1
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
4
|
Rahmani A, Jafari R, Nadri S. Molecular dynamics simulation in tissue engineering. BIOIMPACTS : BI 2024; 15:30160. [PMID: 40161944 PMCID: PMC11954742 DOI: 10.34172/bi.30160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2025]
Abstract
Introduction In tissue engineering, the interaction among three primary elements, namely cells, material scaffolds, and stimuli, plays a pivotal role in determining the fate of cells and the formation of new tissue. Understanding the characteristics of these components and their interplay through various methodologies can significantly enhance the efficiency of the designed tissue engineering system. In silico methods, such as molecular dynamics (MD) simulation, use mathematical calculations to investigate molecular properties and can overcome the limitations of laboratory methods in delivering adequate molecular-level information. Methods The studies that used molecular dynamics simulation, either alone or in combination with other techniques, have been reviewed in this paper. Results The review explores the use of molecular dynamics simulations in studying substrate formation mechanism and its optimization. It highlights MD simulations' role in predicting biomolecule binding strength, understanding substrate properties' impact on biological activity, and factors influencing cell attachment and proliferation. Despite limited studies, MD simulations are considered a reliable tool for identifying ideal substrates for cell proliferation. The review also touches on MD simulations' contribution to cell differentiation studies, emphasizing their role in designing engineered extracellular matrix for desired cell fates. Conclusion Molecular dynamics simulation as a non-laboratory tool has many capabilities in providing basic and practical information about the behavior of the molecular components of the cell as well as the interaction of the cell and its components with the surrounding environment. Using this information along with other information obtained from laboratory tools can ultimately lead to the advancement of tissue engineering through the development of more appropriate and efficient methods.
Collapse
Affiliation(s)
- Ali Rahmani
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Wang X, Guillem-Marti J, Kumar S, Lee DS, Cabrerizo-Aguado D, Werther R, Alamo KAE, Zhao YT, Nguyen A, Kopyeva I, Huang B, Li J, Hao Y, Li X, Brizuela-Velasco A, Murray A, Gerben S, Roy A, DeForest CA, Springer T, Ruohola-Baker H, Cooper JA, Campbell MG, Manero JM, Ginebra MP, Baker D. De Novo Design of Integrin α5β1 Modulating Proteins for Regenerative Medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600123. [PMID: 38979380 PMCID: PMC11230231 DOI: 10.1101/2024.06.21.600123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integrin α5β1 is crucial for cell attachment and migration in development and tissue regeneration, and α5β1 binding proteins could have considerable utility in regenerative medicine and next-generation therapeutics. We use computational protein design to create de novo α5β1-specific modulating miniprotein binders, called NeoNectins, that bind to and stabilize the open state of α5β1. When immobilized onto titanium surfaces and throughout 3D hydrogels, the NeoNectins outperform native fibronectin and RGD peptide in enhancing cell attachment and spreading, and NeoNectin-grafted titanium implants outperformed fibronectin and RGD-grafted implants in animal models in promoting tissue integration and bone growth. NeoNectins should be broadly applicable for tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Saurav Kumar
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David S Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Daniel Cabrerizo-Aguado
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Rachel Werther
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Adam Nguyen
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuxin Hao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aritza Brizuela-Velasco
- DENS-ia Research Group, Faculty of Health Sciences, Miguel de Cervantes European University, Valladolid, Spain
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Anindya Roy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hannele Ruohola-Baker
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose Maria Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
7
|
Nascimento MD, Souza BMD, Posch AT. peri-implant ligament. BRAZILIAN JOURNAL OF ORAL SCIENCES 2023. [DOI: 10.20396/bjos.v22i00.8671269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The peri-implant ligament is formed from the interface of bone tissue, through the anchoring of proteins and the surface of the dental implant. In this sense, it is relevant to understand the extent to which this ligament is structured and biomimics the periodontal ligament functions. Aim: The goal of this scoping review is to present and analyze the peri-implant ligament composition and compare the extent to which this ligament is structured and biomimics the periodontal ligament functions. Methods: This scoping review was performed according to the Joanna Briggs Institute methodology for scoping reviews and following the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for scoping review. Two independent researchers searched Pubmed, Cochrane, Embase, Virtual Health Library, Scielo, Scopus, Web of Science, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Digital Library of Theses and Dissertations from the University of São Paulo and Portal Capes. Studies published in English, Portuguese and Spanish, over the last 21 years (2000-2021). Results: A total of 330 titles were identified and after applying inclusion and exclusion factors, 27 studies were included in this review. All proteins were identified regarding their tissue function and classified into 6 major protein groups. After that this new protein ligament was compared with the periodontal ligament regarding its function and composition. The main proteins associated with osseointegration, and thus, with the peri-implant ligament are recognized as belonging to the periodontal ligament. Conclusion: This scoping review results suggest evidence of the composition and function of the periimplant ligament. However, variations may still exist due to the existence of several modulants of the osseointegration process.
Collapse
|
8
|
Hasan A, Bagnol R, Owen R, Latif A, Rostam HM, Elsharkawy S, Rose FRAJ, Rodríguez-Cabello JC, Ghaemmaghami AM, Eglin D, Mata A. Mineralizing Coating on 3D Printed Scaffolds for the Promotion of Osseointegration. Front Bioeng Biotechnol 2022; 10:836386. [PMID: 35832405 PMCID: PMC9271852 DOI: 10.3389/fbioe.2022.836386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Design and fabrication of implants that can perform better than autologous bone grafts remain an unmet challenge for the hard tissue regeneration in craniomaxillofacial applications. Here, we report an integrated approach combining additive manufacturing with supramolecular chemistry to develop acellular mineralizing 3D printed scaffolds for hard tissue regeneration. Our approach relies on an elastin-like recombinamer (ELR) coating designed to trigger and guide the growth of ordered apatite on the surface of 3D printed nylon scaffolds. Three test samples including a) uncoated nylon scaffolds (referred to as "Uncoated"), b) ELR coated scaffolds (referred to as "ELR only"), and c) ELR coated and in vitro mineralized scaffolds (referred to as "Pre-mineralized") were prepared and tested for in vitro and in vivo performance. All test samples supported normal human immortalized mesenchymal stem cell adhesion, growth, and differentiation with enhanced cell proliferation observed in the "Pre-mineralized" samples. Using a rabbit calvarial in vivo model, 'Pre-mineralized' scaffolds also exhibited higher bone ingrowth into scaffold pores and cavities with higher tissue-implant integration. However, the coated scaffolds ("ELR only" and "Pre-mineralized") did not exhibit significantly more new bone formation compared to "Uncoated" scaffolds. Overall, the mineralizing coating offers an opportunity to enhance integration of 3D printed bone implants. However, there is a need to further decipher and tune their immunologic response to develop truly osteoinductive/conductive surfaces.
