu Y, Oleshko S, Firmani S, Zhu Z, Cheng H, Ulmer M, Arnold M, Colomé-Tatché M, Tang J, Xhonneux S, Marsico A. Path-based reasoning for biomedical knowledge graphs with BioPathNet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599219. [PMID: 39149355 PMCID: PMC11326122 DOI: 10.1101/2024.06.17.599219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding complex interactions in biomedical networks is crucial for advancements in biomedicine, but traditional link prediction (LP) methods are limited in capturing this complexity. Representation-based learning techniques improve prediction accuracy by mapping nodes to low-dimensional embeddings, yet they often struggle with interpretability and scalability. We present BioPathNet, a novel graph neural network framework based on the Neural Bellman-Ford Network (NBFNet), addressing these limitations through path-based reasoning for LP in biomedical knowledge graphs. Unlike node-embedding frameworks, BioPathNet learns representations between node pairs by considering all relations along paths, enhancing prediction accuracy and interpretability. This allows visualization of influential paths and facilitates biological validation. BioPathNet leverages a background regulatory graph (BRG) for enhanced message passing and uses stringent negative sampling to improve precision. In evaluations across various LP tasks, such as gene function annotation, drug-disease indication, synthetic lethality, and lncRNA-mRNA interaction prediction, BioPathNet consistently outperformed shallow node embedding methods, relational graph neural networks and task-specific state-of-the-art methods, demonstrating robust performance and versatility. Our study predicts novel drug indications for diseases like acute lymphoblastic leukemia (ALL) and Alzheimer's, validated by medical experts and clinical trials. We also identified new synthetic lethality gene pairs and regulatory interactions involving lncRNAs and target genes, confirmed through literature reviews. BioPathNet's interpretability will enable researchers to trace prediction paths and gain molecular insights, making it a valuable tool for drug discovery, personalized medicine and biology in general.
Collapse
Affiliation(s)
- Yue Hu
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Svitlana Oleshko
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Samuele Firmani
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| | - Zhaocheng Zhu
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Hui Cheng
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Maria Ulmer
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Matthias Arnold
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- Department of Psychiatry and Behavioural Sciences, Duke University, 905 W Main St., Durham, NC 27701, North Carolina, United States
| | - Maria Colomé-Tatché
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
- Faculty of Biology, Ludwig-Maximilian University of Munich, Grosshaderner Str. 2, Planegg-Martinsried, 82152, Bavaria, Germany
| | - Jian Tang
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, CIFAR AI Chair, 661 University Ave, Toronto, ON M5G 1M1, Ontario, Canada
- Department, HEC Montréal, 3000 Chem. de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Quebec, Canada
| | - Sophie Xhonneux
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| |
Collapse
|
3
|
Deng E, Khachemoune A. Unconventional Remedies for Squamous Cell Carcinoma: A Journey into Alternative Treatments. Curr Pharm Biotechnol 2024; 25:2047-2059. [PMID: 38347792 DOI: 10.2174/0113892010286715240119061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 09/10/2024]
Abstract
Squamous cell carcinoma (SCC) is the second most common form of skin cancer and is typically found on sun-exposed skin. Risk factors include ultraviolet radiation exposure, older age, fairer complexion, smoking, and immunosuppression. SCC is a slow-growing tumor with the possibility of metastasis if not treated. The clinical presentation can range from a dry, scaly erythematous patch or plaque to a firm hyperkeratotic papule, plaque, or nodule, depending on the histological type via biopsy. The first-line therapies for SCC removal are standard excision and Mohs microscopic surgery; however, there are novel and alternative non-surgical options being considered for the treatment of SCC. This review summarizes the current guidelines for treating low-risk and high-risk SCC and discusses rare, experimental, and anecdotal non-surgical treatments for SCC in the literature.