Collapse
Affiliation(s)
- Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Romain Bagnol
- Regenerative Orthopaedics, AO Research Institute, Davos, Switzerland
| | - Robert Owen
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Arsalan Latif
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hassan M. Rostam
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sherif Elsharkawy
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Felicity R. A. J. Rose
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Amir M. Ghaemmaghami
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David Eglin
- Regenerative Orthopaedics, AO Research Institute, Davos, Switzerland
- Ecole des Mines Saint-Etienne, Saint-Étienne, France
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Soroushzadeh S, Karamali F, Masaeli E, Atefi A, Nasr Esfahani MH. Scaffold free retinal pigment epithelium sheet engineering using modified alginate-RGD hydrogel. J Biosci Bioeng 2022; 133:579-586. [PMID: 35339352 DOI: 10.1016/j.jbiosc.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Tissue-specific extracellular matrix (ECM) plays a critical role in cell survival and homeostasis, which are particularly essential for directing differentiation of different complex tissues such as retina. However, ECM maintenance should be considered to design an effective therapeutic strategy for retina regeneration. To achieve this, cell sheet engineering has emerged as a growing approach to closely reconstruct basal membrane of cells through a scaffold-free manner. Several irreversible sight-threatening diseases are characterized by the dysfunction and lose of retinal pigment epithelium (RPE), leading to vision loss and eventually total blindness in patients. According to impressive developments in achievement of RPE from human embryonic stem cells (hESCs), we obtained RPE cells without any extrinsic factors in a co-culture system, and cultured them on a temporary alginate hydrogel substrate. Subsequently, Arg-Gly-Asp (RGD) peptide was superficially immobilized on the upper layer of hydrogel to improve cell attachment before harvesting sheet layer. RPE cell sheet layer was released by treating pre-seeded hydrogels with sodium citrate as a calcium chelating agent and characterized in both in vitro and in vivo models. RPE sheets formed tight junction and expressed high levels of retina structural markers such as ZO-1, Bestrophin and Collagen type IV. One week after in vivo transplantation of RPE sheet, cells survived in the subretinal space, indicating that our harvesting method is non-invasive. To sum up, we introduced a unique scaffold-free method for RPE cell sheet engineering, which can find potential use for future therapeutic purposes.
Collapse
Affiliation(s)
- Sareh Soroushzadeh
- ACECR Institute of Higher Education (Isfahan Branch), P.O. Box: 84175443, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Atefeh Atefi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran.
| |
Collapse
|
10
|
Choi YK, Kern NR, Kim S, Kanhaiya K, Afshar Y, Jeon SH, Jo S, Brooks BR, Lee J, Tadmor EB, Heinz H, Im W. CHARMM-GUI Nanomaterial Modeler for Modeling and Simulation of Nanomaterial Systems. J Chem Theory Comput 2022; 18:479-493. [PMID: 34871001 PMCID: PMC8752518 DOI: 10.1021/acs.jctc.1c00996] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular modeling and simulation are invaluable tools for nanoscience that predict mechanical, physicochemical, and thermodynamic properties of nanomaterials and provide molecular-level insight into underlying mechanisms. However, building nanomaterial-containing systems remains challenging due to the lack of reliable and integrated cyberinfrastructures. Here we present Nanomaterial Modeler in CHARMM-GUI, a web-based cyberinfrastructure that provides an automated process to generate various nanomaterial models, associated topologies, and configuration files to perform state-of-the-art molecular dynamics simulations using most simulation packages. The nanomaterial models are based on the interface force field, one of the most reliable force fields (FFs). The transferability of nanomaterial models among the simulation programs was assessed by single-point energy calculations, which yielded 0.01% relative absolute energy differences for various surface models and equilibrium nanoparticle shapes. Three widely used Lennard-Jones (LJ) cutoff methods are employed to evaluate the compatibility of nanomaterial models with respect to conventional biomolecular FFs: simple truncation at r = 12 Å (12 cutoff), force-based switching over 10 to 12 Å (10-12 fsw), and LJ particle mesh Ewald with no cutoff (LJPME). The FF parameters with these LJ cutoff methods are extensively validated by reproducing structural, interfacial, and mechanical properties. We find that the computed density and surface energies are in good agreement with reported experimental results, although the simulation results increase in the following order: 10-12 fsw <12 cutoff < LJPME. Nanomaterials in which LJ interactions are a major component show relatively higher deviations (up to 4% in density and 8% in surface energy differences) compared with the experiment. Nanomaterial Modeler's capability is also demonstrated by generating complex systems of nanomaterial-biomolecule and nanomaterial-polymer interfaces with a combination of existing CHARMM-GUI modules. We hope that Nanomaterial Modeler can be used to carry out innovative nanomaterial modeling and simulations to acquire insight into the structure, dynamics, and underlying mechanisms of complex nanomaterial-containing systems.
Collapse
Affiliation(s)
- Yeol Kyo Choi
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Nathan R. Kern
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Seonghan Kim
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80301, USA
| | - Yaser Afshar
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sun Hee Jeon
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, 9700 Cass Ave, Argonne, IL 60439, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jumin Lee
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Ellad B. Tadmor
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80301, USA
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
11
|
A biomimetic engineered bone platform for advanced testing of prosthetic implants. Sci Rep 2020; 10:22154. [PMID: 33335113 PMCID: PMC7747643 DOI: 10.1038/s41598-020-78416-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Existing methods for testing prosthetic implants suffer from critical limitations, creating an urgent need for new strategies that facilitate research and development of implants with enhanced osseointegration potential. Herein, we describe a novel, biomimetic, human bone platform for advanced testing of implants in vitro, and demonstrate the scientific validity and predictive value of this approach using an assortment of complementary evaluation methods. We anchored titanium (Ti) and stainless steel (SS) implants into biomimetic scaffolds, seeded with human induced mesenchymal stem cells, to recapitulate the osseointegration process in vitro. We show distinct patterns of gene expression, matrix deposition, and mineralization in response to the two materials, with Ti implants ultimately resulting in stronger integration strength, as seen in other preclinical and clinical studies. Interestingly, RNAseq analysis reveals that the TGF-beta and the FGF2 pathways are overexpressed in response to Ti implants, while the Wnt, BMP, and IGF pathways are overexpressed in response to SS implants. High-resolution imaging shows significantly increased tissue mineralization and calcium deposition at the tissue-implant interface in response to Ti implants, contributing to a twofold increase in pullout strength compared to SS implants. Our technology creates unprecedented research opportunities towards the design of implants and biomaterials that can be personalized, and exhibit enhanced osseointegration potential, with reduced need for animal testing.
Collapse
|
12
|
Chen YF, Goodheart C, Rua D. The Body's Cellular and Molecular Response to Protein-Coated Medical Device Implants: A Review Focused on Fibronectin and BMP Proteins. Int J Mol Sci 2020; 21:ijms21228853. [PMID: 33238458 PMCID: PMC7700595 DOI: 10.3390/ijms21228853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Recent years have seen a marked rise in implantation into the body of a great variety of devices: hip, knee, and shoulder replacements, pacemakers, meshes, glucose sensors, and many others. Cochlear and retinal implants are being developed to restore hearing and sight. After surgery to implant a device, adjacent cells interact with the implant and release molecular signals that result in attraction, infiltration of the tissue, and attachment to the implant of various cell types including monocytes, macrophages, and platelets. These cells release additional signaling molecules (chemokines and cytokines) that recruit tissue repair cells to the device site. Some implants fail and require additional revision surgery that is traumatic for the patient and expensive for the payer. This review examines the literature for evidence to support the possibility that fibronectins and BMPs could be coated on the implants as part of the manufacturing process so that the proteins could be released into the tissue surrounding the implant and improve the rate of successful implantation.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | | | - Diego Rua
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
13
|
Lee RSB, Hamlet SM, Moon HJ, Ivanovski S. Re-establishment of macrophage homeostasis by titanium surface modification in type II diabetes promotes osseous healing. Biomaterials 2020; 267:120464. [PMID: 33130322 DOI: 10.1016/j.biomaterials.2020.120464] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/19/2020] [Accepted: 10/18/2020] [Indexed: 12/27/2022]
Abstract
Titanium surface mediated immunomodulation may address compromised post-implantation bone healing in diabetes mellitus. To assess in vitro phenotypic changes, M1 and M2 polarised Type 2 diabetic rat (Goto Kakizaki, GK) macrophages were cultured on micro-rough (SLA) or hydrophilic nanostructured SLA (modSLA) titanium. The in vivo effects of the SLA and modSLA surfaces on macrophage phenotype, wound-associated protein expression and bone formation were investigated using a critical-sized calvarial defect model. Compared to healthy macrophages, GK M2 macrophage function was compromised, secreting significantly lower levels of the anti-inflammatory cytokine IL-10. The modSLA surface attenuated the pro-inflammatory cellular environment, reducing pro-inflammatory cytokine production and promoting M2 macrophage phenotype differentiation. ModSLA also suppressed gene expression associated with macrophage multinucleation and giant cell formation and stimulated pro-osteogenic genes in co-cultured osteoblasts. In vivo, modSLA enhanced osteogenesis compared to SLA in GK rats. During early healing, proteomic analysis of both surface adherent and wound exudate material showed that modSLA promoted an immunomodulatory pro-reparative environment. The modSLA surface therefore successfully compensated for the compromised M2 macrophage function in Type 2 diabetes by attenuating the pro-inflammatory response and promoting M2 macrophage activity, thus restoring macrophage homeostasis and resulting in a cellular environment favourable for enhanced osseous healing.
Collapse
Affiliation(s)
- Ryan S B Lee
- The University of Queensland, School of Dentistry, Herston, Australia; School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - Stephen M Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Herston, Australia.
| |
Collapse
|
14
|
Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior. METALS 2020. [DOI: 10.3390/met10091156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Titanium (Ti) and Ti alloys have been used for decades for bone prostheses due to its mechanical reliability and good biocompatibility. However, the high stiffness of Ti implants and the lack of bioactivity are pending issues that should be improved to minimize implant failure. The stress shielding effect, a result of the stiffness mismatch between titanium and bone, can be reduced by introducing a tailored structural porosity in the implant. In this work, porous titanium structures were produced by direct ink writing (DIW), using a new Ti ink formulation containing a thermosensitive hydrogel. A thermal treatment was optimized to ensure the complete elimination of the binder before the sintering process, in order to avoid contamination of the titanium structures. The samples were sintered in argon atmosphere at 1200 °C, 1300 °C or 1400 °C, resulting in total porosities ranging between 72.3% and 77.7%. A correlation was found between the total porosity and the elastic modulus of the scaffolds. The stiffness and yield strength were similar to those of cancellous bone. The functionalization of the scaffold surface with a cell adhesion fibronectin recombinant fragment resulted in enhanced adhesion and spreading of osteoblastic-like cells, together with increased alkaline phosphatase expression and mineralization.
Collapse
|
15
|
Sharma A, Goring A, Clarkin CE. Commentary: A Cost-Effective Method to Enhance Adenoviral Transduction of Primary Murine Osteoblasts and Bone Marrow Stromal Cells. Front Endocrinol (Lausanne) 2020; 11:419. [PMID: 32670202 PMCID: PMC7330116 DOI: 10.3389/fendo.2020.00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Claire E. Clarkin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
16
|
Jurczak P, Witkowska J, Rodziewicz-Motowidło S, Lach S. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv Colloid Interface Sci 2020; 276:102083. [PMID: 31887572 DOI: 10.1016/j.cis.2019.102083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The recent impact of implants on improving the human life quality has been enormous. During the past two decades we witnessed major advancements in both material and structural development of implants. They were driven mainly by the increasing patients' demand and the need to address the major issues that come along with the initially underestimated complexity of the bone-implant interface. While both, the materials and design of implants reached a certain, balanced state, recent years brought a shift in focus towards the bone-implant interface as the weakest link in the increasing implant long-term usability. As a result, several approaches were developed. They aimed at influencing and enhancing the implant osseointegration and its proper behavior when under load and stress. With this review, we would like to discuss the recent advancements in the field of implant surface modifications, emphasizing the importance of chemical methods, focusing on proteins, peptides and peptidomimetics as promising agents for titanium surface coatings.