Collapse
Affiliation(s)
- Elen Deng
- Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Amor Khachemoune
- Department of Dermatology, SUNY Downstate, Brooklyn, New York, USA
- Department of Dermatology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
4
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
5
|
Acitretin Enhances the Cytotoxic Effect of 5-aminolevulinic Acid Photodynamic Therapy on Squamous Cell Carcinoma Cells. Photodiagnosis Photodyn Ther 2022; 39:102969. [PMID: 35714900 DOI: 10.1016/j.pdpdt.2022.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
The efficacy of 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) on invasive cutaneous squamous cell carcinoma (cSCC) remains to be improved due to the limited penetration of this treatment. Previous study showed that acitretin and ALA-PDT had synergistic effect on cSCC, but whether acitretin can enhance the cytotoxic effect of ALA-PDT on cSCC is unclear. OBJECTIVE To investigate whether acitretin can enhance the cytotoxic effect of ALA-PDT on SCL-1 cells, as well as the possible mechanism involved. METHODS Inverted microscopy, trypan blue exclusion assay, and flow cytometry were used to studied the morphology, viability and apoptosis of SCL-1 cells treated with acitretin, ALA-PDT and acitretin followed by ALA-PDT treatment, respectively. Confocal microscopy was applied to detect the ROS formation of SCL-1 cells treated with acitretin of four different concentrations. The ROS formation of SCL-I cells treated with acitretin of four different concentrations followed by ALA-PDT treatment was detected using confocal microscopy and flow cytometry. RESULTS SCL-1 cells exhibited a significant morphological alteration when treated with acitretin followed by ALA-PDT. The combination of acitretin and ALA-PDT induced a higher cell death rate and apoptosis than that with acitretin or ALA-PDT treatment alone. ROS could be induced when incubated with acitretin at a concentration of 6.4 × 10-4mg /mL or above. However, a higher level of ROS formation was observed when SCL-1 cells were treated with acitretin followed by ALA-PDT than that with ALA-PDT or acitretin alone. CONCLUSION Acitretin can enhance the cytotoxic effect of ALA-PDT on SCL-1 cells, possibly via the ROS pathway.
Collapse
|
6
|
Qiu CG, Shen B, Sun XQ. Significant Biomarkers Identification Associated with Cutaneous Squamous Cell Carcinoma Progression. Int J Gen Med 2022; 15:2347-2360. [PMID: 35264873 PMCID: PMC8901050 DOI: 10.2147/ijgm.s357022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Cheng-Gang Qiu
- Department of Burn, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, Zhejiang, People’s Republic of China
| | - Bin Shen
- Department of Burn, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, Zhejiang, People’s Republic of China
| | - Xiao-Qi Sun
- Department of Plastic Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, Zhejiang, People’s Republic of China
- Correspondence: Xiao-Qi Sun, Department of Plastic Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Chengxiang Town, Xiaoshan District, Hangzhou, Zhejiang, 311200, People’s Republic of China, Email
| |
Collapse
|
7
|
Ye T, Jiang B, Chen B, Liu X, Yang L, Xiong W, Yu B. 5-aminolevulinic acid photodynamic therapy enhance the effect of acitretin on squamous cell carcinoma cells: An in vitro study. Photodiagnosis Photodyn Ther 2020; 31:101887. [PMID: 32565180 DOI: 10.1016/j.pdpdt.2020.101887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022]
Abstract
Squamous cell carcinoma (SCC) remains the second most common nonmelanoma skin cancer (NMSC) worldwide. Both acitretin and 5-Aminolevulinic acid mediated photodynamic therapy (ALA-PDT) have validated effect on SCC. However, the effects of both treatmens remain limited, and there has been no report concerning the potential synergistic effect of both treatments for SCC. OBJECTIVE To investigate the cytotoxic effect of acitretin on SCL-1 cells, and whether ALA-PDT enhances this effect. METHODS CCK-8 and trypan blue exclusion array were used to detect the cell cytotoxicity after acitretin treatment with different concentrations (1.6 × 10-4mg/mL, 1.6 × 10-3 mg/mL, 1.6 × 10-2mg/mL and 1.6 × 10-1mg/mL) for 24 h, 48 h and 72 h. Flow cytometry and trypan blue exclusion assay were used to detect the apoptosis and viability of SCL-1 cells after treated with acitretin, ALA-PDT and ALA-PDT immediately followed by acitretin. Independent sample t test was used to analyze the different incubation time of acitretin and acitretin combined with ALA-PDT on SCL-1 cells. Bonferroni Test One-way Anova method was used to analyze the effect of different treatment on the SCL-1 cells. RESULTS A significant cytotoxic effect was observed after acitretin treatment, in an acitretin concentration-dependent manner within the range of 1.6 × 10-4mg/mL to 1.6 × 10-1mg/mL and an acitretin incubation time-dependent manner within 24 h-72 h. The total apoptosis rate and dead cells rate in group of ALA-PDT combined with acitretin were both significantly higher than that of acitretin, ALA-PDT group. A stronger apoptotic and cytotoxic effect detected 24 h after treated with acitretin than that of 12 h was observed in this study. CONCLUSION Acitretin has a cytotoxic effect on SCL-1 cells, and ALA-PDT treatment enhances the the cytotoxic effect of acitretin.