Collapse
|
17
|
Guillem-Marti J, Gelabert M, Heras-Parets A, Pegueroles M, Ginebra MP, Manero JM. RGD Mutation of the Heparin Binding II Fragment of Fibronectin for Guiding Mesenchymal Stem Cell Behavior on Titanium Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3666-3678. [PMID: 30607934 DOI: 10.1021/acsami.8b17138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.
Collapse
Affiliation(s)
| | | | | | | | - Maria-Pau Ginebra
- Institute for Bioengineering of Catalonia (IBEC) , Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona , Spain
| | | |
Collapse
|
18
|
Zhao H, Huang Y, Zhang W, Guo Q, Cui W, Sun Z, Eglin D, Liu L, Pan G, Shi Q. Mussel-Inspired Peptide Coatings on Titanium Implant to Improve Osseointegration in Osteoporotic Condition. ACS Biomater Sci Eng 2018; 4:2505-2515. [PMID: 33435114 DOI: 10.1021/acsbiomaterials.8b00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Huan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Yingkang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Wen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Qianping Guo
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Wenguo Cui
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Zhiyong Sun
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, 7270, Switzerland
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, 215007, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, 199 Renai Road, Suzhou, 215123, China
| |
Collapse
|
19
|
Biomimetic Implant Surface Functionalization with Liquid L-PRF Products: In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9031435. [PMID: 29854805 PMCID: PMC5964419 DOI: 10.1155/2018/9031435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/22/2018] [Indexed: 01/30/2023]
Abstract
Objective Platelet-rich fibrin (PRF) clots and membranes are autologous blood concentrates widely used in oral surgical procedures; less is known, however, about the liquid formulations of such products. The aim of this in vitro study is to assess the behavior of different implant surfaces when in contact with two liquid leucocyte- and platelet-rich fibrin (L-PRF) products. Methods Six commercial pure titanium discs, of 9.5 mm diameter and 1.5 mm thickness, were used. Three of these samples had a micro/nano-rough surface; three were machined. Three different protocols were tested. Protocols involved the immersion of the samples in (1) a platelets, lymphocytes, and fibrinogen liquid concentrate (PLyF) for 10 minutes, (2) an exudate obtained from L-PRF clots rich in fibronectin and vitronectin for 5 minutes, and (3) the fibronectin/vitronectin exudate for 2 minutes followed by immersion in the PLyF concentrate for further 8 minutes. After these treatments, the samples were fixed and observed using a scanning electron microscope (SEM). Results Under microscopic observation, (1) the samples treated with the PLyF concentrate revealed a dense fibrin network in direct contact with the implant surface and a significant number of formed elements of blood; (2) in the samples treated with the fibronectin/vitronectin exudates, only a small number of white and red blood cells were detectable; and (3) in samples exposed to the combined treatment, there was an apparent increase in the thickness of the fibrin layer. When compared to the machined surface, the micro/nano-rough samples showed an overall increased retention of fibrin, leading to a thicker coating. Conclusions Liquid L-PRF products promote the formation of a dense fibrin clot on micro/nano-rough implant surfaces in vitro. The adjunctive treatment of surfaces with the fibronectin/vitronectin exudate could provide support to contact of the fibrin with the surface, though it is not essential for the clot formation. Further studies are necessary to better elucidate the properties and benefits of liquid L-PRF products.
Collapse
|
20
|
Ding D, Xie Y, Li K, Huang L, Zheng X. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells. MATERIALS 2018; 11:ma11040546. [PMID: 29614022 PMCID: PMC5951430 DOI: 10.3390/ma11040546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.
Collapse
Affiliation(s)
- Ding Ding
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|
21
|
Guillem-Marti J, Boix-Lemonche G, Gugutkov D, Ginebra MP, Altankov G, Manero JM. Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface. Nanomedicine (Lond) 2018; 13:899-912. [PMID: 29564966 DOI: 10.2217/nnm-2017-0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To develop a nanofiber (NF)-based biomimetic coating on titanium (Ti) that mimics the complex spatiotemporal organization of the extracellular matrix (ECM). MATERIALS & METHODS Recombinant cell attachment site (CAS) of fibronectin type III8-10 domain was co-electrospun with polylactic acid (PLA) and covalently bound on polished Ti discs. Osteoblast-like SaOS-2 cells were used to evaluate their complex bioactivity. RESULTS A significant increase of cell spreading was found on CAS/PLA hybrid NFs, followed by control pure PLA NFs and bare Ti discs. Cell proliferation showed similar trend being about twice higher on CAS/PLA NFs. The significantly increased ALP activity at day 21 indicated an enhanced differentiation of SaOS-2 cells. CONCLUSION Coating of Ti implants with hybrid CAS/PLA NFs may improve significantly their osseointegration potential.
Collapse
Affiliation(s)
- Jordi Guillem-Marti
- Biomaterials, Biomechanics & Tissue Engineering Group, Department of Materials Science & Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain.,Barcelona Research Center in Multiscale Science & Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Gerard Boix-Lemonche
- Biomaterials, Biomechanics & Tissue Engineering Group, Department of Materials Science & Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain.,Barcelona Research Center in Multiscale Science & Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Dencho Gugutkov
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science & Technology (BIST), 08028 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics & Tissue Engineering Group, Department of Materials Science & Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain.,Barcelona Research Center in Multiscale Science & Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science & Technology (BIST), 08028 Barcelona, Spain
| | - George Altankov
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science & Technology (BIST), 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain.,ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| | - Jose M Manero
- Biomaterials, Biomechanics & Tissue Engineering Group, Department of Materials Science & Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain.,Barcelona Research Center in Multiscale Science & Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| |
Collapse
|
22
|
Barik A, Banerjee S, Dhara S, Chakravorty N. A reductionist approach to extract robust molecular markers from microarray data series – Isolating markers to track osseointegration. J Biomed Inform 2017; 68:104-111. [DOI: 10.1016/j.jbi.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/03/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
|
23
|
Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1521593. [PMID: 28246591 PMCID: PMC5303609 DOI: 10.1155/2017/1521593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022]
Abstract
Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2.
Collapse
|
24
|
Oshima M, Tsuji T. Functional Tooth Regeneration. ORGAN REGENERATION BASED ON DEVELOPMENTAL BIOLOGY 2017:73-95. [DOI: 10.1007/978-981-10-3768-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Williams DF. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater Sci Eng 2016; 3:2-35. [DOI: 10.1021/acsbiomaterials.6b00607] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Richard H. Dean Biomedical Building, 391 Technology Way, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
26
|
Kanie K, Kondo Y, Owaki J, Ikeda Y, Narita Y, Kato R, Honda H. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays. Bioengineering (Basel) 2016; 3:bioengineering3040031. [PMID: 28952593 PMCID: PMC5597274 DOI: 10.3390/bioengineering3040031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 01/28/2023] Open
Abstract
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.
Collapse
Affiliation(s)
- Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi 464-8601, Japan.
| | - Yuto Kondo
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Aichi 464-8603, Japan.
| | - Junki Owaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Aichi 464-8603, Japan.
| | - Yurika Ikeda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi 464-8601, Japan.
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan.
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi 464-8601, Japan.
| | - Hiroyuki Honda
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Aichi 464-8603, Japan.
| |
Collapse
|
27
|
Pramono S, Pugdee K, Suwanprateep J, Koontongkaew S. Sandblasting and fibronectin-derived peptide immobilization on titanium surface increase adhesion and differentiation of osteoblast-like cells (MC3T3-E1). J Dent Sci 2016; 11:427-436. [PMID: 30895008 PMCID: PMC6395237 DOI: 10.1016/j.jds.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/19/2016] [Indexed: 11/23/2022] Open
Abstract
Background/purpose Various chemical titanium (Ti) surface modifications have been reported for enhancing cellular activities that promote early osseointegration. The purpose of this study was to determine if sandblasted Ti coated with or without fibronectin (FN) or FN-derived peptides stimulated osteoblast-like cell adhesion, spreading, proliferation, and differentiation. Materials and methods Osteoblast-like cells (MC3T3-E1) were cultured on sandblasted Ti disks immobilized with FN or FN-derived peptides [GRGDSP (Gly-Arg-Gly-Asp-Ser), PHSRN (Pro-His-Ser-Arg-Asn), or GRGDSP/PHSRN]. Surface topography, cell morphology, cell adhesion, cell proliferation, analysis of osteogenesis-related genes and protein expression, alkaline phosphatase, and alizarin red staining of mineralization were evaluated. Results The sandblasted Ti coated with FN or FN-derived peptides enhanced cell adhesion and cell proliferation. However, the Ti coated with FN or FN-derived peptides groups were similar in cell spreading. Osteogenic differentiation was observed in the peptide-modified Ti surface groups, compared with that of the noncoated Ti group. FN and GRGDSP/PHSRN coating enhanced the gene and protein expression of Runx2, osteocalcin, and bone sialoprotein. Alkaline phosphatase activity and matrix mineralization were also markedly enhanced in the Ti coated groups. Conclusion The sandblasted Ti coated with FN or FN-derived peptides (GRGDSP/PHSRN) markedly enhance adhesion, proliferation, and differentiation of osteoblast-like cells compared with uncoated sandblasted Ti.
Collapse
Affiliation(s)
- Samdharu Pramono
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand.,Department of Prosthodontics, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Kamolparn Pugdee
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| | - Jintamai Suwanprateep
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center, Ministry of Science and Technology, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| | - Sittichai Koontongkaew
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| |
Collapse
|
28
|
Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release 2016; 244:122-135. [PMID: 27794492 DOI: 10.1016/j.jconrel.2016.10.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/07/2023]
Abstract
Molecular signals in the form of growth factors are the main modulators of cell behavior. However, the use of growth factors in tissue engineering has several drawbacks, including their costs, difficult production, immunogenicity and short half-life. Furthermore, many of them are pleiotropic and, since a single growth factor can have different active domains, their effect is not always fully controllable. A very interesting alternative that has recently emerged is the use of biomimetic peptides. Sequences derived from the active domains of soluble or extracellular matrix proteins can be used to functionalize the biomaterials used as scaffolds for new tissue growth to either direct the attachment of cells or to be released as soluble ligands. Since these short peptides can be easily designed and cost-effectively synthesized in vitro, their use has opened up a world of new opportunities to obtain cheaper and more effective implants for regenerative medicine strategies. In this extensive review we will go through many of the most important peptides with potential interest for bone tissue engineering, not limiting to those that only mediate cell adhesion or induce the osteogenic differentiation of progenitor cells, but also focusing on those that direct angiogenesis because of its close relation with bone formation.
Collapse
Affiliation(s)
- Rick Visser
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain.