Collapse
Affiliation(s)
- TingLu Ye
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - BanCheng Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - XiaoMing Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - LiLi Yang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Wei Xiong
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
8
|
Role and mechanism of matrine alone and combined with acitretin for HaCaT cells and psoriasis-like murine models. Chin Med J (Engl) 2020; 132:2079-2088. [PMID: 31460901 PMCID: PMC6793800 DOI: 10.1097/cm9.0000000000000412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Acitretin and matrine have been used in the treatment of psoriasis in China. This study was designed to investigate the role and related mechanisms of matrine alone and in combination with acitretin in the treatment of psoriasis in vitro and in vivo. METHODS HaCaT cells were treated with matrine at different concentrations of 0 (blank control), 0.2, 0.4, 0.8, and 1.6 mg/mL for 24, 48, 72 h, respectively. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium cell viability assay was used to assess the growth and proliferation of HaCaT cells. Cell cycle and apoptosis were detected by flow cytometry. Expression of protein was detected by Western blotting. Autophagy was observed by transmission electron microscopy. Then HaCaT cells were assigned to normal saline (NS) control group, matrine (0.4 mg/mL) group, acitretin (10 μmol/L) group, and matrine plus acitretin group, and the above methods were repeated. In animal experiments, the cumulative score (erythema, scaling, thickening) as a measure of the severity of inflammation was used to measure the skin performance of mice after treated with matrine 50 mg/kg, acitretin 4.5 mg/kg or combination of the two drugs on the psoriasis-like mouse models, respectively. Pathological findings of the lesions were observed, and the protein expressions in the lesions were detected by immunohistochemistry. RESULTS Cell proliferation inhibition was seen in HaCaT cells with treatment of matrine in a dose- and time-dependent manner (P < 0.01, respectively). Cell cycle G0/G1 phase arrest was observed in a dose-dependent way (P < 0.01). The expression of p21 (P < 0.05), LC3II/I (P < 0.01), and Beclin 1 (P < 0.01) increased and the expression of cyclin D1 (P < 0.05) decreased with increasing doses of matrine. Compared with the blank control, more autophagosomes were seen in HaCaT cells treated with matrine at 0.4 mg/mL by transmission electron microscopy (2.667 ± 1.202 vs. 21.33 ± 1.453, t = 9.899, P < 0.01). Cell proliferation inhibition and degree of the G0/G1 phase arrest was significantly higher in matrine plus acitretin group than those in matrine, acitretin, or the NS control group (P < 0.01, respectively). Compared with matrine or acitretin group, the expression of p21 (P < 0.05, P < 0.05) and LC3II/I (P < 0.01, P < 0.05) in matrine plus acitretin group increased significantly and the expression of cyclin D1 (P < 0.01, P < 0.05) and p62 (P < 0.05, P < 0.05) was reduced significantly. Compared with matrine or acitretin, matrine plus acitretin significantly down-regulated the phosphorylation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway (P < 0.05) and its downstream p-p70S6K (P < 0.05). In addition, the cumulative score of mice in the matrine plus acitretin group was significantly better than that in the matrine or acitretin group (1.480 ± 0.230 vs. 2.370 ± 0.241, P < 0.01; 1.480 ± 0.230 vs. 2.888 ± 0.341, P < 0.01). The expression of LC3 protein in the matrine plus acitretin group was also higher than that in the matrine, acitretin, or the NS control group (P < 0.05, respectively). CONCLUSIONS Matrine has therapeutic potentials for psoriasis. Matrine and acitretin show synergistic effect via cell cycle arrest and autophagy induction by PI3K/Akt/mTOR pathway.