| | - Gustavo A Rico-Llanos
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| | - Hertta Pulkkinen
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jose Becerra
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| |
Collapse
|
29
|
Oughlis S, Changotade S, Poirier F, Cieutat AM, Rohman G, Peltzer J, Migonney V, Lataillade JJ, Lutomski D. Improved proliferation and osteogenic differentiation of human mesenchymal stem cells on a titanium biomaterial grafted with poly(sodium styrene sulphonate) and coated with a platelet-rich plasma proteins biofilm. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516643105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to replace damaged or lost bone in the human body, it is necessary to produce ‘spare body parts’ which are dependent on the use of biomaterial and stem cells and are referred to as ‘tissue engineering’. Surface modification and stem cell interaction of orthopaedic implants offer a promising approach and are investigated here specifically to improve osseointegration of the biomaterial. Osseointegration of titanium implants used in orthopaedic surgery requires that osseo-progenitor cells attach and adhere to the surface, proliferate, then differentiate into osteoblasts and, finally, produce a mineralised matrix. The surface modification of titanium with anionic polymer combined with coating of platelet-rich plasma is provided to create a favourable environment to promote early and strong fixation of implants. The ability of progenitor cells to attach to the surface during early stages is important in the development of new tissue structures; therefore, we developed in our laboratory a strategy involving the grafting of titanium implants with a polymer of sodium styrene sulphonate (poly(sodium styrene sulphonate)) and a biofilm coating of platelet-rich plasma which enables human mesenchymal stem cell interactions. The resulting biomaterial, titanium-poly(sodium styrene sulphonate) and coating of platelet-rich plasma, Ti-poly(sodium styrene sulphonate)–platelet-rich plasma was developed in order to further improve the biomaterial. In this work, we studied and characterised the ‘in vitro’ response of human mesenchymal stem cells to titanium biomaterial grafted with poly(sodium styrene sulphonate) bioactive polymer and coated with platelet-rich plasma proteins (Ti-poly(sodium styrene sulphonate)–platelet-rich plasma). This study shows an increased cell proliferation with Ti-poly(sodium styrene sulphonate)–platelet-rich plasma compared to foetal calf serum and an enhancement of the Ti-poly(sodium styrene sulphonate)–platelet-rich plasma effects on osteoblast differentiation. The results suggest that Ti-poly(sodium styrene sulphonate)–platelet-rich plasma would be a suitable scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Sophiane Oughlis
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Sylvie Changotade
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Florence Poirier
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Anne-Marie Cieutat
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Géraldine Rohman
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Juliette Peltzer
- Unité de Thérapie Cellulaire, Centre de Transfusion Sanguine des Armées Jean Julliard, Clamart, France
| | - Véronique Migonney
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Jean-Jacques Lataillade
- Unité de Thérapie Cellulaire, Centre de Transfusion Sanguine des Armées Jean Julliard, Clamart, France
| | - Didier Lutomski
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
30
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
31
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. Angew Chem Int Ed Engl 2016; 55:7048-67. [PMID: 27258759 DOI: 10.1002/anie.201509782] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/21/2022]
Abstract
Engineering biomaterials with integrin-binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface-coating molecules in this field: from peptides and proteins with relatively low integrin-binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell-instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain.
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tobias G Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
32
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- oder α5β1-Integrin-selektive Peptidmimetika für die Oberflächenbeschichtung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias G. Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
33
|
Herranz-Diez C, Mas-Moruno C, Neubauer S, Kessler H, Gil FJ, Pegueroles M, Manero JM, Guillem-Marti J. Tuning Mesenchymal Stem Cell Response onto Titanium-Niobium-Hafnium Alloy by Recombinant Fibronectin Fragments. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2517-2525. [PMID: 26735900 DOI: 10.1021/acsami.5b09576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since metallic biomaterials used for bone replacement possess low bioactivity, the use of cell adhesive moieties is a common strategy to improve cellular response onto these surfaces. In recent years, the use of recombinant proteins has emerged as an alternative to native proteins and short peptides owing to the fact that they retain the biological potency of native proteins, while improving their stability. In the present study, we investigated the biological effect of two different recombinant fragments of fibronectin, spanning the 8-10th and 12-14th type III repeats, covalently attached to a new TiNbHf alloy using APTES silanization. The fragments were studied separately and mixed at different concentrations and compared to a linear RGD, a cyclic RGD and the full-length fibronectin protein. Cell culture studies using rat mesenchymal stem cells demonstrated that low to medium concentrations (30% and 50%) of type III 8-10th fragment mixed with type III 12-14th fragment stimulated cell spreading and proliferation compared to RGD peptides and the fragments separately. On the other hand, type III 12-14th fragment alone or mixed at low volume percentages ≤50% with type III 8-10th fragment increased alkaline phosphatase levels compared to the other molecules. These results are significant for the understanding of the role of fibronectin recombinant fragments in cell responses and thus to design bioactive coatings for biomedical applications.
Collapse
Affiliation(s)
- C Herranz-Diez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB , Diagonal 647, 08028 Barcelona, Spain
| | - C Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB , Diagonal 647, 08028 Barcelona, Spain
- Centre for Research in NanoEngineering (CRnE)-UPC , c/Pascual i Vila 15, 08028 Barcelona, Spain
| | - S Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science, Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - H Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - F J Gil
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB , Diagonal 647, 08028 Barcelona, Spain
- Centre for Research in NanoEngineering (CRnE)-UPC , c/Pascual i Vila 15, 08028 Barcelona, Spain
| | - M Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB , Diagonal 647, 08028 Barcelona, Spain
- Centre for Research in NanoEngineering (CRnE)-UPC , c/Pascual i Vila 15, 08028 Barcelona, Spain
| | - J M Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB , Diagonal 647, 08028 Barcelona, Spain
- Centre for Research in NanoEngineering (CRnE)-UPC , c/Pascual i Vila 15, 08028 Barcelona, Spain
| | - J Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB , Diagonal 647, 08028 Barcelona, Spain
- Centre for Research in NanoEngineering (CRnE)-UPC , c/Pascual i Vila 15, 08028 Barcelona, Spain
| |
Collapse
|
34
|
Effects of Fibronectin Coating on Bacterial and Osteoblast Progenitor Cells Adherence in a Co-culture Assay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 973:17-30. [DOI: 10.1007/5584_2016_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 2015; 94:53-62. [PMID: 25861724 DOI: 10.1016/j.addr.2015.03.013] [Citation(s) in RCA: 453] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/08/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair.
Collapse
|
36
|
Yue Y, Wang L, Yang N, Huang J, Lei L, Ye H, Ren L, Yang S. Effectiveness of Biodegradable Magnesium Alloy Stents in Coronary Artery and Femoral Artery. J Interv Cardiol 2015. [DOI: 10.1111/joic.12217] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yunan Yue
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| | - Lili Wang
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| | - Nuo Yang
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| | - Jinglin Huang
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| | - Licheng Lei
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| | - Huiming Ye
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| | - Lihui Ren
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| | - Shuixiang Yang
- Cardiology Department; Peking University Ninth School of Clinical Medicine; Beijing China
| |
Collapse
|
37
|
Agarwal R, González-García C, Torstrick B, Guldberg RE, Salmerón-Sánchez M, García AJ. Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. Biomaterials 2015; 63:137-45. [PMID: 26100343 DOI: 10.1016/j.biomaterials.2015.06.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023]
Abstract
Metal implants are widely used to provide structural support and stability in current surgical treatments for bone fractures, spinal fusions, and joint arthroplasties as well as craniofacial and dental applications. Early implant-bone mechanical fixation is an important requirement for the successful performance of such implants. However, adequate osseointegration has been difficult to achieve especially in challenging disease states like osteoporosis due to reduced bone mass and strength. Here, we present a simple coating strategy based on passive adsorption of FN7-10, a recombinant fragment of human fibronectin encompassing the major cell adhesive, integrin-binding site, onto 316-grade stainless steel (SS). FN7-10 coating on SS surfaces promoted α5β1 integrin-dependent adhesion and osteogenic differentiation of human mesenchymal stem cells. FN7-10-coated SS screws increased bone-implant mechanical fixation compared to uncoated screws by 30% and 45% at 1 and 3 months, respectively, in healthy rats. Importantly, FN7-10 coating significantly enhanced bone-screw fixation by 57% and 32% at 1 and 3 months, respectively, and bone-implant ingrowth by 30% at 3 months compared to uncoated screws in osteoporotic rats. These coatings are easy to apply intra-operatively, even to implants with complex geometries and structures, facilitating the potential for rapid translation to clinical settings.
Collapse
Affiliation(s)
- Rachit Agarwal
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristina González-García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Biomedical Engineering Research Division, University of Glasgow, Glasgow, UK
| | - Brennan Torstrick
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
38
|
Albertini M, Fernandez-Yague M, Lázaro P, Herrero-Climent M, Rios-Santos JV, Bullon P, Gil FJ. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces. Med Oral Patol Oral Cir Bucal 2015; 20:e316-25. [PMID: 25662555 PMCID: PMC4464919 DOI: 10.4317/medoral.20353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces -namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite’s high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amorphous calcium phosphate (i.e., with no crystal structure) instead. This layer produce some osseointegration yet the calcium phosphate layer will eventually dissolve and leave a gap between the bone and the dental implant, thus leading to osseointegration failure due to bacterial colonization. A new surface -recently obtained by thermochemical processes- produces, by crystallization, a layer of apatite with the same mineral content as human bone that is chemically bonded to the titanium surface. Osseointegration speed was tested by means of minipigs, showing bone formation after 3 to 4 weeks, with the security that a dental implant can be loaded. This surface can be an excellent candidate for immediate or early loading procedures.
Key words:Dental implants, implants surfaces, osseointegration, biomimetics surfaces.
Collapse
|
39
|
Morra M, Giavaresi G, Sartori M, Ferrari A, Parrilli A, Bollati D, Baena RRY, Cassinelli C, Fini M. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:159. [PMID: 25786396 PMCID: PMC4365274 DOI: 10.1007/s10856-015-5483-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The paper presents results of physico-chemical and biological investigations of a surface-engineered synthetic bone filler. Surface analysis confirms that the ceramic phosphate granules present a collagen nanolayer to the surrounding environment. Cell cultures tests show that, in agreement with literature reports, surface-immobilized collagen molecular cues can stimulate progression along the osteogenic pathway of undifferentiated human mesenchymal cells. Finally, in vivo test in a rabbit model of critical bone defects shows statistically significant increase of bone volume and mineral apposition rate between the biomimetic bone filler and collagen-free control. All together, obtained data confirm that biomolecular surface engineering can upgrade the properties of implant device, by promoting more specific and targeted implant-host cells interactions.
Collapse
Affiliation(s)
- Marco Morra
- Nobil Bio Ricerche Srl, Via Valcastellana 26, 14037 Portacomaro, AT Italy
| | - Gianluca Giavaresi
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department-Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department-Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Andrea Ferrari
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Annapaola Parrilli
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department-Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Daniele Bollati
- Nobil Bio Ricerche Srl, Via Valcastellana 26, 14037 Portacomaro, AT Italy
| | - Ruggero Rodriguez Y. Baena
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, School of Dentistry, University of Pavia, Viale Brambilla 74, 27100 Pavia, Italy
| | - Clara Cassinelli
- Nobil Bio Ricerche Srl, Via Valcastellana 26, 14037 Portacomaro, AT Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, RIT Department-Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
40
|
Mas-Moruno C, Garrido B, Rodriguez D, Ruperez E, Gil FJ. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:109. [PMID: 25665847 PMCID: PMC4323513 DOI: 10.1007/s10856-015-5445-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The use of tantalum as biomaterial for orthopedic applications is gaining considerable attention in the clinical practice because it presents an excellent chemical stability, body fluid resistance, biocompatibility, and it is more osteoconductive than titanium or cobalt-chromium alloys. Nonetheless, metallic biomaterials are commonly bioinert and may not provide fast and long-lasting interactions with surrounding tissues. The use of short cell adhesive peptides derived from the extracellular matrix has shown to improve cell adhesion and accelerate the implant's biointegration in vivo. However, this strategy has been rarely applied to tantalum materials. In this work, we have studied two immobilization strategies (physical adsorption and covalent binding via silanization) to functionalize tantalum surfaces with a cell adhesive RGD peptide. Surfaces were used untreated or activated with either HNO3 or UV/ozone treatments. The process of biofunctionalization was characterized by means of physicochemical and biological methods. Physisorption of the RGD peptide on control and HNO3-treated tantalum surfaces significantly enhanced the attachment and spreading of osteoblast-like cells; however, no effect on cell adhesion was observed in ozone-treated samples. This effect was attributed to the inefficient binding of the peptide on these highly hydrophilic surfaces, as evidenced by contact angle measurements and X-ray photoelectron spectroscopy. In contrast, activation of tantalum with UV/ozone proved to be the most efficient method to support silanization and subsequent peptide attachment, displaying the highest values of cell adhesion. This study demonstrates that both physical adsorption and silanization are feasible methods to immobilize peptides onto tantalum-based materials, providing them with superior bioactivity.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028, Barcelona, Spain,
| | | | | | | | | |
Collapse
|
41
|
Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater 2014; 10:3363-71. [PMID: 24721613 DOI: 10.1016/j.actbio.2014.03.037] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/20/2022]
Abstract
The use of spinal implants for spine fusion has been steadily increasing to avoid the risks of complications and donor site morbidity involved when using autologous bone. A variety of fusion cages are clinically available, with different shapes and chemical compositions. However, detailed information about their surface properties and the effects of such properties on osteogenesis is lacking in the literature. Here we evaluate the role of surface properties for spinal implant applications, covering some of the key biological processes that occur around an implant and focusing on the role of surface properties, specifically the surface structure, on osseointegration, drawing examples from other implantology fields when required. Our findings revealed that surface properties such as microroughness and nanostructures can directly affect early cell behavior and long-term osseointegration. Microroughness has been well established in the literature to have a beneficial effect on osseointegration of implants. In the case of the role of nanostructures, the number of reports is increasing and most studies reveal a positive effect from the nanostructures alone and a synergistic effect when combined with microrough surfaces. Long-term clinical results are nevertheless necessary to establish the full implications of surface nanomodifications.