Collapse
|
9
|
Effects of Wannachawee Recipe with Antipsoriatic Activity on Suppressing Inflammatory Cytokine Production in HaCaT Human Keratinocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5906539. [PMID: 28900461 PMCID: PMC5576424 DOI: 10.1155/2017/5906539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
Psoriasis is a chronic inflammatory and immune-mediated skin disease. The pathogenesis involves T cells activation via the IL-23/Th17 axis. Conventional treatments of psoriasis have adverse events influencing patients' adherence. Wannachawee Recipe (WCR) has been effectively used as Thai folk remedy for psoriasis patients; however, preclinical evidence defining how WCR works is still lacking. This study defined mechanisms for its antiproliferation and anti-inflammatory effects in HaCaT cells. The cytotoxicity and antiproliferation results from SRB and CCK-8 assays showed that WCR inhibited the growth and viability of HaCaT cells in a concentration-dependent manner. The distribution of cell cycle phases determined by flow cytometry showed that WCR did not interrupt cell cycle progression. Interestingly, RT-qPCR revealed that WCR significantly decreased the mRNA expression of IL-1β, IL-6, IL-8, IL-17A, IL-22, IL-23, and TNF-α but induced IL-10 expression in TNF-α- and IFN-γ-induced HaCaT cells. At the protein level determined by ELISA, WCR significantly reduced the secretion of IL-17A, IL-22, and IL-23. The WCR at low concentrations was proved to possess anti-inflammatory effect without cytotoxicity and it did not interfere with cell cycle of keratinocytes. This is the first study to provide convincing evidence that WCR is a potential candidate for development of effective psoriasis therapies.
Collapse
|
10
|
Chen J, Guo XZ, Li HY, Zhao JJ, Xu WD. Dendritic cells engineered to secrete anti-DcR3 antibody augment cytotoxic T lymphocyte response against pancreatic cancer in vitro. World J Gastroenterol 2017; 23:817-829. [PMID: 28223726 PMCID: PMC5296198 DOI: 10.3748/wjg.v23.i5.817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the enhanced cytotoxic T lymphocyte responses against pancreatic cancer (PC) in vitro induced by dendritic cells (DCs) engineered to secrete anti-DcR3 monoclonal antibody (mAb).
METHODS DCs, T lymphocytes and primary PC cells were obtained from PC patients. DCs were transfected with a designed humanized anti-DcR3 monoclonal antibody heavy and light chain mRNA and/or total tumor RNA (DC-tumor-anti-DcR3 RNA or DC-total tumor RNA) by using electroporation technology. The identification, concentration and function of anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA were determined by western blotting and enzyme-linked immunosorbent assay. After co-culturing of autologous isolated PC cells with target DCs, the effects of secreting anti-DcR3 mAb on RNA-DCs’ viability and apoptosis were assessed by MTT assay and flow cytometry. Analysis of enhanced antigen-specific immune response against PC induced by anti-DcR3 mAb secreting DCs was performed using a 51Cr releasing test. T cell responses induced by RNA-loaded DCs were analyzed by measuring cytokine levels, including IFN-γ, IL-10, IL4, TNF-α and IL-12.
RESULTS The anti-DcR3 mAb secreted by DCs reacted with recombinant human DcR3 protein and generated a band with 35 kDa molecular weight. The secreting mAb was transient, peaking at 24 h and becoming undetectable after 72 h. After co-incubation with DC-tumor-anti-DcR3 RNA for designated times, the DcR3 level in the supernatant of autologous PC cells was significantly down-regulated (P < 0.05). DCs secreting anti-DcR3 mAb could improve cell viability and slow down the apoptosis of RNA-loaded DCs, compared with DC-total tumor RNA (P < 0.01). The anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA could enhance the induction of cytotoxic T lymphocytes (CTLs) activity toward RNA-transfected DCs, primary tumor cells, and PC cell lines, compared with CTLs stimulated by DC-total tumor RNA or control group (P < 0.05). Meanwhile, the antigen-specific CTL responses were MHC class I-restricted. The CD4+ T cells and CD8+ T cells incubated with anti-DcR3 mAb secreting DCs could produce extremely higher level IFN-γ and lower level IL4 than those incubated with DC-total tumor RNA or controls (P < 0.01).
CONCLUSION DCs engineered to secrete anti-DcR3 antibody can augment CTL responses against PC in vitro, and the immune-enhancing effects may be partly due to their capability of down-regulating DC apoptosis and adjusting the Th1/Th2 cytokine network.
Collapse
|
11
|
Patel S, Vajdy M. Induction of cellular and molecular immunomodulatory pathways by vitamin A and flavonoids. Expert Opin Biol Ther 2015; 15:1411-28. [PMID: 26185959 DOI: 10.1517/14712598.2015.1066331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. AREAS COVERED Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of vitamin A and select flavonoids in induction of innate and adaptive B- and T-cell responses, including TH1, TH2 and regulatory T cells (Treg). EXPERT OPINION While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immunomodulatory compounds.
Collapse
Affiliation(s)
- Sapna Patel
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| | - Michael Vajdy
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| |
Collapse
|
12
|
Zhang ML, Tao Y, Zhou WQ, Ma PC, Cao YP, He CD, Wei J, Li LJ. All-trans retinoic acid induces cell-cycle arrest in human cutaneous squamous carcinoma cells by inhibiting the mitogen-activated protein kinase-activated protein 1 pathway. Clin Exp Dermatol 2015; 39:354-60. [PMID: 24635079 DOI: 10.1111/ced.12227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND All-trans retinoic acid (ATRA) has been tried for the treatment and prevention of a number of epithelial cancers. However, the precise mechanism by which ATRA inhibits the growth of cutaneous squamous cell carcinoma (cSCC) remains elusive. AIMS To determine the suppressive effects of ATRA on the human cSCC cell line SCL-1, and explore the possible mechanisms involved. METHODS SCL-1 cells were treated with ATRA, then cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while apoptosis and cell cycle progression were analysed by flow cytometry. Protein levels of cell-cycle regulatory proteins and the activation of extracellular signal-regulated kinase (ERK) and Jun kinase (JNK) were detected by western blotting analysis. Transcriptional activity of activator protein (AP)-1 was examined by luciferase reporter assay. RESULTS ATRA inhibited the proliferation of SCL-1 cells and had modest proapoptotic effects. ATRA also induced G1 cell-cycle arrest, inhibited the expression of cyclin D1/cyclin-dependent kinase (CDK)4 and cyclinE/CDK2, and increased the expression of the cyclin-dependent kinase inhibitors p21 and p27. In addition, ATRA significantly decreased the phosphorylation of ERK1/2 and JNK1/2, and inhibited AP-1 transcriptional activity. CONCLUSIONS ATRA induces cell-cycle arrest in human cSCC cells by inhibiting the mitogen-activated protein kinase (MAPK)-AP1 pathway, and could be effective in the prevention and chemotherapy of human cSCC.
Collapse
Affiliation(s)
- M-L Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Silva FSG, Ribeiro MPC, Santos MS, Rocha-Pereira P, Santos-Silva A, Custódio JBA. Acitretin affects bioenergetics of liver mitochondria and promotes mitochondrial permeability transition: potential mechanisms of hepatotoxicity. Toxicology 2013; 306:93-100. [PMID: 23384448 DOI: 10.1016/j.tox.2013.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/07/2023]
Abstract
Acitretin is a synthetic retinoid used for severe extensive psoriasis and it has been shown to be an effective and a safe therapeutic drug for other diseases including cancer when used in combination with other agents. However, cases of acitretin-associated liver injury have been documented, but the possible mechanisms of acitretin-associated hepatotoxicity and apoptosis are not entirely clarified. This study reports that mitochondrial dysfunctions may play an important role in liver injury and apoptosis induced by this retinoid. Acitretin (5-20 μM) impaired mitochondrial phosphorylation efficiency as demonstrated by the decrease in the state 3 respiration and ATP levels, and by the increase in the lag phase of ADP phosphorylation cycle, without affecting the membrane potential. Acitretin induced Ca(2+)-mediated mitochondrial permeability transition (MPT) and decreased the adenine nucleotide translocase (ANT) content. Acitretin-induced MPT was not prevented by thiol group protecting and antioxidant agents, excluding the involvement of oxidative stress mechanisms. However, MPT was prevented by ANT ligands ATP, ADP, tamoxifen and 4-hydroxytamoxifen, implying that the MPT induction by acitretin is mediated by the ANT. ANT plays a major role in promoting apoptosis and ATP synthesis, and it is still considered as a structural component of the pore with a regulatory role in MPT formation. Therefore, our results, including the decrease in the state 3 respiration and the increase in the lag phase of phosphorylation cycle, the ATP depletion and the induction of Ca(2+)-mediated MPT, indicate that acitretin-associated liver toxicity and apoptosis is possibly related with mitochondrial dysfunctions due to interactions with the ANT. Additionally, the combination of acitretin with other drugs, such as antiestrogens, which are able to inhibit the MPT, may contribute to decrease the toxicity induced by acitretin.
Collapse
Affiliation(s)
- Filomena S G Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
14
|
Bangash SJ, Green WH, Dolson DJ, Cognetta AB. Eruptive postoperative squamous cell carcinomas exhibiting a pathergy-like reaction around surgical wound sites. J Am Acad Dermatol 2009; 61:892-7. [DOI: 10.1016/j.jaad.2009.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/20/2008] [Accepted: 01/25/2009] [Indexed: 10/20/2022]
|