Collapse
|
42
|
Oshima M, Tsuji T. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 2014; 102:123-36. [PMID: 25052182 DOI: 10.1007/s10266-014-0168-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
Oral and general health is compromised by irreversible dental problems, including dental caries, periodontal disease and tooth injury. Regenerative therapy for tooth tissue repair and whole-tooth replacement is currently considered a novel therapeutic concept with the potential for the full recovery of tooth function. Several types of stem cells and cell-activating cytokines have been identified in oral tissues. These cells are thought to be candidate cell sources for tooth tissue regenerative therapies because they have the ability to differentiate into tooth tissues in vitro and in vivo. Whole-tooth replacement therapy is regarded as an important model for the development of an organ regenerative concept. A novel three-dimensional cell-manipulation method, designated the organ germ method, has been developed to recapitulate organogenesis. This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions. A bioengineered tooth germ can generate a structurally correct tooth in vitro and erupt successfully with the correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was successfully engrafted into an adult jawbone through bone integration. Such bioengineered teeth were able to perform normal physiological tooth functions, such as developing a masticatory potential in response to mechanical stress and a perceptive potential for noxious stimuli. In this review, we describe recent findings and technologies underpinning tooth regenerative therapy.
Collapse
Affiliation(s)
- Masamitsu Oshima
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan,
| | | |
Collapse
|
43
|
|
44
|
Mas-Moruno C, Fraioli R, Albericio F, Manero JM, Gil FJ. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6525-6536. [PMID: 24673628 DOI: 10.1021/am5001213] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC) , ETSEIB, Avenida Diagonal 647, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
Förster Y, Rentsch C, Schneiders W, Bernhardt R, Simon JC, Worch H, Rammelt S. Surface modification of implants in long bone. BIOMATTER 2014; 2:149-57. [PMID: 23507866 PMCID: PMC3549868 DOI: 10.4161/biom.21563] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
Collapse
Affiliation(s)
- Yvonne Förster
- Department of Trauma and Reconstructive Surgery, Center for Translational Bone, Joint and Soft Tissue Research, Dresden University Hospital Carl Gustav Carus, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Liao C, Xie Y, Zhou J. Computer simulations of fibronectin adsorption on hydroxyapatite surfaces. RSC Adv 2014. [DOI: 10.1039/c3ra47381c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
47
|
Jäger M, Böge C, Janissen R, Rohrbeck D, Hülsen T, Lensing-Höhn S, Krauspe R, Herten M. Osteoblastic potency of bone marrow cells cultivated on functionalized biometals with cyclic RGD-peptide. J Biomed Mater Res A 2013; 101:2905-14. [DOI: 10.1002/jbm.a.34590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/03/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - C. Böge
- Orthopaedic Department; University of Duisburg-Essen; Germany
| | | | - D. Rohrbeck
- Institute of Molecular Physical Chemistry; Heinrich-Heine University Düsseldorf; Germany
| | - T. Hülsen
- Orthopaedic Department; University of Duisburg-Essen; Germany
| | - S. Lensing-Höhn
- Orthopaedic Department; Heinrich-Heine-University Medical School; Düsseldorf; Germany
| | - R. Krauspe
- Orthopaedic Department; Heinrich-Heine-University Medical School; Düsseldorf; Germany
| | - M. Herten
- Orthopaedic Department; Heinrich-Heine-University Medical School; Düsseldorf; Germany
| |
Collapse
|
48
|
|
49
|
Liu Q, Limthongkul W, Sidhu G, Zhang J, Vaccaro A, Shenck R, Hickok N, Shapiro I, Freeman T. Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. J Orthop Res 2012; 30:1626-33. [PMID: 22504956 DOI: 10.1002/jor.22116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/15/2012] [Indexed: 02/04/2023]
Abstract
P15, a synthetic 15 amino acid peptide, mimics the cell-binding domain within the alpha-1 chain of human collagen is being tested in clinical trials to determine if it enhances bone formation in spinal fusions. We hypothesize that covalent attachment of P15 to titanium implants may also serve to promote osseointegration. To test this hypothesis, we measured osteoblast and mesenchymal cell adhesion, proliferation, and maturation on P15 tethered to a titanium (Ti-P15) surface. P15 peptide was covalently bonded to titanium alloy surfaces and incubated with osteoblast like cells. Cell toxicity, adhesion, spreading, and differentiation was then evaluated. Real-time quantitative PCR, Western blot analysis, and fluorescent immunohistochemistry was performed to measure osteoblast gene expression and differentiation. There was no evidence of toxicity. Significant increases in early cell attachment, spreading, and proliferation were observed on the Ti-P15 surface. Increased filapodial attachments, α(2) integrin expression, and phosphorylated focal adhesion kinase immunostaining indicated activation of integrin signaling pathways. qRT-PCR analysis indicated there was significant increase in osteogenic differentiation markers in cells grown on Ti-P15 compared to control-Ti. Western blotting confirmed these findings. Surface modification of titanium with P15 significantly increased cell attachment, spreading, osteogenic gene expression, and differentiation. Results of this study suggest that Ti-P15 has the potential to safely enhance bone formation and promote osseointegration of titanium implants.
Collapse
Affiliation(s)
- Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Y, Li L, Zhu J, Kuang H, Dong S, Wang H, Zhang X, Zhou Y. In vitro observations of self-assembled ECM-mimetic bioceramic nanoreservoir delivering rFN/CDH to modulate osteogenesis. Biomaterials 2012; 33:7468-77. [PMID: 22805316 DOI: 10.1016/j.biomaterials.2012.06.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/29/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | | | |
Collapse
|